JPH0553721B2 - - Google Patents

Info

Publication number
JPH0553721B2
JPH0553721B2 JP61302156A JP30215686A JPH0553721B2 JP H0553721 B2 JPH0553721 B2 JP H0553721B2 JP 61302156 A JP61302156 A JP 61302156A JP 30215686 A JP30215686 A JP 30215686A JP H0553721 B2 JPH0553721 B2 JP H0553721B2
Authority
JP
Japan
Prior art keywords
reaction
dehydrogenation
hydrogen
reaction chamber
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61302156A
Other languages
Japanese (ja)
Other versions
JPS63154629A (en
Inventor
Naoji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP30215686A priority Critical patent/JPS63154629A/en
Publication of JPS63154629A publication Critical patent/JPS63154629A/en
Publication of JPH0553721B2 publication Critical patent/JPH0553721B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は脱水素反応装置に関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a dehydrogenation reactor.

〔従来技術〕[Prior art]

脱水素反応は吸熱反応であり、化学平衡論的に
は高温の方が有利である。したがつて、工業的に
行われている各種炭化水素類の脱水素反応は、数
百度の温度で行われている。しかしながら、高温
で反応を行うということは、生成物の分解、その
他複雑な副反応も同時に起ることになる。またタ
ール等の生成により触媒の汚損が起り、触媒の劣
化も早くなる。一方、脱水素反応において、反応
を減圧下又は希釈ガスの存在下で行うことも知ら
れている。これによつて、同一の反応率を得るの
に要する反応温度をいくらか低下させることがで
きる。しかしながら、減圧や希釈ガスの使用は、
確かに平衡反応率を向上させることができるが、
反応物分圧を下げることになり、反応速度自体の
低下をもたらすばかりか、単位触媒重量当りの実
質生産量も低下するという欠点を有している。
The dehydrogenation reaction is an endothermic reaction, and high temperatures are more advantageous in terms of chemical equilibrium theory. Therefore, dehydrogenation reactions of various hydrocarbons that are carried out industrially are carried out at temperatures of several hundred degrees. However, carrying out the reaction at high temperatures means that product decomposition and other complicated side reactions occur at the same time. In addition, the catalyst becomes fouled due to the generation of tar, etc., and the catalyst deteriorates more quickly. On the other hand, it is also known that the dehydrogenation reaction is carried out under reduced pressure or in the presence of a diluent gas. This allows some reduction in the reaction temperature required to obtain the same reaction rate. However, the use of reduced pressure and diluent gas
Although it is true that the equilibrium reaction rate can be improved,
This method has the disadvantage that not only the partial pressure of the reactants is lowered, resulting in a lowering of the reaction rate itself, but also the actual production amount per unit weight of the catalyst is lowered.

〔目的〕〔the purpose〕

本発明は、前記従来技術に見られる欠点を克服
することを目的とする。
The present invention aims to overcome the drawbacks found in the prior art.

〔構成〕〔composition〕

本発明によれば、脱水素反応触媒を充填した反
応室の隔壁の少なくとも一部を非多孔質の水素透
過性材料で構成し、脱水素反応で生成した水素の
みが該水素透過性材料を透過して、反応室外部へ
分離し得る構造を有することを特徴とする脱水素
反応装置が提供される。
According to the present invention, at least a part of the partition wall of the reaction chamber filled with the dehydrogenation reaction catalyst is made of a non-porous hydrogen permeable material, and only the hydrogen generated in the dehydrogenation reaction permeates through the hydrogen permeable material. Accordingly, there is provided a dehydrogenation reactor characterized by having a structure that allows separation to the outside of the reaction chamber.

次に、本発明を図面により説明する。第1図は
本発明装置の1つの実施例についての説明断面図
であり、全体は2重管構造を有し、内管1と外管
2とから構成され、内管内には脱水素触媒が充填
され、反応室Aとして構成されている。外管2と
内管1との間は空隙部Bとして構成されている。
内管1の周壁(反応室隔壁)は非多孔質の水素透
過性材料で構成されている。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is an explanatory cross-sectional view of one embodiment of the device of the present invention, which has a double tube structure as a whole and is composed of an inner tube 1 and an outer tube 2, and a dehydrogenation catalyst is installed in the inner tube. It is filled and configured as reaction chamber A. A gap B is formed between the outer tube 2 and the inner tube 1.
The peripheral wall (reaction chamber partition wall) of the inner tube 1 is made of a non-porous hydrogen permeable material.

このような脱水素反応装置を用いて脱水素反応
を行うには、原料をライン4を通して反応室Aに
導入するとともに、反応生成物をライン5を通し
て抜出し、また不活性ガスをライン3を通して空
隙部Bに導入するとともに、ライン6を通して抜
出す。
In order to carry out a dehydrogenation reaction using such a dehydrogenation reactor, raw materials are introduced into the reaction chamber A through line 4, reaction products are extracted through line 5, and inert gas is introduced into the cavity through line 3. It is introduced into B and is extracted through line 6.

本発明装置においては、反応室Aの周壁1が非
多孔質の水素透過性材料で構成されていることか
ら、反応室Aにおける脱水素反応により生成した
水素のみが、その周壁を透過して空隙部Bに入
り、そして不活性ガスとともにライン6を通つて
系外へ抜出される。即ち、反応室Aにおいては水
素濃度は著しく低下されているために、脱水素反
応は著しく促進され、その脱水素反応率は熱力学
的平衡値を大きく超え、条件によつては100%の
反応率を得ることが可能である。従つて、反応終
了後の反応物と生成物との分離操作が軽減もしく
は不要になるという利点がある。
In the apparatus of the present invention, since the peripheral wall 1 of the reaction chamber A is made of a non-porous hydrogen-permeable material, only the hydrogen produced by the dehydrogenation reaction in the reaction chamber A passes through the peripheral wall and into the voids. It enters section B and is extracted out of the system through line 6 along with the inert gas. That is, since the hydrogen concentration is significantly reduced in reaction chamber A, the dehydrogenation reaction is significantly accelerated, and the dehydrogenation reaction rate greatly exceeds the thermodynamic equilibrium value, and depending on the conditions, the reaction may reach 100%. It is possible to obtain a rate of Therefore, there is an advantage that the operation for separating reactants and products after the reaction is completed is reduced or becomes unnecessary.

第1図においては、周壁を透過してきた水素は
不活性ガスと共に系外へ分離されているが、水素
の系外への分離は、空隙部Bを真空ポンプによ
り、減圧又は真空状態にして、反応室Aの水素を
空隙Bに円滑に透過させることもできる。この場
合には、空隙部Bに透過してきた水素は極めて高
純度(99.9999%程度)であり、このような水素
はそのまま高純度水素として用いることができ
る。
In FIG. 1, the hydrogen that has permeated through the peripheral wall is separated to the outside of the system along with the inert gas, but in order to separate the hydrogen to the outside of the system, the gap B is reduced in pressure or in a vacuum state using a vacuum pump. Hydrogen in the reaction chamber A can also be smoothly permeated into the gap B. In this case, the hydrogen that has permeated into the gap B has extremely high purity (approximately 99.9999%), and such hydrogen can be used as is as high-purity hydrogen.

本発明で用いる非多孔質水素透過性材料として
は、パラジウム金属膜、パラジウムと金、銀又は
ルテニウム等の他の金属との合金膜が使用し得
る。前記パラジウム金属膜やパラジウム合金膜は
高価であることから、できるだけ薄膜にして用い
るのが好ましく、そして、このような薄膜を用い
る時には、その機械的強度を高めるために、適当
な多孔質体を支持体とし、その表面に積層して用
いる。また、非多孔質の水素透過性材料は、反応
室隔壁の全部又は一部として構成される。
As the non-porous hydrogen permeable material used in the present invention, a palladium metal membrane or an alloy membrane of palladium and other metals such as gold, silver or ruthenium can be used. Since the palladium metal membrane and palladium alloy membrane are expensive, it is preferable to make them as thin as possible.When such a thin membrane is used, it is supported by a suitable porous material in order to increase its mechanical strength. It is used by laminating it on the surface of the body. Additionally, the non-porous hydrogen permeable material is configured as all or part of the reaction chamber partition.

〔効果〕〔effect〕

本発明の脱水素反応装置は、従来公知の種々の
脱水素反応に適用することができ、例えば、エチ
ルベンゼン、シクロヘキサン、ブタン等の炭化水
素原料の脱水素反応装置として適用することがで
きる。
The dehydrogenation reactor of the present invention can be applied to various conventionally known dehydrogenation reactions, and can be applied, for example, as a dehydrogenation reactor for hydrocarbon raw materials such as ethylbenzene, cyclohexane, and butane.

本発明装置によれば、反応で生成した水素は連
続的に反応室から除去されることから、脱水素反
応を著しく促進させることができる。従つて、本
発明装置を用いる時には、平衡反応率の小さい低
い反応温度の使用も可能であり、触媒劣化や、副
生物、分解物の副生を著しく抑制することができ
る。
According to the apparatus of the present invention, since hydrogen produced in the reaction is continuously removed from the reaction chamber, the dehydrogenation reaction can be significantly accelerated. Therefore, when using the apparatus of the present invention, it is possible to use a low reaction temperature at which the equilibrium reaction rate is low, and catalyst deterioration and by-products and decomposition product by-products can be significantly suppressed.

さらに、第1図に示した如き装置においては、
空隙部Bを水素化反応室として使用し、オレフイ
ン、その他の水素化用原料の水素化を同時に行う
こともできる。また、前記したように、空隙部B
に透過してきた高純度水素を抜出し、回収するこ
とによつて、高純度水素を併産することもでき
る。
Furthermore, in the device as shown in FIG.
It is also possible to use the void B as a hydrogenation reaction chamber to simultaneously hydrogenate olefin and other raw materials for hydrogenation. In addition, as described above, the cavity B
High-purity hydrogen can also be co-produced by extracting and recovering the high-purity hydrogen that has permeated through the process.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明す
る。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 反応装置として、第1図に示した如き2重管式
のものを用いた。この場合、内管1として、内径
17mm、厚さ0.2mm、長さ160mmのパラジウム膜を用
いた。また、その内管内部には、白金担持触媒を
均一に充填した。外管2は内径30mmのステンレス
製パイプであり、その外管両端部には、水素除去
用に流す不活性ガス(アルゴン)の導入管および
排出管を取り付けた。
Example A double tube type reactor as shown in FIG. 1 was used as the reactor. In this case, as the inner pipe 1, the inner diameter
A palladium membrane of 17 mm, thickness 0.2 mm, and length 160 mm was used. Further, the inside of the inner tube was uniformly filled with platinum-supported catalyst. The outer tube 2 was a stainless steel pipe with an inner diameter of 30 mm, and an inert gas (argon) inlet tube and outlet tube for hydrogen removal were attached to both ends of the outer tube.

反応系としては、シクロヘキサンのベンゼンヘ
の脱水素反応を取り上げた。原料のシクロヘキサ
ンを反応室Aに送り、同時に空隙部Bにはアルゴ
ンを流す。反応は、大気圧下、温度200で行つた。
As a reaction system, we took up the dehydrogenation reaction of cyclohexane to benzene. The raw material cyclohexane is sent to the reaction chamber A, and at the same time, argon is flowed into the cavity B. The reaction was carried out at a temperature of 200℃ under atmospheric pressure.

第2図にその実験結果を示す。 Figure 2 shows the experimental results.

第2図において、曲線1,2及び3は、シクロ
ヘキサン供給量がそれぞれ1.47×10-3g/分、
4.07×10-3g/分及び8.32×10-3g/分である場
合の結果を示す。通常の触媒反応器では、平衡反
応率約20%以上を上回ることができないのに対し
て、本発明の反応装置では、それを大きく上回り
条件によつてはほぼ100%の反応率が得られた。
In Figure 2, curves 1, 2 and 3 have a cyclohexane feed rate of 1.47 x 10 -3 g/min, respectively.
Results are shown for cases of 4.07×10 −3 g/min and 8.32×10 −3 g/min. While a normal catalytic reactor cannot achieve an equilibrium reaction rate of more than about 20%, the reactor of the present invention far exceeds this and can achieve a reaction rate of almost 100% under certain conditions. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の説明断面図を示し、第2
図はその装置を用いて得られた脱水素反応実験の
結果を示すグラフを示す。 1……非多孔質の水素透過性材料からなる内
管、2……外管、A……反応室、B……空隙部。
FIG. 1 shows an explanatory sectional view of the device of the present invention, and the second
The figure shows a graph showing the results of a dehydrogenation reaction experiment obtained using the device. 1... Inner tube made of non-porous hydrogen permeable material, 2... Outer tube, A... Reaction chamber, B... Cavity.

【特許請求の範囲】[Claims]

1 ガスバーナによつて形成される酸素を含む高
温の炎中で、原料金属粉体を蒸発酸化させて、粒
径が0.2μm以下の酸化物超微粒子を生成させるこ
とを特徴とする酸化物超微粒子の製造方法。 2 特許請求の範囲第1項において、原料金属粉
体をガスバーナによつて形成される高温の炎中に
落下させて蒸発酸化させることを特徴とする酸化
物超微粒子の製造方法。 3 特許請求の範囲第1項において、原料金属粉
体をキヤリアガスで気流輸送してガスバーナの炎
中へ導入して蒸発酸化させることを特徴とする酸
化物超微粒子の製造方法。 4 特許請求の範囲第3項において、キヤリアガ
スは酸素であることを特徴とする酸化物超微粒子
の製造方法。 5 特許請求の範囲第3項において、キヤリアガ
スは燃焼ガスであることを特徴とする酸化物超微
粒子の製造方法。 6 酸素を含む高温の炎を生成するガスバーナ、
該ガスバーナの先端方向に伸びるように取り付け
られた燃焼管、燃焼管へ通じる粉体導入管を通じ
て燃焼管の中へ落下させる原料金属粉体を貯蔵す
1 Ultrafine oxide particles characterized in that ultrafine oxide particles with a particle size of 0.2 μm or less are produced by evaporating and oxidizing raw metal powder in a high temperature flame containing oxygen formed by a gas burner. manufacturing method. 2. The method for producing ultrafine oxide particles according to claim 1, characterized in that the raw metal powder is dropped into a high-temperature flame formed by a gas burner and evaporated and oxidized. 3. The method for producing ultrafine oxide particles according to claim 1, characterized in that the raw metal powder is air-transported using a carrier gas, introduced into the flame of a gas burner, and evaporated and oxidized. 4. The method for producing ultrafine oxide particles according to claim 3, characterized in that the carrier gas is oxygen. 5. The method for producing ultrafine oxide particles according to claim 3, wherein the carrier gas is a combustion gas. 6. A gas burner that generates a high-temperature flame containing oxygen;
A combustion tube is installed to extend toward the tip of the gas burner, and raw metal powder is dropped into the combustion tube through a powder introduction tube leading to the combustion tube.

Claims (1)

【特許請求の範囲】[Claims] 1 脱水素反応触媒を充填した反応室の隔壁の少
なくとも一部を非多孔質の水素透過性材料で構成
し、脱水素反応で生成した水素のみが該水素透過
性材料を透過して、反応室外部へ分離し得る構造
を有することを特徴とする脱水素反応装置。
1. At least a part of the partition wall of the reaction chamber filled with the dehydrogenation reaction catalyst is made of a non-porous hydrogen permeable material, so that only the hydrogen produced in the dehydrogenation reaction permeates through the hydrogen permeable material and the reaction chamber A dehydrogenation reactor characterized by having a structure that allows separation to the outside.
JP30215686A 1986-12-18 1986-12-18 Dehydrogenating reactor Granted JPS63154629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30215686A JPS63154629A (en) 1986-12-18 1986-12-18 Dehydrogenating reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30215686A JPS63154629A (en) 1986-12-18 1986-12-18 Dehydrogenating reactor

Publications (2)

Publication Number Publication Date
JPS63154629A JPS63154629A (en) 1988-06-27
JPH0553721B2 true JPH0553721B2 (en) 1993-08-10

Family

ID=17905588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30215686A Granted JPS63154629A (en) 1986-12-18 1986-12-18 Dehydrogenating reactor

Country Status (1)

Country Link
JP (1) JPS63154629A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217227A (en) * 1990-01-24 1991-09-25 Mitsubishi Heavy Ind Ltd Membrane reactor for dehydrogenation reaction
JP2002274802A (en) * 2001-03-13 2002-09-25 Sekisui Chem Co Ltd Hydrogen storage and supply means
JP2007084378A (en) * 2005-09-21 2007-04-05 Nippon Oil Corp Method for producing hydrogen and apparatus used in the same
JP4817420B2 (en) * 2005-12-19 2011-11-16 独立行政法人産業技術総合研究所 Hydrogen production apparatus and method
EP2398762A4 (en) * 2009-02-17 2013-05-15 Asemblon Inc Hydrogen release and recovery from aliphatic primary amines or di-amines

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118403A (en) * 1974-06-24 1976-02-14 Illinois Tool Works Tanshiburotsukutoritsukeburaketsuto
JPS6384630A (en) * 1986-09-29 1988-04-15 Nippon Steel Corp Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118403A (en) * 1974-06-24 1976-02-14 Illinois Tool Works Tanshiburotsukutoritsukeburaketsuto
JPS6384630A (en) * 1986-09-29 1988-04-15 Nippon Steel Corp Heat exchanger type reactor used for performing reaction accompanying generation of hydrogen

Also Published As

Publication number Publication date
JPS63154629A (en) 1988-06-27

Similar Documents

Publication Publication Date Title
US4713234A (en) Process and apparatus for conversion of water vapor with coal or hydrocarbon into a product gas
Nam et al. Methane steam reforming in a Pd-Ru membrane reactor
US6207132B1 (en) Process for producing high purity hydrogen
US5525322A (en) Method for simultaneous recovery of hydrogen from water and from hydrocarbons
JPH0541610B2 (en)
US3198604A (en) Hydrogen generating system
Coronas et al. Use of a ceramic membrane reactor for the oxidative dehydrogenation of ethane to ethylene and higher hydrocarbons
KR102301134B1 (en) Processes utilising selectively permeable membranes
Coronas et al. Development of ceramic membrane reactors with a non-uniform permeation pattern. Application to methane oxidative coupling
EP0866030B1 (en) Method for operation of membrane reactor, and membrane reactor used therein
EP1066216A1 (en) Use of a membrane reactor for hydrogen production via the direct cracking of hydrocarbons
US5202517A (en) Process for production of ethylene from ethane
JPH05317708A (en) Membrane reactor for dehydrogenation reaction
JPH0553721B2 (en)
GB1578913A (en) Process for producing aniline
JP2003137505A (en) Reactor using membrane
JPH03217227A (en) Membrane reactor for dehydrogenation reaction
RU2717819C1 (en) Method of producing super-pure hydrogen by steam reforming of ethanol
JPS6385002A (en) Method for taking out hydrogen from cyclohexane at low temperature
JPH04321502A (en) Production of hydrogen for fuel cell, apparatus and method for feeding
JPH0518624B2 (en)
Yang et al. Application of membrane reactor for dehydrogenation of ethylbenzene
US3937735A (en) Process for the preparation of cyclohexanone
JP2003192302A (en) Hydrogen production apparatus
GB2068938A (en) Method for the simultaneous preparation of cyclopentene and camphor