JPH0553783B2 - - Google Patents

Info

Publication number
JPH0553783B2
JPH0553783B2 JP22234284A JP22234284A JPH0553783B2 JP H0553783 B2 JPH0553783 B2 JP H0553783B2 JP 22234284 A JP22234284 A JP 22234284A JP 22234284 A JP22234284 A JP 22234284A JP H0553783 B2 JPH0553783 B2 JP H0553783B2
Authority
JP
Japan
Prior art keywords
ethylene oxide
reaction
dialkylamine
daae
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22234284A
Other languages
Japanese (ja)
Other versions
JPS61100550A (en
Inventor
Yoshuki Hirako
Shoji Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP22234284A priority Critical patent/JPS61100550A/en
Publication of JPS61100550A publication Critical patent/JPS61100550A/en
Publication of JPH0553783B2 publication Critical patent/JPH0553783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はジアルキルアミンと酸化エチレンより
ジアルキルアミノエタノール(以下、DAAEと
略記する)を製造する方法に関する。更に詳しく
は、一般式 (式中R1、R2はC1〜C4の低級アルキル基を表わ
し、R1、R2は同一でも異なつてもよい) で表わされるジアルキルアミンと酸化エチレンと
の反応により、一般式 (式中R1、R2は前記に同じ) で表わされるジアルキルアミノエタノールを製造
するに当つて液相半回分法を採用し、且つ、ジア
ルキルアミンの溶媒液に酸化エチレンを連続的に
仕込み反応させ最終的にジアルキルアミン:酸化
エチレン=2〜3:1(モル比)に達する時点で
反応を終了させることを特徴とするジアルキルア
ミノエタノールの製造法に関する。 DAAEは現在アルキツド樹脂塗料、ポリウレ
タン発泡触媒、ガス吸収剤、溶剤、防錆剤など数
多くの用途に使用され、工業上有用な物質であ
る。 従来、ジアルキルアミンと酸化エチレンの反応
によりDAAEが生成することは既に公知である。
(後えばW、H、Horne and R、L、Shriner、
J.Amer.Chem.Soc.、2925(1932))。同文献(液相
半回分式反応)においては反応溶媒としてメタノ
ール等のアルコール類が使用され、ジアルキルア
ミン/酸化エチレン=1/1.3の場合が最良の結
果(収率75%)を与えると記載している。 しかし乍ら、反応溶媒としてアルコール類等の
水酸基を有する溶媒を使用すると、副生物として
例えば溶媒メタノール自身酸化エチレンと反応
し、エチレングリコールモノメチルエーテル(以
下MMGと略記する)などのエチレングリコール
モノエーテルが生成し、反応の選択率低下と
DAAEの収率低下を招くことになる。更にジア
ルキルアミンがジメチルアミンの場合、主生成物
であるジメチルアミノエタノールと副生MMGの
沸点差が小さいことにより、蒸留による製品の分
離精製に困難が伴なうこととなる。又、一方
DAAE自身分子未端に水酸基を有し、条件によ
つては、酸化エチレンと逐次的に反応し、高沸点
化合物を生成する。従つて本反応においては、生
成するDAAEと酸化エチレンの反応、及び溶媒
と酸化エチレンの反応等を出来る限り抑制し、
DAAEの選択率を確保することが最も重要な課
題である。 本発明者等はこれらの課題を達成すべく鋭意研
究を行ない、その目的を達した。本発明の方法に
依ればジアルキルアミンと酸化エチレンの反応を
選択的に行なわせ、生成物であるDAAE及び溶
媒と酸化エチレンとの反応を引き起こすことな
く、反応を完結させることができる。つまり、ジ
アルキルアミンの溶媒液に酸化エチレンを連続的
にジアルキルアミン:酸化エチレンのモル比が最
終的に2〜3:1なる時点まで滴加後反応を終了
することにより、実質上反応中、系内でのジアル
キルアミン:酸化エチレンのモル比を非常に大き
いこと、そしてジアルキルアミンの存在量が生成
DAAEの量により常に大きい時点で反応終了さ
せることにより、副生物の生成を抑え、DAAE
の収率向上が得られる。 次に、上記、現象を図−1(ジアルキルアミン
と酸化エチレンの典型的な反応、操作条件は実施
例1に準ずる。)に基づいて説明する。予め、仕
込まれたジアルキルアミンに、酸化エチレンを順
次滴下することによりジアルキルアミン(曲線
)は減少しDAAE(曲線)は増加する。酸化
エチレンをジアルキルアミン:酸化エチレン=2
〜3:1に到達するまでで(図−1での斜線で
示された領域)仕込みを停止すればDAAEの逐
次反応による高沸点化合物(曲線)及び溶媒と
酸化エチレンとの反応生成物(曲線)の生成は
ほとんど見られず結果的にDAAEの選択率が向
上し通常の簡単な蒸留などの精製法によつて
DAAEの製品化が可能になる。引続きで示さ
れる領域を超えて酸化エチレンを更に仕込み、ジ
アルキルアミンの転化率を上げていくにしたがい
副反応生成物及びの生成量も増加し、
DAAEの選択率が低下する。従つてジアルキル
アミン:酸化エチレン=2〜3:1に到達した時
点で酸化エチレンの仕込みを停止することは、本
反応におけるDAAEの選択率及び収率を高め、
製品であるDAAEの品質向上に効果的である。 ところで、連続式によるDAAEの製造法も既
に公知であるが、例えばドイツ特許第2357076号
によれば、140±5℃の高温でしかも20バールの
加圧下、反応生成物の1部をリサイクル仕込みす
るなど装置的に決して容易な合成法とは言えな
い。 また、連続式では半回分式に比べて、実質上、
ジアルキルアミン/酸化エチレンが小しか選べ
ず、(これが大では経済上、不利である。)後者の
様なジビアな操作は不得手である。 さらに、半回分式におけるジアルキルアミンか
ら酸化エチレンの逆滴下比較例1やジアルキルア
ミン及び酸化エチレンの同時仕込比較例2は上記
と同じ理由で、副生物の生成が大であり、
DAAEの品質上、精製が困難となる。 本発明においては反応に使用される圧力は常圧
から加圧下まで任意であるが設備費の問題から大
気圧下で行なうのが好ましい。反応温度は室温か
ら使用する溶媒の還流温度までの範囲で可能であ
る。使用する溶媒としてはメタノール、エタノー
ル、プロパノール等のアルコール類及び水が反応
に使用できるが、メタノールを用いることがもつ
とも好ましい。溶媒量は酸化エチレンに対して等
重量倍から大過剰までで可能であるが、溶媒と酸
化エチレンとの反応を考慮すれば1〜10倍量が好
ましい。 かくして得られたDAAEは通常の精製法、例
えば蒸留などによつて容易に精製することが出来
る。 以下実施例において本発明を更に詳細に述べ
る。 実施例 1 ジムロート冷却器、かくはん器滴下ロート、温
度計を備えた500mlの4つ口フラスコに、ジメチ
ルアミン45重量部(1.0モル部)とメタノール100
重量部の溶液を仕込み、湯浴上で50℃に加熱す
る。酸化エチレン22重量部(0.5モル部)と冷メ
タノール34重量部の溶液を1.0時間かけて滴下す
る。滴下終了后、更に1.0時間熟成する。この反
応粗液のガスクロマトグラフイー分析の結果、組
成は第1表の通り。酸化エチレン基準のジメチル
アミノエタノール収率90.0%酸化エチレン転化率
100%であつた。 次に、オルダーシヨー装置(目皿塔、40φ、
20N)を用いて、得られた反応粗液をバツチ蒸留
に掛ける。(常圧、還流比1)結果歩留17.8%で、
製品留分(134〜135℃)を得た。(蒸留収率90.0
%)なお、これは充分な商品価値を有していた。 比較例 1 実施例1と同様の反応装置を用いて酸化エチレ
ン44重量部(1.0モル部)とメタノール44重量部
の溶液を仕込み、湯浴上で30℃に加熱する。ジメ
チルアミン45重量部(1.0モル部)と冷メタノー
ル45重量部の溶液を1.0時間かけて滴下する。更
に2.0時間の熟成の後この反応粗液のガスクロマ
トグラフイー分析の結果、組成は第1表の通り、
酸化エチレン基準のジメチルアミノエタノール収
率68.0%酸化エチレン転化率74%であつた。 比較例 2 500ml容積のオートクレーブを用いて、ジメチ
ルアミン45重量部(1.0モル部)酸化エチレン22
重量部(0.5モル部)及びメタノール134重量部を
同時に仕込み、湯浴上で50℃に加熱する。更に30
分間の経過の後この反応粗液のガスクロマトグラ
フイー分析の結果、組成は第1表の通り。 酸化エチレン基準のジメチルアミノエタノール
収率78.5%、酸化エチレン転化率95%であつた。
The present invention relates to a method for producing dialkylaminoethanol (hereinafter abbreviated as DAAE) from dialkylamine and ethylene oxide. For more details, see the general formula (In the formula, R 1 and R 2 represent a C 1 to C 4 lower alkyl group, and R 1 and R 2 may be the same or different.) (In the formula, R 1 and R 2 are the same as above) In producing dialkylaminoethanol, a liquid phase semi-batch method is adopted, and ethylene oxide is continuously charged into a solvent solution of dialkylamine for reaction. The present invention relates to a method for producing dialkylaminoethanol, characterized in that the reaction is terminated when a molar ratio of dialkylamine:ethylene oxide of 2 to 3:1 is reached. DAAE is currently used in many applications such as alkyd resin paints, polyurethane foaming catalysts, gas absorbents, solvents, and rust preventives, making it an industrially useful substance. It has been known that DAAE is produced by the reaction of dialkylamine and ethylene oxide.
(Later W, H, Horne and R, L, Shriner,
J.Amer.Chem.Soc., 2925 (1932)). In the same document (liquid phase semi-batch reaction), alcohols such as methanol are used as the reaction solvent, and it is stated that the best results (yield 75%) are given when dialkylamine/ethylene oxide = 1/1.3. ing. However, when a solvent having a hydroxyl group such as alcohol is used as a reaction solvent, for example, the solvent methanol itself reacts with ethylene oxide as a by-product, and ethylene glycol monoether such as ethylene glycol monomethyl ether (hereinafter abbreviated as MMG) is produced. formation, and the selectivity of the reaction decreases.
This will lead to a decrease in the yield of DAAE. Furthermore, when the dialkylamine is dimethylamine, the difference in boiling point between the main product dimethylaminoethanol and the by-product MMG is small, making it difficult to separate and purify the product by distillation. Also, on the other hand
DAAE itself has a hydroxyl group at the end of its molecule, and depending on conditions, it reacts sequentially with ethylene oxide to produce a high-boiling compound. Therefore, in this reaction, the reaction between the generated DAAE and ethylene oxide, and the reaction between the solvent and ethylene oxide, etc., should be suppressed as much as possible.
The most important issue is to ensure the selectivity of DAAE. The inventors of the present invention have conducted extensive research to achieve these goals, and have achieved their goals. According to the method of the present invention, the reaction between dialkylamine and ethylene oxide can be selectively carried out, and the reaction can be completed without causing a reaction between the product DAAE and the solvent and ethylene oxide. In other words, by continuously adding ethylene oxide to the dialkylamine solvent solution dropwise until the molar ratio of dialkylamine:ethylene oxide finally reaches 2 to 3:1, and then finishing the reaction, the system The molar ratio of dialkylamine:ethylene oxide within is very large, and the abundance of dialkylamine produced
By always ending the reaction at a time when the amount of DAAE is large, the formation of by-products is suppressed and DAAE is
An improvement in yield can be obtained. Next, the above phenomenon will be explained based on FIG. 1 (typical reaction between dialkylamine and ethylene oxide, operating conditions are based on Example 1). By sequentially dropping ethylene oxide to the dialkylamine charged in advance, dialkylamine (curve) decreases and DAAE (curve) increases. Ethylene oxide dialkylamine: ethylene oxide = 2
If the charging is stopped until the ratio reaches ~3:1 (shaded area in Figure 1), high boiling point compounds (curve) due to the sequential reaction of DAAE and reaction products between the solvent and ethylene oxide (curve) will be removed. ) formation is hardly observed, and as a result, the selectivity of DAAE is improved, and it is possible to improve the selectivity of DAAE by ordinary purification methods such as simple distillation.
It becomes possible to commercialize DAAE. As ethylene oxide is further charged beyond the range shown below and the conversion rate of dialkylamine is increased, the amount of side reaction products and products produced also increases.
DAAE selectivity decreases. Therefore, stopping the addition of ethylene oxide when dialkylamine:ethylene oxide ratio of 2 to 3:1 is reached increases the selectivity and yield of DAAE in this reaction, and
It is effective in improving the quality of the product DAAE. Incidentally, a continuous method for producing DAAE is already known, but for example, according to German Patent No. 2357076, a part of the reaction product is recycled at a high temperature of 140±5°C and under a pressure of 20 bar. This cannot be said to be an easy synthesis method in terms of equipment. In addition, compared to the semi-batch type, the continuous type actually
Only a small amount of dialkylamine/ethylene oxide can be selected (if it is large, it is economically disadvantageous), and the latter type of manual operation is not suitable. Furthermore, in Comparative Example 1 of reverse dripping of ethylene oxide from dialkylamine in a semi-batch method and Comparative Example 2 of simultaneous preparation of dialkylamine and ethylene oxide, large amounts of by-products were generated for the same reason as above.
Purification is difficult due to the quality of DAAE. In the present invention, the pressure used for the reaction may be arbitrary from normal pressure to elevated pressure, but from the viewpoint of equipment costs, it is preferable to carry out the reaction under atmospheric pressure. The reaction temperature can range from room temperature to the reflux temperature of the solvent used. As the solvent used in the reaction, alcohols such as methanol, ethanol, propanol, etc. and water can be used in the reaction, but methanol is preferably used. The amount of solvent can range from an equivalent weight to a large excess of ethylene oxide, but in consideration of the reaction between the solvent and ethylene oxide, an amount of 1 to 10 times is preferable. The DAAE thus obtained can be easily purified by conventional purification methods, such as distillation. The present invention will be described in further detail in the following examples. Example 1 45 parts by weight (1.0 mole parts) of dimethylamine and 100 parts by weight of methanol were placed in a 500 ml four-necked flask equipped with a Dimroth condenser, a stirrer dropping funnel, and a thermometer.
Add parts by weight of the solution and heat to 50°C on a water bath. A solution of 22 parts by weight (0.5 mole part) of ethylene oxide and 34 parts by weight of cold methanol is added dropwise over 1.0 hour. After the addition is completed, the mixture is further aged for 1.0 hour. As a result of gas chromatography analysis of this reaction crude liquid, the composition was as shown in Table 1. Dimethylaminoethanol yield based on ethylene oxide 90.0% Ethylene oxide conversion rate
It was 100%. Next, the Oldersho device (perforated plate tower, 40φ,
20N), apply the obtained reaction crude liquid to batch distillation. (Normal pressure, reflux ratio 1) The resulting yield was 17.8%,
A product fraction (134-135°C) was obtained. (Distillation yield 90.0
%) Note that this had sufficient commercial value. Comparative Example 1 Using the same reaction apparatus as in Example 1, a solution of 44 parts by weight (1.0 mol) of ethylene oxide and 44 parts by weight of methanol was charged and heated to 30°C on a hot water bath. A solution of 45 parts by weight (1.0 mole) of dimethylamine and 45 parts by weight of cold methanol is added dropwise over 1.0 hour. After further aging for 2.0 hours, gas chromatography analysis of this reaction crude liquid revealed that the composition was as shown in Table 1.
The yield of dimethylaminoethanol based on ethylene oxide was 68.0%, and the conversion rate of ethylene oxide was 74%. Comparative Example 2 Using a 500 ml autoclave, dimethylamine 45 parts by weight (1.0 mol part) ethylene oxide 22
Part by weight (0.5 mol part) and 134 parts by weight of methanol are charged simultaneously and heated to 50°C on a water bath. 30 more
After a few minutes had elapsed, gas chromatography analysis of the crude reaction solution revealed that the composition was as shown in Table 1. The yield of dimethylaminoethanol based on ethylene oxide was 78.5%, and the conversion rate of ethylene oxide was 95%.

【表】 実施例 2 実施例1と同様の反応装置を用いて、ジメチル
アミン50%水溶液135重量部(1.5モル部)と酸化
エチレン33重量部(0.75モル部)で反応を行なつ
た。この反応粗液のガスクロマトグラフイー分析
の結果、酸化エチレン基準のジメチルアミノエタ
ノール収率95.2%、酸化エチレン転化率92%であ
つた。 実施例 3 実施例1と同様の反応装置を用いて、ジエチル
アミン123重量部(1.7モル部)とメタノール51重
量部の溶液を仕込み、湯浴上で55℃に加熱する。
酸化エチレン30重量部(0.68モル部)を1.0時間
かけて滴下する。熟成の後、過剰量のジエチルア
ミンは蒸留回収した。この反応粗液のガスクロマ
トグラフイー分析の結果、ジエチルアミン基準の
収率83.7%、酸化エチレン転化率100%であつた。
[Table] Example 2 Using the same reaction apparatus as in Example 1, a reaction was carried out with 135 parts by weight (1.5 mol parts) of a 50% dimethylamine aqueous solution and 33 parts by weight (0.75 mol parts) of ethylene oxide. As a result of gas chromatography analysis of this reaction crude liquid, the yield of dimethylaminoethanol based on ethylene oxide was 95.2%, and the conversion rate of ethylene oxide was 92%. Example 3 Using the same reaction apparatus as in Example 1, a solution of 123 parts by weight (1.7 mol) of diethylamine and 51 parts by weight of methanol was charged and heated to 55°C on a water bath.
Add 30 parts by weight (0.68 moles) of ethylene oxide dropwise over 1.0 hour. After ripening, excess diethylamine was recovered by distillation. As a result of gas chromatography analysis of this reaction crude liquid, the yield was 83.7% based on diethylamine, and the conversion rate of ethylene oxide was 100%.

【図面の簡単な説明】[Brief explanation of the drawing]

添付の図面は本発明の内容を説明するためのジ
アルキルアミンと酸化エチレンの典型的な反応を
示す図である。 A……ジアルキルアミンの消失曲線、B……ジ
アルキルアミノエタノールの生成曲線、C……高
沸点化合物の生成曲線、D……溶媒と酸化エチレ
ンの反応生成物の生成曲線、E……本発明の方法
に従う領域。
The accompanying drawings are diagrams showing a typical reaction between dialkylamine and ethylene oxide to explain the content of the present invention. A...Disappearance curve of dialkylamine, B...Production curve of dialkylaminoethanol, C...Production curve of high boiling point compound, D...Production curve of reaction product of solvent and ethylene oxide, E...Production curve of the present invention Area according to method.

Claims (1)

【特許請求の範囲】 1 一般式 (式中R1、R2はC1〜C4の低級アルキル基を表わ
し、R1、R2は同一でも異なつてもよい) で表わされるジアルキルアミンと酸化エチレンと
の反応により一般式 (式中R1、R2は前記に同じ) で表わされるジアルキルアミノエタノールを製造
するに当つて液相半回分法を採用し、且つ、ジア
ルキルアミンの溶媒液に酸化エチレンを連続的に
仕込み反応させ最終的にジアルキルアミン:酸化
エチレン=2〜3:1(モル比)に達する時点で
反応を終了させることを特徴とするジアルキルア
ミノエタノールの製造法。
[Claims] 1. General formula (In the formula, R 1 and R 2 represent a C 1 to C 4 lower alkyl group, and R 1 and R 2 may be the same or different.) (In the formula, R 1 and R 2 are the same as above) In producing dialkylaminoethanol, a liquid phase semi-batch method is adopted, and ethylene oxide is continuously charged into a solvent solution of dialkylamine for reaction. A method for producing dialkylaminoethanol, characterized in that the reaction is terminated when a molar ratio of dialkylamine:ethylene oxide of 2 to 3:1 is reached.
JP22234284A 1984-10-23 1984-10-23 Preparation of dialkylaminoethanol Granted JPS61100550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22234284A JPS61100550A (en) 1984-10-23 1984-10-23 Preparation of dialkylaminoethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22234284A JPS61100550A (en) 1984-10-23 1984-10-23 Preparation of dialkylaminoethanol

Publications (2)

Publication Number Publication Date
JPS61100550A JPS61100550A (en) 1986-05-19
JPH0553783B2 true JPH0553783B2 (en) 1993-08-10

Family

ID=16780837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22234284A Granted JPS61100550A (en) 1984-10-23 1984-10-23 Preparation of dialkylaminoethanol

Country Status (1)

Country Link
JP (1) JPS61100550A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103242175A (en) * 2013-03-28 2013-08-14 宁波市联凯化学有限公司 Preparation method of monoethanol diisopropanolamine

Also Published As

Publication number Publication date
JPS61100550A (en) 1986-05-19

Similar Documents

Publication Publication Date Title
JPS6259097B2 (en)
US4117249A (en) Acetylenic alcohols, their derivatives and process for their production
JPH11508921A (en) Method for producing 1,2-bis (acyloxylate)
EP0487035B1 (en) Process for the preparation of diethers
JP3334952B2 (en) Method for producing E, Z-butenedial-bis-dialkylacetal
EP0030397B1 (en) Process for the preparation of methyl polyethers and methyl polyethers prepared by this process
JPH0553783B2 (en)
JPH11140022A (en) Jasmonic acid-based compound and its production
JPS5935904B2 (en) Method for producing new compounds
JPS6023345A (en) Manufacture of glyoxylic acid ester
JPS6121538B2 (en)
JPS6365057B2 (en)
JPS5936966B2 (en) Hydroxylation method for short chain aliphatic monoolefins
JPS582210B2 (en) Method for producing 2,3-dimethyl-2,3-butanediol
Lim et al. Rhodium-catalyzed coupling reaction of 2-vinylpyridines with allyl ethers
US3978135A (en) Preparation of ethers from citronellal or homologues thereof
JPH06228039A (en) Preparation of ketal
JPS62178541A (en) Isolation of semi acetal of glyoxylic acid ester and glyoxylic acid ester
US4760169A (en) Process for the preparation of hydroxymethylenealkoxyacetic acid esters
US4250344A (en) Cracking process for styrene
JPH0730003B2 (en) Co-production method of ethylene cyanohydrin and its ether
JPH0584305B2 (en)
JP3318017B2 (en) Preparation of cycloalkanol
JPS6084241A (en) 4,6,8-trimethyldecan-2-one
JPH0273033A (en) Production of 4, 4-dimethyl-1-(p-chlorophenyl) pentane-3-one