JPH0553851B2 - - Google Patents

Info

Publication number
JPH0553851B2
JPH0553851B2 JP12626582A JP12626582A JPH0553851B2 JP H0553851 B2 JPH0553851 B2 JP H0553851B2 JP 12626582 A JP12626582 A JP 12626582A JP 12626582 A JP12626582 A JP 12626582A JP H0553851 B2 JPH0553851 B2 JP H0553851B2
Authority
JP
Japan
Prior art keywords
commutator
alloy
wear resistance
materials
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12626582A
Other languages
Japanese (ja)
Other versions
JPS5917843A (en
Inventor
Hideaki Yoshida
Masaki Morikawa
Naoki Uchama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP12626582A priority Critical patent/JPS5917843A/en
Publication of JPS5917843A publication Critical patent/JPS5917843A/en
Publication of JPH0553851B2 publication Critical patent/JPH0553851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/02Details for dynamo electric machines
    • H01R39/022Details for dynamo electric machines characterised by the materials used, e.g. ceramics
    • H01R39/025Conductive materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、特に耐摩耗性に優れたモータの整
流子用材料に関するものである。 一般に、整流子は、モータが回転する時に、刷
子(ブラシ材)と接触し、集電しながら回転する
部材であり、したがつて、整流子自体が、 (a) 刷子との間で機械的摩耗を生じる、 (b) 電気が断続的に流れるために放電が起つて損
傷を受ける、 ものであり、また整流子は、 (1) 整流子の縦溝に摩耗粉がつまり、すなわち目
づまり現象が起ると、モータ巻線に過大電流が
流れてモータ回路を焼損する、 (2) 整流子に摩耗生成物が付着したり、接触部の
温度上昇により酸化物などが形成されたりする
と、接触抵抗が上昇してモータの回転を不安定
にする、 などの問題発生の原因となるものであることか
ら、モータの整流子用材料には、良好な導電性お
よび加工性を有するほか、接触抵抗の上昇がな
く、すぐれた耐摩耗性を具備することが要求され
ている。 かかる点から、モータの整流子用材料として、
導電性および加工性が良好で、接触抵抗の経時的
上昇がなく、安定したAgが広く使用されたが、
Agは耐摩耗性の点で満足するものではなく、こ
のためAgに合金成分としてCu,In、あるいはCd
などをそれぞれ10重量%以下(通常は数%)の範
囲で含有させ、これらの合金成分には、Agに溶
け込んで硬さを向上させる作用があり、この結果
耐摩耗性が改善されたものとなるAg合金が用い
られてきた。 一方、近年、VTR用などに見られるように、
モータが小型化し、かつ回転速度が速くなる傾向
にあり、これに伴つてモータの整流子用材料には
より一層の耐摩耗性が要求されるようになつてい
るが、上記の従来Ag合金では、耐摩耗性不足が
原因で、これに十分対応することができないのが
現状である。 そこで、本発明者等は、上述のような観点か
ら、良好な導電性および加工性を有し、接触抵抗
の経時的上昇がなく、かつ耐摩耗性のすぐれたモ
ータの整流子用材料を開発すべく研究を行なつた
結果、 整流子用材料を、重量%で(以下、%は重量%
を示す)、 Si:1〜5%、Cu:1〜20%、 を含有し、さらに、 Al:1〜5%、Cd:1〜5%、 のうちの1種または2種、 を含有し、残りがAgと不可避不純物からなる成
分組成を有するAg合金で構成すると、このAg合
金は、マトリツクス(素地)がAlおよび/また
はCdが溶け込んだAg合金からなり、このマトリ
ツクスはAlおよび/またはCdの固溶によつて接
触抵抗の安定性が損なわれることなく、硬さが上
昇するので、すぐれた耐摩耗性を示すようになる
ほか、良好な導電性と加工性を示し、さらに前記
マトリツクスの硬質のCu−Si合金を主体とする
晶出物が均一に分散した組織をもつので、前記の
硬質のCu−Si合金晶出物によつてもすぐれた耐
摩耗性が確保され、この場合Cu−Si合金晶出物
自体が刷子と接触した状態でも整流子としての電
気的特性が損なわれることがないという研究結果
を得たのである。 したがつて、この発明は、上記の研究結果にも
とづいてなされたものであつて、 Si:1〜5%、Cu:1〜20%、 を含有し、さらに、 Al:1〜5%、Cd:1〜5%、 のうちの1種または2種、 を含有し、残りがAgと不可避不純物からなる成
分組成を有するAg合金で構成された、良好な電
気的特性を有し、かつ耐摩耗性のすぐれたモータ
の整流子用材料に特徴を有するものである。 つぎに、この発明の整流子用材料において、こ
れを構成するAg合金の成分組成を上記の通りに
限定した理由を説明する。 (a) SiおよびCu これらの成分には、マトリツクスの主要構成成
分であるAgによつてもたらされる良好な導電性
および加工性、さらに接触抵抗上昇抑制効果を損
なうことなく、鋳造時に結合してCu−Si合金を
形成し、マトリツクス中にCu−Si合金晶出物と
して分散晶出し、このCu−Si合金晶出物は硬質
なので、材料の耐摩耗性を向上させる作用がある
が、その含有量が、それぞれSi:1%未満および
Cu:1%未満ではCu−Si合金晶出物の形成が不
十分で所望の耐摩耗性向上効果が得られず、一方
その含有量が、それぞれSi:5%およびCu:20
%を越えると、Cu−Si合金晶出物の割合が多く
なりすぎ、導電性や加工性が低下し、さらに接触
抵抗が上昇するようになることから、その含有量
を、Si:1〜5%、Cu:1〜20%と定めた。 (b) AlおよびCd これらの成分には、マトリツクスに溶け込ん
で、これの硬さを向上させ、もつて材料の耐摩耗
性を一段と向上させる作用があるが、その含有量
がそれぞれ1%未満では所望の耐摩耗性向上効果
が得られず、一方その含有量がそれぞれ5%を越
えると、導電性や加工性が低下し、さらに接触抵
抗が高くなることから、その含有量を、それぞれ
Al:1〜5%、Cd:1〜5%と定めた。 つぎに、この発明のモータの整流子用材料を実
施例により具体的に説明する。 通常の高周波誘導溶解炉を用い、それぞれ第1
表に示される成分組成をもつたAg合金溶湯を調
製し、直径:80mm×長さ:200mmの寸法をもつた
ビレツトに鋳造し、このビレツトに熱間鍛造を施
して直径:20mmの丸棒材とし、この丸棒材の径を
冷間鍛造加工にて直径:10mmとし、これより直
径:8mm×長さ:6mmの寸法に切出すことにより
本発明整流子用材料1〜11、比較整流子用材料
1〜4、および従来整流子用材料1,2をそれぞ
れ製造した。 なお、比較整流子用材料1〜4は、いずれもこ
れを構成するAg合金における構成成分のうちの
いずれかの成分含有量(第1表に*印を付す)が
この発明の範囲から外れたものである。 ついで、この結果得られた各種の整流子用材料
を、第1図に概略斜視図で示される実際のモータ
に類似した試験装置に、整流子1として長さ方向
にそつて直径両側位置に深さ:1mm×幅:1mmの
縦溝4を2本形成し、回転軸の先端部に取付けた
状態で組込み、62.5%Au−30%Ag−7.5%Cuか
らなる成分組成をもつたAu合金で構成され、厚
さ:0.5mm×幅:3mmの寸法を有し、かつ
The present invention relates to a motor commutator material that has particularly excellent wear resistance. In general, a commutator is a member that comes into contact with a brush (brush material) and rotates while collecting current when the motor rotates.Therefore, the commutator itself (a) (b) Discharge occurs due to the intermittent flow of electricity, which causes damage to the commutator. (1) The vertical grooves of the commutator become clogged with wear particles, that is, the clogging phenomenon occurs. (2) If wear products adhere to the commutator or oxides are formed due to a rise in the temperature of the contact area, contact may occur. Since resistance increases and causes problems such as unstable motor rotation, motor commutator materials must have good conductivity and processability, as well as contact resistance. It is required to have excellent abrasion resistance and no increase in wear resistance. From this point of view, as a material for motor commutators,
Ag has been widely used because it has good conductivity and processability, does not increase contact resistance over time, and is stable.
Ag is not satisfactory in terms of wear resistance, and for this reason Cu, In, or Cd is added to Ag as an alloying component.
These alloy components have the effect of dissolving into Ag and improving its hardness, resulting in improved wear resistance. Ag alloys have been used. On the other hand, as seen in recent years for VTRs,
As motors tend to become smaller and their rotational speeds become faster, motor commutator materials are required to have even higher wear resistance, but the conventional Ag alloys mentioned above are At present, it is not possible to adequately deal with this problem due to the lack of wear resistance. Therefore, from the above-mentioned viewpoints, the present inventors developed a motor commutator material that has good conductivity and workability, does not increase contact resistance over time, and has excellent wear resistance. As a result of conducting research to improve commutator materials, we found that the materials for commutators are
), Si: 1 to 5%, Cu: 1 to 20%, and further contains one or two of the following: Al: 1 to 5%, Cd: 1 to 5%. , the remainder consists of Ag and unavoidable impurities, this Ag alloy has a matrix (base) of an Ag alloy in which Al and/or Cd are dissolved; The solid solution increases the hardness without impairing the stability of contact resistance, resulting in excellent wear resistance, as well as good conductivity and processability. Since it has a structure in which crystallized substances mainly composed of hard Cu-Si alloy are uniformly dispersed, excellent wear resistance is ensured even by the above-mentioned hard Cu-Si alloy crystallized substances, and in this case, Cu The research results showed that even when the -Si alloy crystallized material itself comes into contact with the brush, the electrical characteristics of the commutator are not impaired. Therefore, this invention was made based on the above research results, and contains Si: 1-5%, Cu: 1-20%, and further contains Al: 1-5%, Cd. : 1 to 5%, one or two of the following, with the remainder consisting of Ag and unavoidable impurities, and has good electrical properties and wear resistance. This material has the characteristics of a motor commutator material with excellent properties. Next, in the commutator material of the present invention, the reason why the composition of the Ag alloy constituting the commutator material is limited as described above will be explained. (a) Si and Cu These components have good electrical conductivity and processability brought about by Ag, which is the main component of the matrix, and are bonded with Cu during casting without sacrificing the effect of suppressing the increase in contact resistance. -Si alloy is formed and dispersed and crystallized in the matrix as Cu-Si alloy crystallized substances.This Cu-Si alloy crystallized substances are hard and have the effect of improving the wear resistance of the material, but their content However, Si: less than 1% and
When the Cu content is less than 1%, the formation of Cu-Si alloy crystals is insufficient and the desired wear resistance improvement effect cannot be obtained;
%, the proportion of Cu-Si alloy crystallized substances becomes too large, resulting in a decrease in conductivity and workability, and an increase in contact resistance. %, Cu: 1 to 20%. (b) Al and Cd These components have the effect of dissolving into the matrix and improving its hardness, thereby further improving the wear resistance of the material, but if their content is less than 1% each, If the desired wear resistance improvement effect cannot be obtained, and if the content exceeds 5%, the conductivity and processability will decrease, and the contact resistance will increase.
Al: 1-5%, Cd: 1-5%. Next, the motor commutator material of the present invention will be specifically explained using examples. Using a normal high frequency induction melting furnace,
A molten Ag alloy having the composition shown in the table is prepared, cast into a billet with dimensions of 80 mm in diameter x 200 mm in length, and hot forged into a round bar with a diameter of 20 mm. Then, the diameter of this round bar material was made 10 mm by cold forging, and by cutting it into a size of 8 mm diameter x 6 mm length, materials 1 to 11 for commutators of the present invention and comparative commutators were obtained. Commutator materials 1 to 4 and conventional commutator materials 1 and 2 were manufactured, respectively. In addition, in Comparative commutator materials 1 to 4, the content of one of the constituent components (marked with * in Table 1) in the Ag alloy constituting the materials was outside the scope of the present invention. It is something. The various commutator materials obtained as a result are then placed in a testing device similar to an actual motor shown in a schematic perspective view in FIG. Two vertical grooves 4 of size: 1 mm x width: 1 mm are formed and installed on the tip of the rotating shaft, and made of an Au alloy with a composition of 62.5% Au - 30% Ag - 7.5% Cu. It has dimensions of thickness: 0.5 mm x width: 3 mm, and

【表】 一端が純Cuの端子にスポツト溶接された刷子2,
3を、5000rpmで回転する整流子1の長さ方向中
央部に両側からはさむように30gの圧力で押付け
接触させ、これに20Vで250mAの電流が流れる
ように自動調節しながら500時間の連続試験を行
ない、耐摩耗性を評価する目的で、試験後の整流
子1の直径減少量を測定し、また接触抵抗特性を
評価する目的で、試験前後の両刷子間の電気抵抗
を測定した。さらに上記の各種整流子用材料の電
気伝導度を測定し、導電性を評価した。これらの
測定結果を第1表に示した。 第1表に示される結果から、本発明整流子用材
料1〜11は、いずれも従来整流子用材料1,2
に比して、相対的に著しい導電性の低下なく、こ
れより一段とすぐれた耐摩耗性を有し、さらに接
触抵抗の経時的変化が小さく、安定していること
が明らかであり、一方比較整流子用材料1〜4に
見られるように、マトリツクス中に分散するCu
−Si合金晶出物の割合が少なすぎると消耗の耐摩
耗性向上効果が得られず、また前記Cu−Si合金
晶出物の割合が多くなりすぎても、AlまたはCd
の含有量が多くなりすぎても導電性の低下が厳し
く、かつ接触抵抗も上昇するようになることが明
白です。 上述のように、この発明のモータの整流子用材
料は、良好な導電性および加工性、さらに安定し
た接触抵抗を具備した上で、すぐれた耐摩耗性を
有するので、整流子として実用に供した場合にも
著しく長期に亘つてすぐれた性能を発揮するので
ある。
[Table] Brush 2 with one end spot welded to a pure Cu terminal,
3 was pressed against the center of the length of the commutator 1 rotating at 5000 rpm with a pressure of 30 g from both sides, and a continuous test was conducted for 500 hours while automatically adjusting the current so that a current of 250 mA at 20 V flows through the commutator 1. The reduction in diameter of the commutator 1 after the test was measured in order to evaluate the wear resistance, and the electrical resistance between the two brushes before and after the test was measured in order to evaluate the contact resistance characteristics. Furthermore, the electrical conductivity of the various commutator materials mentioned above was measured to evaluate the electrical conductivity. The results of these measurements are shown in Table 1. From the results shown in Table 1, it can be seen that the commutator materials 1 to 11 of the present invention are the same as the conventional commutator materials 1 and 2.
It is clear that there is no relatively significant decrease in conductivity and that the contact resistance is more stable than this, and the change in contact resistance over time is small and stable. As seen in child materials 1 to 4, Cu dispersed in the matrix
-If the proportion of the Cu-Si alloy crystallized substance is too small, the effect of improving wear resistance due to consumption cannot be obtained, and even if the proportion of the Cu-Si alloy crystallized substance is too large, Al or Cd
It is clear that if the content of oxide is too high, the conductivity will be severely degraded and the contact resistance will also increase. As mentioned above, the motor commutator material of the present invention has good conductivity, workability, stable contact resistance, and excellent wear resistance, so it can be used practically as a commutator. Even in this case, it exhibits excellent performance over an extremely long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実際のモータに類似した試験装置を示
す概略斜視図である。 1……整流子、2,3……刷子、4……縦溝。
FIG. 1 is a schematic perspective view of a test device similar to a real motor. 1... Commutator, 2, 3... Brush, 4... Vertical groove.

Claims (1)

【特許請求の範囲】 1 Si:1〜5%、Cu:1〜20%、 を含有し、さらに、 Al:1〜5%、Cd:1〜5%、 のうちの1種または2種、 を含有し、残りがAgと不可避不純物からなる成
分組成(以上重量%)を有するAg合金で構成し
てなるモータの整流子用材料。
[Claims] 1 Contains Si: 1 to 5%, Cu: 1 to 20%, and further contains one or two of the following: Al: 1 to 5%, Cd: 1 to 5%, A material for a motor commutator consisting of an Ag alloy having a composition (by weight % or more) of which the remainder consists of Ag and unavoidable impurities.
JP12626582A 1982-07-20 1982-07-20 Alloy for motor commutator Granted JPS5917843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12626582A JPS5917843A (en) 1982-07-20 1982-07-20 Alloy for motor commutator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12626582A JPS5917843A (en) 1982-07-20 1982-07-20 Alloy for motor commutator

Publications (2)

Publication Number Publication Date
JPS5917843A JPS5917843A (en) 1984-01-30
JPH0553851B2 true JPH0553851B2 (en) 1993-08-11

Family

ID=14930900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12626582A Granted JPS5917843A (en) 1982-07-20 1982-07-20 Alloy for motor commutator

Country Status (1)

Country Link
JP (1) JPS5917843A (en)

Also Published As

Publication number Publication date
JPS5917843A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
JPH09263864A (en) Copper alloy excellent in electric-discharge wear resistance
JPH0553851B2 (en)
JP4019294B2 (en) Sliding contact material
JPH0559666B2 (en)
JPH07284983A (en) Solder material and production thereof
JPH0941056A (en) Motor commutator material
JP3995129B2 (en) Sliding contact material
JPH093569A (en) Gold alloy for sliding contact
JPS599298B2 (en) Wire-cut electrode wire for electrical discharge machining
JP2884534B2 (en) Composite materials for electrical contacts
JPH0115573B2 (en)
JPH0135905B2 (en)
JPH0116897B2 (en)
JP2884533B2 (en) Composite materials for electrical contacts
JPS6017031A (en) Sliding contact point material
JPH0762189B2 (en) Silver-oxide type electrical contact material
JPH01152230A (en) Alloy for commutator of motor
JPS60138859A (en) Slide contact unit
JPS59113151A (en) Sliding contact material
JPS60131719A (en) Slide contact unit
JPH0114977B2 (en)
JPS5967355A (en) Sliding contact material
JPS59110754A (en) Slide contact material
JPH0222138B2 (en)
JPH0260731B2 (en)