JPH0553604B2 - - Google Patents

Info

Publication number
JPH0553604B2
JPH0553604B2 JP59233268A JP23326884A JPH0553604B2 JP H0553604 B2 JPH0553604 B2 JP H0553604B2 JP 59233268 A JP59233268 A JP 59233268A JP 23326884 A JP23326884 A JP 23326884A JP H0553604 B2 JPH0553604 B2 JP H0553604B2
Authority
JP
Japan
Prior art keywords
conductive
thermoplastic resin
chopped
resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59233268A
Other languages
Japanese (ja)
Other versions
JPS61112608A (en
Inventor
Tadashi Yokozawa
Shoji Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23326884A priority Critical patent/JPS61112608A/en
Publication of JPS61112608A publication Critical patent/JPS61112608A/en
Publication of JPH0553604B2 publication Critical patent/JPH0553604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は導電性を有する導電性繊維チヨツプド
ストランドを含有してなる熱可塑性樹脂組成物の
製造方法に関するものである。 [従来の技術] 熱可塑性樹脂は、軽量、成形性、耐熱性、電気
絶縁性等が良好である事から、特に金属の代替材
料として、工業部品、電気部品、事務機ハウジン
グ、自動車部品、精密部品などに広く用いられて
いる。近年ラジオやテレビなどの家電機器、トラ
ンシーバーなどの無線機器、各種電子計測機器、
事務器ハウジング等の分野においては電磁波シー
ルド規制(EMI規制)に代表されるが如き、熱
可塑性樹脂に導電性を付与する要望が高まつてい
る。熱可塑性樹脂に導電性を付与する方法につい
ては、各種の技術検討がなされている。例えば、
導電性塗料を成形品に塗布する方法、無電解メツ
キプロセスを使用し成形品表面に金属の薄い皮膜
を形成させる方法、又は導電性繊維を熱可塑性樹
脂中に混合分散させる方法等の試みがなされてい
るが、導電性塗料を塗布する方法では、複雑な成
形品においては、塗膜の均一性を保つ事が困難で
ある事や、母体となる熱可塑樹脂と塗料間の密着
性を保つ為に最適な塗料を選択する必要が生じた
り、塗装工程における環境汚染の問題がある。無
電解メツキ法では、メツキ槽の設備が、必要な事
と成形品自体が全てメタリツク調になる弊害があ
る。 以上から、現在は、主として導電性繊維を熱可
塑性樹脂に混合分散させて導電性を付与する方法
が最も注目されている。具体的をあげれば、特公
昭59−19480号では、樹脂中に導電性繊維および
導電性微粉体を分散せしめた電磁波遮蔽用材料が
示され、特公昭58−79050号では、導電性材料と
し、アルミニウムフレーク、炭素繊維等を混合せ
しめた電磁干渉遮蔽用ポリフエニレンエーテル樹
脂組成物が示されている。 しかしながら、母体となる熱可塑性樹脂は、元
来電気絶縁体であるが故に、所望とする導電性を
付与する為には、今まで比較的多量の高価な導電
性繊維フイラメント、又はチヨツプドストランド
又は導電性粉体を添加混合する必要性が生じ、そ
の為母体本来の物理的特性の低下をせしめるばか
りか導電性繊維の解繊により製造収率の著しい低
下を生じせしめ、高価格となり商品価値として
は、不十分となり易く改良を要望されてきた。 これら導電性繊維を含有した、導電性熱可塑性
樹脂の製造方法については過去いくつかの改良技
術の検討が行なわれている。 例えば特開昭59−22710号では、熱可塑性樹脂
としてABS樹脂を使用し、押出機を使用し、金
属メツキ等で被覆した炭素繊維フイラメント束を
中心部として合成樹脂を均一に被覆し、切断し
て、炭素繊維フイラーが均一分散して可塑化の良
い、電子機器の電磁波遮蔽用に優れた導電性成形
材料を得る方法が示されており、特開昭58−
21734号では、第4図に示すように熱可塑性合成
樹脂(例;ポリエチレン、ポリプロピレン、
ABS樹脂等)を例えばスクリユー式押出機a等
により可塑化してTダイbから薄いシート状に押
出し成形する。このシートcが軟化温度以上の温
度にある位置において、或いは赤外線ランプ等を
用いて軟化点以上の温度に保ちつち、シートcの
少なくとも一方の面には導電性箔片または導電性
繊維d(例;金属箔片、金属化ガラス短繊維、カ
ーボン短繊維等)を落下させて層状に堆積させた
後、全体を一対の加圧ロール或いはベルトeの間
を通過させ、シートcと層fを圧着一体化して合
成樹脂成形材料を得る方法が示されている。 特開昭59−49913号では、押出機のダイス内で
ストランド状又はロービング状の金属糸繊維等を
解きほぐして熱可塑性合成樹脂で被覆することに
より、樹脂中に導体繊維を良好に分散させ、繊維
のアスペクト比も大きくする製造方法に関し、第
5図ロに示すように溶融樹脂入口gに直角の方向
に設けた心金hの繊維入口iから金属系繊維又は
炭素繊維などの導体繊維を導入し、繊維出口jよ
り引出す。次いで、円錐又は多角錐の形状の繊維
ガイドkの外周を通過させ、繊維を放射状に広
げ、口金導入部rに達した樹脂と繊維を互いにか
らませて口金ランド部mに導く。冷却固化後に引
取機で引取つた導体繊維nを被覆した樹脂oをペ
レダイザーで切断して第5図イに示すようなペレ
ツトpを得る方法が示されている。 しかしながら、特開昭59−22710号では、導電
性付与の為に金属メツキ等で被膜した特殊な炭素
繊維フイラメントを使用し、特開昭58−21734号
では、熱可塑性樹脂母体をシート状にする事、特
開昭59−49913号では、押出機のダイス部に特別
の工夫をする事の制限があり、実用的に好ましく
ない。 [発明が解決しようとする問題点] 本発明者らは通常の押出機と、導電性繊維チヨ
ツプトストランドを使用し、物性低下が少なく、
導電性の良好なる熱可塑性樹脂の簡便なる製造方
法について鋭意検討を加え本発明に到達したもの
である。 [問題点を解決するための手段及び作用] 本発明者らは、熱可塑性樹脂に導電性繊維チヨ
ツプドストランドを添加する方法に関する、従来
から使用されてきた方法、例えば、熱可塑性樹脂
と導電性繊維チヨツプドストランドをあらかじめ
均一に混合し、押出機ホツパー口よりフイードし
押出混合をさせる方法では導電性繊維チヨツプド
ストランドによる解繊、分級等による製造収率が
著しく低下するばかりでなく、熱可塑性樹脂が溶
融する段階で、受ける剪断応力により導電性繊維
チヨツプドストランドが著しく破損し、繊維長が
極端に短くなる結果、導電性が低下し、物理的性
質も低下する事を見い出した。これらの解析結果
を基に導電性繊維チヨツプドストランドの解繊、
分級等がなく、しかも繊維長をできる限り長く保
つ方法につき、種々検討を加えた結果、あらかじ
め溶融した熱可塑性樹脂に導電性繊維チヨツプド
ストランドを精度よく添加し混合する事が導電
性、物理的性質の良好なる導電性熱可塑性樹脂組
成物を得る為に必須である事を見い出し本発明に
到達した。 本発明の方法を用いる事により少量の導電性繊
維チヨツプドストランドの使用で製造収率が高
く、物理的性質の低下が少なく、導電性にすぐれ
た熱可塑性樹脂を低コストで市場に提供する事が
可能になると考えられる。 本発明は第1図の如き2個以上の供給口1a,
1bを有する押出機Aを用いて母体となる熱可塑
性樹脂を第1と供給口1a(ホツパー口)から、
一定供給量の定量フイーダーを使用し供給し、そ
れが溶融混練した状態で第2以下の供給口1b
(ベント口)より導電性繊維チヨプドストランド
を振動型電動フイーダーを用いて、きわめて精度
よく定量供給して、導電性繊維チヨツプどストラ
ンド含有率が0.5〜50重量%となる様に添加混練
する事を特徴とする導電性鉄可塑性樹脂の製造方
法に関するものである。本発明の製造方法に用い
ると導電性繊維チヨツプドストランドの数平均繊
維長を0.2mm以上に長く保つ事が可能となり、物
理的性質の特性低下が少なく、導電性がきわめて
良好である、低価格の導電性熱可塑性樹脂が得ら
れる。 本発明においては導電性繊維チヨツプドストラ
ンドをきわめて精度よく定量的に押出機供給口に
供給できる事が必須であり、この為の定量フイー
ダーとして振動型電動フイーダーが最も適してい
る。定量フイーダーにはスクリユーフイーダー
型、テーブルフイーダー型、圧送ローダー型等の
如き多種あるが、通常、導電性繊維チヨツプドス
トランドは、振動、移動、攪拌等によりきわめて
解繊しやすく、例えばスクリユーフイーダーの如
き回転式体積計量方式で定量精度が著しく悪く、
その為製造収率の低下が発生するばかりでなく、
品質の安定化もはかられない。本発明にいう振動
型電動フイーダーは電磁石により振動して材料を
輸送するトラフと、重量検出装置を保有した定速
駆動するコンベアーからなる重量式定量フイーダ
ーであり、その一例として最適なものは、第2図
の如きの形式のものがあげられる。 その構成部分としては、導電性繊維チヨツプド
ストランドを貯蔵するホツパー部2、材料を輸送
するトラフ3、トラフ中央部に振動源として取り
つけた電磁石4、可動フレーム5とその両端に取
りつけた振動角度が自由に可変できる板バネ6お
よびそれらの制御機器から構成される。動作原理
は板バネ6で支えられたトラフが電磁石4が励磁
されると急激に斜め下方向へ引きつけられる。励
磁電流は脈流であるので電流の零の点で磁力がな
くなり、板バネ6の反発力によりトラフ3は前方
へ押し返えされ、この時トラフ3上の材料は前方
へ移動され、定速駆動いているコンベア−7上に
供給される。 コンベア7上の材料の重量はロードセル8によ
り検出され、その出力電圧はあらかじめ設定した
輸送両設定値に相当する設定電圧と比較される。
その比較による誤差、すなわちロードセル8の出
力電圧と設定電圧との差電圧をPID演算増幅器9
により増幅し、その増幅電圧によりサイリスタ1
0の点弧角を制御して電磁石への電圧を変化させ
フイーダーの切出量を調整する。 このトラフ3の振動角度は、板バネ6の取りつ
け角度(β1、β2)でフレキシブルに調整でき、輸
送する材料に合つた最適の振動特性が得られる。
例えば、導電性繊維チヨツプドストランドなど比
較的嵩密度が低く、輸送時のジヤンプ、トラフ払
出口での振巾ズレにより繊維同士が解繊する様な
場合には、板バネ6の取付け角度を立てて振動角
度を小さくする事により、定量供給精度が著しく
向上する。逆に重量物の場合は、取りつけ角度を
ねかせて必要な角度を確保する事も可能であり、
本発明における好ましい条件としては、トラフの
振動角度、90〜60度、振動数2000〜3000回/1分
である。この様な機械は例えば、神網電機(株)製リ
ニアシントロン型グラビメトリツクフイーダー
LF型として市販されている なお、第2図において、11はシンクロモータ
ー、12は支点、13は瞬間輸送量表示計、14
は瞬間輸送量設定器、15は手動・自動切換器、
16は電圧計、17は固定フレームである。 又、本発明において使用される押出機について
は、2つの以上の供給口を備えていれば特に制限
はなく、バレル温度として100℃〜350℃にコント
ロール可能であれば良く、市販の単軸押出機、あ
るいは2軸押出機(同方向回転タイプ、異方向回
転タイプ)等の押出機を使用する事が可能である
が、比較的多量の導電性繊維チヨツプドストラン
ドを添加する様な場合には2軸押出機が好まし
い。 又、スクリユーデイメンシヨンについても特に
制限はなく、母体となる熱可塑性樹脂に合わせ
て、必要であれば、各タイプのスクリユーデイメ
ンシヨンを構成できるものである。 本発明において使用される導電性繊維チヨツプ
ドストランドとしては特に制限はなく、それ自身
導電性であればよく金、銀、銅、ニツケル、アル
ミニウム、鉄などの金属繊維、又ガラス繊維、シ
リコーンカーバイド繊維、ボロン繊維、有機高弾
性繊維、ポリエステル繊維、ポリアミド繊維の様
にそれ自身は導電性を全く有しないか、またはほ
とんど有しない繊維に上記金属をメツキ、蒸着、
溶射するなどして導電性を付与したもの、あるい
は炭素繊維などのチヨツプドストランドが使用さ
れるが、高強度、高弾性であるために樹脂の補強
効果が大きく、また比重が小さい炭素繊維チヨツ
プドストランドが好ましく、さらに好ましくは、
安息角が35〜45度、嵩密度が0.15〜0.45g/cm3
炭素繊維チヨツプドストランドが好ましい。 又、本発明において使用される母体となる熱可
塑性樹脂についても特に制限はなくポリオレフイ
ン樹脂、ポリ塩化ビニル樹脂、スチレン系樹脂、
ポリカーボネート樹脂、ポリフエニレンエーテル
樹脂、アクリル樹脂、ポリアミド樹脂、ポリエス
テル樹脂、ポリフエニレンスルフアイド樹脂等の
熱可塑性樹脂のいづれか一種又は2種以上を組み
合わせても使用する事ができる。 又所望により安定剤、老化防止剤、着色剤、難
燃剤、補強用エラストマー、無機フイラー、ガラ
ス繊維等の補強剤等も添加する事もできる。 [実施例] 以下に本発明の方法を下記実施例で詳述するが
実施例に示される各種原料の特性、及び導電性熱
可塑性樹脂の物理的性質は、以下の如くの方法に
より求めた。 炭素繊維チヨツプドストランドの嵩密度(g/
cm3) 直径3cm、高さ8cmのガラス製の円筒ビンに、
炭素繊維チヨツプドストランド2gを精秤し、コ
ルク栓で密閉する。この試料を入江商会(株)製TS
−3型振とう器にて23℃を保温下で、1時間振と
う後静置し、炭素繊維チヨツプドストランドの高
さを測定し、体積を計算し、嵩密度を測定する。
嵩密度値の高い炭素繊維チヨツプドストランド
程、振動による解繊が少く、定量精度は良好であ
る。 炭素繊維チヨツプスランドの安息角(度) 蔵持化学器械製作所製、安息角測定器KRS型
を使用し、23℃保持下にて炭素繊維チヨツプドス
トランドの安息角を測定した安息角の角度が低い
程、流動性が良く、解繊が発生しにくく、定量精
度は良好である。 導電性熱可塑性樹脂中の炭素繊維チヨツプドス
トランドの含有量(重量%) 導電性熱可塑性樹脂2gを精秤し、田中科学機
械製加熱炉、SOFTEMP−F型を使用し、空
気中450℃で2時間保温焼成後、熱可塑性樹脂を
焼失させ残溜炭素繊維重量を測定し、炭素繊維含
有量を重量%で表示する。 導電性熱可塑性樹脂中の炭素繊維チヨツプドス
トランドの繊維長の測定(mm) 上記450℃にて加熱炉にて焼成した、残溜炭素
繊維量約0.1gを用い、CARLZEISS製双眼実体
顕微鏡を使用して炭素繊維チヨツプドストランド
繊維長の分布形態を観察し、倍率50倍の写真を10
枚取り、繊維長を測定し、以下の方法により炭素
繊維チヨツプドストランドの数平均長さ(mm)を
求めた。 数平均長さΣn・d/Σn n:炭素繊維チヨツプドストランドの個数 d:炭素繊維チヨツプドストランドの直径(mm) 導電性(表面抵抗率)の測定(Ω) 横5cm、縦8.9cm、厚さ2mmのダイレクトゲー
トの平板金型を使用して導電性熱可塑性樹脂を東
芝機械(株)製IS−80A射出成形機にて成形をし、23
℃、50%湿度恒温室に24時間保持し、第3図の如
く導電ペースト(徳力化学研究所シルベストP−
255)を巾2mmになる如く塗布し、サンワ電機(株)
製テスターSH−63TR−D型テスターにて導
電ペースト間の抵抗値Ωを測定し、電極間距離
(導電ペースト間距離5cm)を、電極の有効長さ
(導電ペースト塗布長さ5cm)で除去し、抵抗値
を掛けて、表面抵抗率を測定する。第3図におい
て、l1=5cm、l2=8.9cm、l3=5cm、l4=2mmで
ある。そして第3図サンプルの厚みは2mmであ
る。 表面抵抗率(Ω)=電極間距離/電極の有効長×抵
抗値 曲げ弾性率 導電性熱可塑性樹脂を、東芝機械(株)製IS−80A
射出成形機を使用し、試験片を作成しASTM D
−790を使用し、曲げ弾性率を測定する。 熱変形温度 導電性熱可塑性樹脂を、東芝機械(株)製IS−80A
射出成形機を使用し、試験片を作成しASTM D
−648を使用し、フアイバーストレス18.6Kg/cm2
で熱変形温度を測定する。 アイゾツト衝撃強さ 導電性熱可塑性樹脂を東芝機械(株)製IS−80A射
出成形機を使用し、試験片を作成し、ASTM D
−256を使用し、1/4″厚さでノツチ付試験片で、
23℃のアイゾツト衝撃強さを測定する。 実施例 1 2つの以上の供給口が設置された押出機とし
て、PCM−87 2軸押出機(池貝鉄工(株)製)を使
用し、ダイス側の1つの供給C4部バレルブロツ
ク部に、振動型電動フイーダーとして、神鋼電機
(株)製リニアシントロンLF−40型を設置し、C1
C7部と7段階に温度調整可能なるバレルの温度
をダイス側から各々ダイ部を250℃、ヘツド部を
250℃、C7部240℃、C6部を240℃、C5部を240℃、
C4部を260℃、C3部を270℃、C2部を270℃、C1
を260℃に設定し、スクリユー回転数を50rpmに
設定した。次いで押出機フイード部の第1供給口
から母体となる熱可塑性樹脂成分として、重合度
150の2,6−ジメチル1,4−フエニレンエー
テル樹脂20重量部、ポリアミド樹脂としてアミラ
ン1017(東レ(株)製)45重量部、スチレン−無水マ
レイン酸共重合体樹脂としてダイラーク232
(ARCO社製)15重量部、安定剤としてイルガノ
ツクス1076(チバガイ−ギ社製)を0.5重量部とを
ブレンダーにて均一に混合した樹脂をスクリユー
型定量フイーダーにより80Kg/Hrになる様に調
整し、2軸押出機に定量的に供給を行う。次いで
導電性を付与する、炭素繊維チヨプドストランド
として東レ(株)製トレカT−006(6cm長さ、嵩高度
0.25g/cm3、安息角44度)をリニアシントロン
LF−40型振動型電動フイーダー用ホツパーに投
入し、供給量が20Kg/Hrになる様に調整をし、
第2の供給口である2軸押出機C4部バレルブロ
ツク部から定量的に溶融している熱可塑性樹脂に
供給を行い、炭素繊維チヨツプドストランド含有
導電性熱可塑性樹脂の製造を行つた。製造安定性
については炭素繊維チヨツプドストランドの定量
供給精度に起因するサージング(脈動)、ストラ
ンド切れの発生もなく良好であり、製造収率は98
%であつた。その得られた樹脂特性の物理的性質
と分析結果を表−1に示した。 実施例 2 実施例1とまつたく同様の設備を使用し、ダイ
ス側から各々ダイ部を260℃、ヘツド部を260℃、
C7部を250℃、C6部を250℃、C5部を250℃、C4
を270℃、C3部を280℃、C2部を280℃、C1部を
270℃に設定し、スクリユー回転数を50rpmに設
定した。母体となる熱可塑性樹脂成分として重合
度150の2,6−ジメチル1,4−フエニレンエ
ーテル樹脂5重量部、ポリアミド樹脂としてアミ
ラン1017(東レ(株)製)70重量部、ダイラーク232を
5重量部に変更し、さらに炭素繊維チヨツプドス
トランドとして東レT−006のロツト変更品(嵩
密度0.28g/cm3、安息角38度)を使用した以外
は、まつたく同様の条件にて導電性熱可塑性樹脂
の製造を行つた実施例1に対して炭素繊維チヨツ
プドストランドの嵩密度が高く安息角が低い為
に、チヨツプドストランドの流動性がより良好で
あるので、炭素繊維チヨツプドストランドの定量
供給精度もより良好であり、製造収率も97%と高
く、製造安定性もきわめて良好であつた。その得
られた樹脂の物理的性質と分析結果を表−1に示
す。 実施例 3 実施例1に対して炭素繊維チヨツプドストラン
ドとして嵩密度が低く、安息角の低いハーキユレ
ス社製マグナマイト1800AS(6mm長さ、嵩密度
0.20g/cm3、安息角39度)に変更した以外はまつ
たく同様の方法及び条件にて導電性熱可塑性樹脂
の製造を行つた炭素繊維チヨツプドストランドの
定量供給精度も良好であり、製造収率も99%であ
り、製造安定性も良好であつた。得られた樹脂特
性の物理的性質と分析結果を表−1に示した。 実施例 4 実施例1に対して、炭素繊維チヨツプドストラ
ンド単独に変えて、炭素繊維チヨツプドストラン
ドとして東レ(株)製トレカT−006(嵩密度0.25g/
cm3、安息角44度)50重量%と、ガラス繊維チヨツ
プドストランドとして旭フアイバーガラス(株)MA
−419(6mm長さ、嵩密度0.38g/cm3、安息角30
度)50重量%からなる混合チヨツプドストランド
に変更した以外は、実施例1とまつたく同様の方
法及び条件にて導電性熱可塑性樹脂の製造を行つ
た。炭素繊維チヨツプドストランド単独に対し
て、嵩密度も高く、かつ安息角も低い為に定量供
給精度もきわめて高く、製造安定性も良好であつ
た。得られた樹脂特性の物理的性質と、分析結果
を表−1に示す。導電性については、実施例1に
対して炭素繊維含有量が1/2であるが為に、その
含有率が少ない分だけ低下した。 実施例 5 実施例1とまつたく同様の設備を使用し、バレ
ル温度をダイス側から各々ダイ部を320℃、ヘツ
ド部を320℃、C7部310℃、C6部を310℃、C5部を
310℃、C4部を330℃、C3部を330℃、C2部を330
℃、C1部を320℃に設定し、スクリユー回転数を
50rpmに設定した。次いで押出機フイード部の第
1供給口から母体となる熱可塑性樹脂成分とし
て、重合度120の2,6−ジメチル−1,4−フ
エニレンエーテル樹脂30重量部、ゴム変性耐衝撃
性ポリスチレン樹脂として、スタイロン492(旭化
成社製)43重量部、難燃剤としてトリフエニルフ
オスフエート7重量部、安定剤としてイルガノツ
クス1076(チバガイーギ社製)0.5重量部とをブレ
ンダーにて均一に混合した樹脂をスクリユーフイ
ーダー型定量フイーダーにより80Kg/Hrになる
様に調整し、2軸押出機に定量的に供給を行う。
次いで導電性を付与する、炭素繊維チヨツプドス
トランドとして東レ(株)製トレカT−006(6mm長
さ、嵩密度0.25g/cm3、安息角44度)をリニアシ
ントロンLF−40型振動型電動フイーダー用ポツ
パーに投入し、供給量が20Kg/Hrになる様に調
整をし、2軸押出機C4部バレルブロツク部から
定量的に溶融した熱可塑性樹脂に供給を行い、炭
素繊維チヨツプドストランド含有導電性熱可塑性
樹脂の製造を行つた。製造安定性については定量
供給精度に起因するサージング(脈動)、ストラ
ンド切れの発生もなく良好であつた。その得られ
た樹脂特性の物理的性質と分析結果を表−1に示
した。 実施例 6 実施例2とまつたく同様の条件と装置を使用し
熱可塑性樹脂成分としてポリアミド樹脂としてア
ミラン1017(東レ(株)製)を使用し、スクリユー型
定量フイーダーにより85Kg/Hrになる様に調整
し、2軸押出機に定量的に供給を行う。次いで炭
素繊維チヨツプドストランドとして東レ(株)製トレ
カT−006(6mm長さ、嵩密度0.25g/cm3、安息角
44度)を使用し、供給量を15Kg/Hrに調整し変
更した以外は、実施例2とまつたく同様の条件に
て導電性熱可塑性樹脂の製造を行つた。製造安定
性もきわめて良好であつた。得られた樹脂の物理
的特質と分析値を表−1に示す。 実施例 7 実施例5に対して熱可塑性樹脂成分をポリカー
ボネート樹脂帝人製パンライトL−1225 80重量
部に変更した以外はまつたく同様の方法及び条件
にて導電性熱可塑性樹脂の製造を行つた。製造収
率も95%であり、製造安定性も良好であつた。得
られた樹脂の物理的性質と分析値を表−1に示
す。 比較例 1 実施例1に対して炭素繊維チヨツプドストラン
ドとして、東邦レーヨン(株)ベスフアイトHTA−
6−S(6mm長さ、嵩密度0.13g/cm3、安息角49
度)に変更し、かつ炭素繊維チヨツプドストラン
ドの定量供給装置として振動型電動フイーダーに
変えてスクリユーフイーダー型定量フイーダーと
してアクリソン製105Z型容積式定量フイーダー
を使用した以外は、実施例1とまつたく同様の方
法及び条件にて、導電性熱可塑性樹脂の製造を行
つた。実施例1に対して炭素繊維チヨツプドスト
ランドの嵩密度が著しく低く、又安息角も大きい
為に、流動性が非常に悪くかつ市販のスクリユー
フイーダー型の定量フイーダーを使用したが為
に、定量フイーダーの計量時のスクリユー回転に
より炭素繊維チヨツプドストランド同士が著しく
解繊を起し定量ムラが断続的に発生し定量供給精
度は、著しく悪くなり、その結果製造安定性とし
ては、脈動によるサージングが多発し、ストラン
ド切れが発生し、製造収率も55%に低下し、製造
安定性としては、はなはだ不十分であり、物性評
価用のサンプルも作成できなかつた。表−1に得
られた樹脂組成物の分析結果を示した。 比較例 2 比較例1とまつたく同様の方法、及び条件を使
用し、炭素繊維チヨツプドストランドとして実施
例1にて使用した東レ(株)製トレカT−006(6mm長
さ、嵩密度0.25g/cm3、安息角44度)を使用し、
導電性熱可塑性樹脂の製造を行つた。比較例1に
対して、嵩密度が高く、安息角の低い流動性の良
好なる炭素繊維チヨツプドストランドを使用して
も実施例1で示された如く振動型電動フイーダー
を使用せず、炭素繊維チヨツプドストランド用定
量供給装置として市販のスクリユーフイーダーを
使用した為、定量フイーダーのスクリユー回転に
より炭素繊維チヨツプドストランド同士が著しく
解繊を起し、定量ムラが断続的に発生し定量供給
精度は、著しく悪くなり、その結果、製造安定性
としては脈動によるサージングが多発し、ストラ
ンド切れ発生も多発し、製造収率も75%と低く、
製造安定性としては不十分であつた。表−1に得
られた樹脂組成物の分析結果を示した。 比較例 3 2つ以上の供給口が設置された押出機として、
PCM−87 2軸押出機(池貝鉄工(株)製)を使用
し、ダイス側の1つの供給口に振動型電動フイー
ダーを設置せずに大気開放のままとした。次いで
バレル温度をダイス側から各々ダイ部を250℃、
ヘツド部を250℃、C7部240℃、C6部を240℃、C5
部を240℃、C4部を260℃、C3部を270℃、C2部を
270℃、C1部を260℃、に設定し、スクリユー回
転数を50rpmに設定した。次いで押出機フイード
部の第1供給口から導電性熱可塑性樹脂成分とし
て、重合度150の2,6−ジメチル1,4−フエ
ニレンエーテル樹脂20重量部、ポリアミド樹脂と
してアミラン1017(東レ(株)製)45重量部、スチレ
ン−無水マレイン酸共重合体樹脂としてダイラー
ク232(ARCO社製)15重量部、安定剤としてイ
ルガノツクス1076(チバガイーギ社製)を0.5重量
部炭素繊維チヨツプドストランドとして東レ(株)製
トレカT−006(6mm長さ、嵩密度0.25g/cm3、安
息角44度)20重量部とをブレンダーにて均一に混
合した樹脂をスクリユー型定量フイーダーにより
100Kg/Hrになる様に調整し、2軸押出機に定量
的に供給を行い、導電性熱可塑性樹脂の製造を行
つた。 製造安定性としてはサージングの発生がわずか
にあり、ストランド切れの発生が若干はあるもの
の製造収率は80%であつた。得られた樹脂特性の
物理的性質と分析結果を表−1に示す。実施例1
に対して組成物中の炭素繊維長が短い為に、導電
性が低下し、衝撃強度、曲げ弾性率、熱変性温度
が低下した。 比較例 4 2つ以上の供給口が設置された押出機として、
PCM−87 2軸押出機(池貝鉄工(株)製)を使用
し、ダイス側の1つの供給口に振動型電動フイー
ダーを設置せずに大気開放のままとした。次いで
バレル温度をダイス側から各々ダイ部を320℃、
ヘツド部を320℃、C7部310℃、C6部を310℃、C5
部を310℃、C4部を330℃、C3部を330℃、C2部を
330℃、C1部を320℃、に設定し、スクリユー回
転数を50rpmに設定した。次いで押出機フイード
部の第1供給口から導電性熱可塑性樹脂成分とし
て、重合度120の2,6−ジメチル−1,4−フ
エニレンエーテル樹脂30重量部、ゴム変性耐衝撃
性ポリスチレン樹脂として、スタイロン492(旭化
成社製)43重量部、難燃剤としてトリフエニルフ
オスフエート7重量部、安定剤としてイルガノツ
クス1076(チバガイーギ社製)0.5重量部、炭素繊
維チヨツプドストランドとして東レ(株)製トレカT
−006(6mm長さ、嵩密度0.25g/cm3、安息角44
度)20重量部とをブレンダーにて均一に混合した
樹脂をスクリユーフイーダー型定量フイーダーに
より100Kg/Hrになる様に調整し、2軸押出機に
定量的に供給を行い、導電性熱可塑性樹脂の製造
を行つた。製造安定性としてはサージングの発生
がわずかに有り、ストランド切れの発生も時々あ
るが、製造収率は82%であつた。 得られた樹脂の物理的性質と分析結果を表−1
に示す。実施例5に対して組成物中の炭素繊維長
が短い為に導電性が低下し、衝撃強度、曲げ弾性
率、熱変形温度が低下した。 比較例 5 比較例4に対して導電性熱可塑性樹脂成分とし
て、重合度120の2,6−ジメチル−1,4−フ
エニレンエーテル樹脂27重量部、ゴム変性耐衝撃
性ポリスチレン樹脂としてスタイロン492 40重量
部、難燃剤としてトリフエニルフオスフエート3
重量部、イルガノツクス1076 0.5重量部、炭素繊
維チヨツプドストランドとして東レ(株)T−006(6
mm長さ、嵩密度0.25g/cm3、安息角44度)30重量
部に変更した以外は、比較例4とまつたく同様の
方法と条件にて導電性熱可塑性樹脂の製造を行つ
た。炭素繊維チヨツプドストランド量が多い為、
解繊がひどく、サージングが多発し、ストランド
切れが激しく、製造収率は40%に低下し、製造は
困難であつた。得られた樹脂の物理的性質と分析
値を表−1に示す。実施例5に対して、炭素繊維
チヨツプドストランドの含有量が多いもかかわら
ず繊維長が短く、導電性は低く、衝撃強度、熱変
形温度も低下している。
[Industrial Field of Application] The present invention relates to a method for producing a thermoplastic resin composition containing chopped conductive fiber strands having electrical conductivity. [Prior art] Thermoplastic resins are lightweight, moldable, heat resistant, and have good electrical insulation properties, so they are especially used as substitute materials for metals in industrial parts, electrical parts, office machine housings, automobile parts, precision parts, etc. Widely used for parts, etc. In recent years, home appliances such as radios and televisions, wireless devices such as transceivers, various electronic measuring instruments,
In the field of office equipment housings and the like, there is an increasing demand for thermoplastic resins to be made electrically conductive, as exemplified by electromagnetic shielding regulations (EMI regulations). Various technical studies have been conducted regarding methods of imparting conductivity to thermoplastic resins. for example,
Attempts have been made to apply conductive paint to molded products, to form a thin metal film on the surface of molded products using an electroless plating process, and to mix and disperse conductive fibers in thermoplastic resin. However, with the method of applying conductive paint, it is difficult to maintain the uniformity of the paint film on complex molded products, and it is difficult to maintain the adhesion between the base thermoplastic resin and the paint. There is a need to select the most suitable paint, and there are problems with environmental pollution during the painting process. The electroless plating method requires plating tank equipment and has the disadvantage that the molded product itself becomes entirely metallic. From the above, currently, the method of imparting conductivity by mixing and dispersing conductive fibers into a thermoplastic resin is currently attracting the most attention. Specifically, Japanese Patent Publication No. 59-19480 discloses a material for shielding electromagnetic waves in which conductive fibers and conductive fine powder are dispersed in a resin, and Japanese Patent Publication No. 58-79050 discloses a material for shielding electromagnetic waves in which conductive fibers and conductive fine powder are dispersed in a resin. A polyphenylene ether resin composition for electromagnetic interference shielding mixed with aluminum flakes, carbon fibers, etc. is shown. However, since the base thermoplastic resin is originally an electrical insulator, in order to impart the desired electrical conductivity, it has been necessary to use relatively large amounts of expensive conductive fiber filaments or chopped fibers. It becomes necessary to add and mix strands or conductive powder, which not only deteriorates the original physical properties of the matrix, but also causes a significant decrease in manufacturing yield due to fibrillation of the conductive fibers, resulting in high prices and products. In terms of value, it tends to be insufficient, and improvements have been requested. Several improved techniques have been studied in the past regarding methods for producing conductive thermoplastic resins containing these conductive fibers. For example, in JP-A No. 59-22710, ABS resin is used as the thermoplastic resin, an extruder is used, a carbon fiber filament bundle coated with metal plating etc. is uniformly coated with synthetic resin at the center, and then cut. A method for obtaining an excellent conductive molding material for shielding electromagnetic waves in electronic devices, in which carbon fiber filler is uniformly dispersed and has good plasticization, has been disclosed, and Japanese Patent Application Laid-Open No. 1986-
21734, as shown in Figure 4, thermoplastic synthetic resins (e.g. polyethylene, polypropylene,
ABS resin, etc.) is plasticized using, for example, a screw extruder a, and then extruded into a thin sheet from a T-die b. At a position where this sheet c is at a temperature higher than its softening point, or while being kept at a temperature higher than its softening point using an infrared lamp or the like, conductive foil pieces or conductive fibers d ( (e.g. metal foil pieces, metallized glass short fibers, carbon short fibers, etc.) are dropped and deposited in layers, and then the whole is passed between a pair of pressure rolls or belts e to separate sheet c and layer f. A method for obtaining a synthetic resin molding material by pressure-integration is shown. In JP-A No. 59-49913, strand-like or roving-like metal thread fibers are unraveled in a die of an extruder and coated with a thermoplastic synthetic resin to disperse conductor fibers well in the resin. Regarding a manufacturing method that also increases the aspect ratio of the molten resin, conductor fibers such as metal fibers or carbon fibers are introduced from the fiber inlet i of the mandrel h provided in the direction perpendicular to the molten resin inlet g, as shown in Fig. 5B. , pulled out from the fiber outlet j. Next, the fibers are passed through the outer periphery of a conical or polygonal pyramid-shaped fiber guide k to spread the fibers radially, and the resin and fibers that have reached the nozzle introduction part r are entangled with each other and guided to the nozzle land part m. A method is shown in which the resin o covering the conductive fibers n, taken off by a take-off machine after cooling and solidifying, is cut with a pelletizer to obtain pellets p as shown in FIG. 5A. However, in JP-A No. 59-22710, a special carbon fiber filament coated with metal plating is used to impart conductivity, and in JP-A No. 58-21734, a thermoplastic resin matrix is formed into a sheet. In fact, in JP-A No. 59-49913, there is a restriction on making special improvements to the die part of the extruder, which is not practical. [Problems to be Solved by the Invention] The present inventors used an ordinary extruder and a conductive fiber chop strand, and achieved a method with little deterioration in physical properties.
The present invention was arrived at after extensive research into a simple method for producing a thermoplastic resin with good conductivity. [Means and effects for solving the problem] The present inventors have proposed a conventionally used method for adding conductive fiber chopped strands to a thermoplastic resin, for example, a method for adding conductive fiber chopped strands to a thermoplastic resin. In the method of uniformly mixing conductive fiber chopped strands in advance and feeding them through the extruder hopper port for extrusion mixing, the manufacturing yield due to defibration, classification, etc. by the conductive fiber chopped strands is significantly reduced. Not only that, when the thermoplastic resin is melted, the chopped strands of conductive fibers are significantly damaged due to the shear stress they receive, and the fiber length becomes extremely short, resulting in decreased conductivity and physical properties. I found something to do. Based on these analysis results, the conductive fiber chopped strands can be defibrated,
As a result of various studies on a method that does not require classification and maintains the fiber length as long as possible, we have found that chopped strands of conductive fibers are precisely added to pre-molten thermoplastic resin and mixed with high precision to achieve conductivity. The present invention was accomplished by discovering that this is essential in order to obtain a conductive thermoplastic resin composition with good physical properties. By using the method of the present invention, a thermoplastic resin with excellent conductivity can be provided to the market at a low cost, with a high production yield and little deterioration of physical properties using a small amount of chopped conductive fiber strands. It is thought that it will be possible to do so. The present invention provides two or more supply ports 1a as shown in FIG.
Using an extruder A having an extruder 1b, a thermoplastic resin as a base material is supplied from the first and supply port 1a (hopper port),
A quantitative feeder is used to supply a constant supply amount, and the melted and kneaded state is supplied to the second and subsequent supply ports 1b.
Using a vibrating electric feeder, the conductive fiber chopped strands are fed in a fixed quantity from the (vent port) with extremely high accuracy, and the conductive fiber chopped strands are added and kneaded so that the content of the conductive fiber chopped strands is 0.5 to 50% by weight. The present invention relates to a method for producing a conductive iron-plastic resin, which is characterized by the following. When used in the production method of the present invention, it is possible to maintain the number average fiber length of the chopped strands of conductive fibers at 0.2 mm or more, with little deterioration of physical properties and extremely good conductivity. A low-cost conductive thermoplastic resin can be obtained. In the present invention, it is essential to be able to quantitatively supply the chopped strands of conductive fiber to the extruder supply port with extremely high accuracy, and a vibrating electric feeder is most suitable as a quantitative feeder for this purpose. There are many types of quantitative feeders, such as screw feeder type, table feeder type, pressure feeder type, etc., but chopped strands of conductive fiber are usually very easy to defibrate by vibration, movement, stirring, etc. For example, the quantitative accuracy is extremely poor with rotary volumetric methods such as screw feeders.
This not only causes a decrease in production yield, but also
Quality cannot be stabilized either. The vibrating electric feeder according to the present invention is a gravimetric quantitative feeder consisting of a trough that transports materials by vibrating with an electromagnet, and a conveyor that is driven at a constant speed and has a weight detection device. One example is the format shown in Figure 2. Its components include a hopper section 2 for storing chopped conductive fiber strands, a trough 3 for transporting materials, an electromagnet 4 attached to the center of the trough as a vibration source, a movable frame 5 and a vibration source attached to both ends of the hopper section 2. It consists of a leaf spring 6 whose angle can be freely varied and its control equipment. The principle of operation is that when the electromagnet 4 is excited, the trough supported by the leaf spring 6 is suddenly drawn diagonally downward. Since the excitation current is a pulsating current, the magnetic force disappears at the point where the current is zero, and the trough 3 is pushed back forward by the repulsive force of the leaf spring 6. At this time, the material on the trough 3 is moved forward and at a constant speed. It is fed onto a driving conveyor 7. The weight of the material on the conveyor 7 is detected by a load cell 8, the output voltage of which is compared with a set voltage corresponding to a preset transport vehicle set value.
The error resulting from the comparison, that is, the difference voltage between the output voltage of the load cell 8 and the set voltage, is transferred to the PID operational amplifier 9.
and the amplified voltage causes thyristor 1 to be amplified.
The feeder cutting amount is adjusted by controlling the zero firing angle and changing the voltage to the electromagnet. The vibration angle of this trough 3 can be flexibly adjusted by adjusting the mounting angles (β 1 , β 2 ) of the leaf springs 6, so that optimum vibration characteristics suitable for the material to be transported can be obtained.
For example, if the bulk density is relatively low, such as a chopped conductive fiber strand, and the fibers are likely to unravel due to jumps during transportation or deviations in width at the trough outlet, the installation angle of the leaf spring 6 may be By increasing the angle of vibration and reducing the angle of vibration, the accuracy of quantitative feeding is significantly improved. On the other hand, in the case of heavy items, it is possible to secure the necessary angle by changing the mounting angle.
Preferred conditions in the present invention are a trough vibration angle of 90 to 60 degrees and a vibration frequency of 2000 to 3000 times/min. An example of such a machine is the linear syntron gravimetric feeder manufactured by Kamami Electric Co., Ltd.
It is commercially available as the LF type. In Figure 2, 11 is a synchro motor, 12 is a fulcrum, 13 is an instantaneous transport amount indicator, and 14 is a synchronized motor.
is an instantaneous transport amount setting device, 15 is a manual/automatic switching device,
16 is a voltmeter, and 17 is a fixed frame. Furthermore, the extruder used in the present invention is not particularly limited as long as it is equipped with two or more supply ports, and it is sufficient as long as the barrel temperature can be controlled between 100°C and 350°C. It is possible to use an extruder such as a machine or a twin-screw extruder (same-direction rotation type, opposite-direction rotation type), but in cases where a relatively large amount of chopped strands of conductive fiber is added. A twin-screw extruder is preferred. Further, there is no particular restriction on the screw dimension, and various types of screw dimensions can be constructed if necessary, depending on the thermoplastic resin used as the base material. The chopped strand of conductive fiber used in the present invention is not particularly limited as long as it is conductive itself, and metal fibers such as gold, silver, copper, nickel, aluminum, and iron, glass fiber, and silicone can be used. The above metals are plated, vapor-deposited, etc. on fibers that themselves have no or almost no conductivity, such as carbide fibers, boron fibers, organic high-elastic fibers, polyester fibers, and polyamide fibers.
Materials that have been thermally sprayed to provide conductivity or chopped strands such as carbon fiber are used, but carbon fiber has high strength and high elasticity, so it has a large reinforcing effect on resin, and carbon fiber has a low specific gravity. Chopped strands are preferred, more preferably,
Carbon fiber chopped strands having an angle of repose of 35 to 45 degrees and a bulk density of 0.15 to 0.45 g/cm 3 are preferred. Furthermore, there are no particular restrictions on the thermoplastic resin used as the base material in the present invention, and polyolefin resins, polyvinyl chloride resins, styrene resins,
Any one type or a combination of two or more of thermoplastic resins such as polycarbonate resin, polyphenylene ether resin, acrylic resin, polyamide resin, polyester resin, and polyphenylene sulfide resin can be used. If desired, reinforcing agents such as stabilizers, anti-aging agents, colorants, flame retardants, reinforcing elastomers, inorganic fillers, and glass fibers can also be added. [Example] The method of the present invention will be described in detail in the following Examples. The characteristics of various raw materials and the physical properties of the conductive thermoplastic resin shown in the Examples were determined by the following methods. Bulk density of carbon fiber chopped strand (g/
cm 3 ) In a glass cylindrical bottle with a diameter of 3 cm and a height of 8 cm,
Precisely weigh 2 g of chopped carbon fiber strands and seal with a cork stopper. This sample was manufactured by Irie Shokai Co., Ltd.
After shaking for 1 hour at 23° C. using a Type-3 shaker, the carbon fiber chopped strands are measured for height, volume, and bulk density.
The carbon fiber chopped strand with a higher bulk density value is less defibrated by vibration and has better quantitative accuracy. Angle of repose (degrees) of carbon fiber chopped strand The angle of repose of the carbon fiber chopped strand was measured at 23℃ using an angle of repose measuring device KRS model manufactured by Kuramochi Kagaku Kikai Seisakusho. The fluidity is better, less fibrillation occurs, and the quantitative accuracy is better. Content of chopped carbon fiber strands in conductive thermoplastic resin (wt%) 2 g of conductive thermoplastic resin was accurately weighed, and heated in air at 450 °C using a Tanaka Kagaku Kikai heating furnace, SOFTEMP-F type. After baking at a temperature of 2 hours at a temperature of 0.degree. C., the thermoplastic resin is burned out, the weight of the remaining carbon fibers is measured, and the carbon fiber content is expressed in weight %. Measurement of fiber length of chopped carbon fiber strands in conductive thermoplastic resin (mm) Using approximately 0.1 g of residual carbon fiber fired in a heating furnace at 450°C, using a CARLZEISS binocular stereoscopic microscope. Observe the distribution morphology of carbon fiber chopped strand fiber length using
The carbon fiber chopped strand was cut out, the fiber length was measured, and the number average length (mm) of the chopped carbon fiber strand was determined by the following method. Number average length Σn・d/Σn n: Number of carbon fiber chopped strands d: Diameter of carbon fiber chopped strands (mm) Measurement of conductivity (surface resistivity) (Ω) Width 5 cm, length Conductive thermoplastic resin was molded using an 8.9 cm, 2 mm thick direct gate flat plate mold using an IS-80A injection molding machine manufactured by Toshiba Machinery Co., Ltd.
℃, 50% humidity for 24 hours, conductive paste (Tokuriki Chemical Research Institute Silvest P-
255) to a width of 2 mm, and Sanwa Denki Co., Ltd.
The resistance value Ω between the conductive pastes was measured using a manufactured tester SH-63TR-D type tester, and the distance between the electrodes (distance between conductive pastes 5 cm) was removed by the effective length of the electrodes (conductive paste application length 5 cm). , multiplied by the resistance value to measure the surface resistivity. In FIG. 3, l 1 =5 cm, l 2 =8.9 cm, l 3 =5 cm, and l 4 =2 mm. The thickness of the sample in Figure 3 is 2 mm. Surface resistivity (Ω) = distance between electrodes/effective length of electrode x resistance value Flexural modulus Conductive thermoplastic resin is made of IS-80A manufactured by Toshiba Machine Co., Ltd.
Using an injection molding machine, create a test piece and pass ASTM D
-790 is used to measure the flexural modulus. Heat deformation temperature Conductive thermoplastic resin is manufactured by Toshiba Machine Co., Ltd. IS-80A
Using an injection molding machine, create a test piece and pass ASTM D
-648, fiber burst stress 18.6Kg/cm 2
Measure the heat distortion temperature. Izotsu impact strength Test specimens are prepared from conductive thermoplastic resin using an IS-80A injection molding machine manufactured by Toshiba Machine Co., Ltd., and ASTM D
−256, with a notched specimen of 1/4″ thickness,
Measure the Izot impact strength at 23℃. Example 1 A PCM-87 twin-screw extruder (manufactured by Ikegai Tekko Co., Ltd.) was used as an extruder equipped with two or more supply ports. Shinko Electric as a vibrating electric feeder
Install Linear Cintron LF-40 model manufactured by Co., Ltd., and
C The temperature of the barrel, which can be adjusted in 7 parts and 7 steps, is set to 250°C for the die part and 250°C for the head part.
250℃, 7 parts of C 240℃, 6 parts of C at 240℃, 5 parts of C at 240℃,
4 parts of C were set at 260°C, 3 parts of C at 270°C, 2 parts of C at 270°C, and 1 part of C at 260°C, and the screw rotation speed was set at 50 rpm. Next, from the first supply port of the extruder feed section, the polymerization degree is
20 parts by weight of 2,6-dimethyl 1,4-phenylene ether resin of 150, 45 parts by weight of Amilan 1017 (manufactured by Toray Industries, Inc.) as a polyamide resin, and Dilarc 232 as a styrene-maleic anhydride copolymer resin.
(manufactured by ARCO) and 0.5 parts by weight of Irganox 1076 (manufactured by Ciba-Geigi) as a stabilizer were uniformly mixed in a blender and adjusted to 80 kg/hr using a screw type quantitative feeder. , to quantitatively feed the twin-screw extruder. Next, Torayca T-006 manufactured by Toray Industries, Ltd. (6 cm length, high bulk) was used as the carbon fiber chopped strand to impart conductivity.
0.25g/cm 3 , angle of repose 44 degrees) as a linear synthron
Pour into the hopper for the LF-40 type vibrating electric feeder, adjust the feed rate to 20Kg/Hr,
The melted thermoplastic resin is quantitatively supplied from the barrel block section of the twin-screw extruder C, which is the second supply port, to produce conductive thermoplastic resin containing chopped carbon fiber strands. Ivy. Regarding manufacturing stability, there was no surging (pulsation) or strand breakage due to the precision of quantitative feeding of carbon fiber chopped strands, and the manufacturing yield was 98.
It was %. The physical properties and analysis results of the obtained resin properties are shown in Table 1. Example 2 Using the same equipment as in Example 1, the die part was heated to 260°C, the head part to 260°C, and the head part to 260°C.
7 parts of C at 250°C, 6 parts of C at 250°C, 5 parts of C at 250°C, 4 parts of C at 270°C, 3 parts of C at 280°C, 2 parts of C at 280°C, 1 part of C
The temperature was set at 270°C and the screw rotation speed was set at 50 rpm. 5 parts by weight of 2,6-dimethyl 1,4-phenylene ether resin with a degree of polymerization of 150 as the base thermoplastic resin component, 70 parts by weight of Amilan 1017 (manufactured by Toray Industries, Inc.) as the polyamide resin, and 5 parts by weight of Dilarc 232. Conductivity was maintained under the same conditions except that a modified lot of Toray T-006 (bulk density 0.28 g/cm 3 , angle of repose 38 degrees) was used as the carbon fiber chopped strand. Compared to Example 1, in which a thermoplastic resin was manufactured, the chopped strands have a higher bulk density and a lower angle of repose, so the flowability of the chopped strands is better. The quantitative supply accuracy of the chopped fiber strands was also better, the production yield was as high as 97%, and the production stability was also extremely good. Table 1 shows the physical properties and analysis results of the obtained resin. Example 3 Compared to Example 1, Hercules Magnamite 1800AS (6 mm length, bulk density
Conductive thermoplastic resin was produced using the same method and conditions as Matsutaku, except that the carbon fiber was changed to 0.20 g/cm 3 and angle of repose of 39 degrees).The precision in quantitative feeding of chopped carbon fiber strands was also good. The manufacturing yield was 99%, and the manufacturing stability was also good. The physical properties and analysis results of the resin properties obtained are shown in Table 1. Example 4 In Example 1, instead of using the carbon fiber chopped strand alone, Torayka T-006 manufactured by Toray Industries, Inc. (bulk density 0.25 g/
cm 3 , angle of repose 44 degrees) 50% by weight, and Asahi Fiberglass Co., Ltd. MA as chopped glass fiber strands.
−419 (6 mm length, bulk density 0.38 g/cm 3 , angle of repose 30
A conductive thermoplastic resin was produced using the same method and conditions as in Example 1, except that the mixed chopped strands were changed to 50% by weight. Compared to the carbon fiber chopped strand alone, the bulk density was higher and the angle of repose was lower, so the quantitative supply accuracy was extremely high and the manufacturing stability was also good. Table 1 shows the physical properties of the obtained resin and the analysis results. Regarding the conductivity, since the carbon fiber content was 1/2 that of Example 1, the conductivity decreased by the amount of the content. Example 5 Using exactly the same equipment as in Example 1, the barrel temperature was set from the die side to 320°C for the die part, 320°C for the head part, 310°C for the C7 part, 310°C for the C6 part, and 310°C for the C5 part. Department
310℃, 4 parts of C at 330℃, 3 parts of C at 330℃, 2 parts of C at 330℃
℃、C 1 part is set to 320℃ and the screw rotation speed is
I set it to 50rpm. Next, from the first supply port of the extruder feed section, 30 parts by weight of 2,6-dimethyl-1,4-phenylene ether resin with a degree of polymerization of 120 and a rubber-modified impact-resistant polystyrene resin were added as the base thermoplastic resin component. , 43 parts by weight of Styron 492 (manufactured by Asahi Kasei Corporation), 7 parts by weight of triphenyl phosphate as a flame retardant, and 0.5 parts by weight of Irganox 1076 (manufactured by Cibagai Gi) as a stabilizer were uniformly mixed in a blender using a screwdriver. Adjust the amount to 80Kg/Hr using a feeder-type quantitative feeder and quantitatively feed it to the twin-screw extruder.
Next, Torayca T-006 manufactured by Toray Industries, Inc. (6 mm length, bulk density 0.25 g/cm 3 , angle of repose 44 degrees) was used as a chopped carbon fiber strand to impart conductivity to a Linear Syntron LF-40 type vibrator. The carbon fibers were poured into a popper for an electric feeder, adjusted so that the feed rate was 20 kg/hr, and quantitatively fed into the molten thermoplastic resin from the barrel block of the 4th section of the twin-screw extruder C. A conductive thermoplastic resin containing rolled strands was manufactured. The manufacturing stability was good, with no surging (pulsation) or strand breakage caused by the precision of quantitative feeding. The physical properties and analysis results of the obtained resin properties are shown in Table 1. Example 6 Using the same conditions and equipment as in Example 2, Amiran 1017 (manufactured by Toray Industries, Inc.) was used as the polyamide resin as the thermoplastic resin component, and the amount was adjusted to 85 Kg/Hr using a screw type quantitative feeder. Adjust and quantitatively feed to the twin-screw extruder. Next, as a chopped carbon fiber strand, Torayka T-006 (6 mm length, bulk density 0.25 g/cm 3 , angle of repose)
A conductive thermoplastic resin was produced under the same conditions as in Example 2, except that the feed rate was adjusted to 15 Kg/Hr. The manufacturing stability was also very good. Table 1 shows the physical properties and analytical values of the resin obtained. Example 7 A conductive thermoplastic resin was produced in the same manner and under the same conditions as in Example 5, except that the thermoplastic resin component was changed to 80 parts by weight of polycarbonate resin Teijin Panlite L-1225. . The production yield was 95%, and the production stability was also good. Table 1 shows the physical properties and analytical values of the resin obtained. Comparative Example 1 In contrast to Example 1, Besphite HTA- manufactured by Toho Rayon Co., Ltd. was used as the chopped carbon fiber strand.
6-S (6mm length, bulk density 0.13g/cm 3 , angle of repose 49
Example except that Acrison's 105Z positive displacement quantitative feeder was used as the screw feeder type quantitative feeder instead of a vibrating electric feeder as the carbon fiber chopped strand quantitative feeding device. A conductive thermoplastic resin was produced using the same method and conditions as in Example 1. Compared to Example 1, the bulk density of the chopped carbon fiber strands was significantly lower and the angle of repose was also larger, resulting in very poor flowability and a commercially available screw feeder type quantitative feeder was used. In addition, due to the rotation of the screw during metering in the metering feeder, the chopped carbon fiber strands significantly defibrate each other, causing intermittent unevenness in metering, which significantly deteriorates the precision of metering, and as a result, production stability deteriorates. , surging caused by pulsation occurred frequently, strand breakage occurred, the production yield decreased to 55%, the production stability was extremely insufficient, and samples for evaluation of physical properties could not be prepared. Table 1 shows the analysis results of the obtained resin composition. Comparative Example 2 Using the same method and conditions as in Comparative Example 1, Toray Industries, Inc.'s Trading Card T-006 (6 mm length, bulk density) used in Example 1 as a chopped carbon fiber strand was used. 0.25g/cm 3 , angle of repose 44 degrees),
Manufactured conductive thermoplastic resin. Compared to Comparative Example 1, even if carbon fiber chopped strands with high bulk density, low angle of repose, and good fluidity were used, a vibrating electric feeder was not used as shown in Example 1, Since a commercially available screw feeder was used as a quantitative feeding device for carbon fiber chopped strands, the carbon fiber chopped strands were significantly defibrated due to the screw rotation of the quantitative feeder, resulting in intermittent unevenness in quantitative measurement. As a result, the accuracy of fixed quantity supply deteriorated significantly, and as a result, production stability was affected by frequent surging due to pulsation, frequent occurrence of strand breakage, and low production yield of 75%.
The manufacturing stability was insufficient. Table 1 shows the analysis results of the obtained resin composition. Comparative Example 3 As an extruder equipped with two or more supply ports,
A PCM-87 twin-screw extruder (manufactured by Ikegai Tekko Co., Ltd.) was used, and one supply port on the die side was left open to the atmosphere without a vibrating electric feeder installed. Next, the barrel temperature was set to 250℃ from the die side to each die part.
Head part 250℃, C7 part 240℃, C6 part 240℃, C5
240°C for 4 parts, 260°C for 3 parts, 270°C for 3 parts, and 2 parts for C.
The temperature was set at 270°C, the C 1 part was set at 260°C, and the screw rotation speed was set at 50 rpm. Next, from the first supply port of the extruder feed section, 20 parts by weight of 2,6-dimethyl 1,4-phenylene ether resin with a degree of polymerization of 150 was added as a conductive thermoplastic resin component, and Amilan 1017 (Toray Industries, Inc.) was added as a polyamide resin. 45 parts by weight of Dilarc 232 (manufactured by ARCO) as a styrene-maleic anhydride copolymer resin, 0.5 parts by weight of Irganox 1076 (manufactured by Cibagai Gi) as a stabilizer and Toray as a chopped strand of carbon fiber. A resin made by uniformly mixing 20 parts by weight of Torayca T-006 (6 mm length, bulk density 0.25 g/cm 3 , angle of repose 44 degrees) manufactured by Co., Ltd. in a blender was added to the screw-type quantitative feeder.
The conductive thermoplastic resin was adjusted to 100 Kg/Hr and quantitatively fed to a twin-screw extruder to produce a conductive thermoplastic resin. Regarding production stability, although there was a slight occurrence of surging and some occurrence of strand breakage, the production yield was 80%. Table 1 shows the physical properties and analysis results of the resin properties obtained. Example 1
On the other hand, since the carbon fiber length in the composition was short, the conductivity decreased, and the impact strength, flexural modulus, and heat denaturation temperature decreased. Comparative Example 4 As an extruder equipped with two or more supply ports,
A PCM-87 twin-screw extruder (manufactured by Ikegai Tekko Co., Ltd.) was used, and one supply port on the die side was left open to the atmosphere without a vibrating electric feeder installed. Next, the barrel temperature was set to 320℃ from the die side to each die part.
Head part 320℃, C7 part 310℃, C6 part 310℃, C5
310℃ for 4 parts of C, 330℃ for 3 parts of C, 2 parts of C
The temperature was set at 330°C, the C1 part was set at 320°C, and the screw rotation speed was set at 50 rpm. Next, from the first supply port of the extruder feed section, 30 parts by weight of 2,6-dimethyl-1,4-phenylene ether resin with a degree of polymerization of 120 and a rubber-modified impact-resistant polystyrene resin were added as a conductive thermoplastic resin component. 43 parts by weight of Styron 492 (manufactured by Asahi Kasei Corporation), 7 parts by weight of triphenyl phosphate as a flame retardant, 0.5 parts by weight of Irganox 1076 (manufactured by Cibagai Gi) as a stabilizer, manufactured by Toray Industries, Inc. as a chopped carbon fiber strand. Trading card T
-006 (6mm length, bulk density 0.25g/ cm3 , angle of repose 44
The resin was uniformly mixed with 20 parts by weight) in a blender, adjusted to 100Kg/Hr using a screw feeder-type quantitative feeder, and quantitatively fed to a twin-screw extruder. Manufactured resin. Regarding production stability, there was a slight occurrence of surging and occasional strand breakage, but the production yield was 82%. Table 1 shows the physical properties and analysis results of the obtained resin.
Shown below. Compared to Example 5, since the carbon fiber length in the composition was short, the conductivity decreased, and the impact strength, flexural modulus, and heat distortion temperature decreased. Comparative Example 5 Compared to Comparative Example 4, 27 parts by weight of 2,6-dimethyl-1,4-phenylene ether resin with a degree of polymerization of 120 was used as the conductive thermoplastic resin component, and 40 parts by weight of Stylon 492 was used as the rubber-modified impact-resistant polystyrene resin. Part by weight, triphenyl phosphate 3 as flame retardant
Part by weight, 0.5 part by weight of Irganox 1076, Toray Industries, Inc. T-006 (6 parts by weight) as chopped carbon fiber strand.
A conductive thermoplastic resin was produced in the same manner and under the same conditions as in Comparative Example 4, except that the amount was changed to 30 parts by weight (mm length, bulk density 0.25 g/cm 3 , angle of repose 44 degrees). Due to the large amount of carbon fiber chopped strands,
Fibrillation was severe, surging occurred frequently, strand breakage was severe, and the production yield decreased to 40%, making production difficult. Table 1 shows the physical properties and analytical values of the resin obtained. Compared to Example 5, although the carbon fiber chopped strand content was high, the fiber length was short, the conductivity was low, and the impact strength and heat distortion temperature were also low.

【表】【table】

【表】【table】

【表】【table】

【表】 *印 炭素繊維チヨツプドストランド、ガラス繊維チ
ヨツプドストランド混合品を示す
[発明の効果] 本発明にあつて上記のように、振動型電動フイ
ーダーにより導電性繊維チヨツプドストランドを
押出機ベント部より添加するので、あらかじめ溶
融した熱可塑性樹脂に導電性繊維チヨツプドスト
ランドを精度よく添加し混合することが可能とな
り、また製造段階で受ける剪断応力が小さくな
り、繊維の破損を少なくし、繊維長が短くなるの
を防止できるため、導電性、物理的性質の良好な
導電性熱可塑性樹脂組成物が高い製造収率で得ら
れ、その工業的意義は大きい。
[Table] * indicates a mixed product of carbon fiber chopped strands and glass fiber chopped strands [Effects of the invention] As described above, in the present invention, conductive fiber chopped strands are produced using a vibrating electric feeder. Since the chopped strands are added from the extruder vent, it is possible to precisely add and mix the chopped conductive fiber strands to the pre-molten thermoplastic resin, and the shear stress received during the manufacturing stage is reduced. Since fiber breakage can be reduced and fiber length can be prevented from shortening, a conductive thermoplastic resin composition with good conductivity and physical properties can be obtained at a high production yield, and its industrial significance is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施するに当り使用す
る装置の部分としての押出機を示す概略断面図、
第2図は振動型電動フイーダーを示す概略説明
図、第3図は導電性測定のための試料を示す平面
図、第4図及び第5図イ,ロは従来技術を示す概
略説明図である。 A……押出機、1a,1b……供給口、2……
ホツパー、3……トラフ、4……電磁石、5……
可動フレーム、6……板バネ、7……定速度ベル
トコンベアー、8……ロードセル、9……PID演
算増幅器、10……サイリスタ、11……シンク
ロモータ、12……支点、13……瞬間輸送量表
示計、14……瞬間輸送量設定器、15……手
動・自動切換器、16……電圧計、17……固定
フレーム、18……導電ペースト。
FIG. 1 is a schematic sectional view showing an extruder as part of the apparatus used in carrying out the method of the present invention;
Fig. 2 is a schematic explanatory diagram showing a vibrating electric feeder, Fig. 3 is a plan view showing a sample for conductivity measurement, and Figs. 4 and 5 A and B are schematic explanatory diagrams showing conventional technology. . A... Extruder, 1a, 1b... Supply port, 2...
Hopper, 3...Trough, 4...Electromagnet, 5...
Movable frame, 6... leaf spring, 7... constant speed belt conveyor, 8... load cell, 9... PID operational amplifier, 10... thyristor, 11... synchronized motor, 12... fulcrum, 13... instantaneous transport Quantity display meter, 14... Instantaneous transport amount setting device, 15... Manual/automatic switching device, 16... Voltmeter, 17... Fixed frame, 18... Conductive paste.

Claims (1)

【特許請求の範囲】 1 振動型電動フイーダーにより導電性繊維チヨ
ツプドストランドを押出機ベント部より添加する
事を特徴とする導電性熱可塑性樹脂の製造方法。 2 導電性繊維チヨツプドストランドが炭素繊維
チヨプドストランドである事を特徴とする、特許
請求の範囲第1項記載の導電性熱可塑性樹脂の製
造方法。 3 炭素繊維チヨツプドストランドの安息角が35
〜45度である事を特徴とする特許請求範囲第2項
記載の導電性熱可塑性樹脂の製造方法。 4 炭素繊維チヨツプドストランドの嵩密度が
0.15〜0.45g/cm3である事を特徴とする特許請求
範囲第3項記載の導電性熱可塑性樹脂の製造方
法。
[Claims] 1. A method for producing a conductive thermoplastic resin, characterized in that chopped strands of conductive fiber are added from a vent section of an extruder using a vibrating electric feeder. 2. The method for producing a conductive thermoplastic resin according to claim 1, wherein the conductive fiber chopped strand is a carbon fiber chopped strand. 3 The angle of repose of the chopped carbon fiber strand is 35
3. The method for producing a conductive thermoplastic resin according to claim 2, wherein the temperature is 45 degrees. 4 The bulk density of the chopped carbon fiber strand is
4. The method for producing a conductive thermoplastic resin according to claim 3, wherein the conductive thermoplastic resin is 0.15 to 0.45 g/cm 3 .
JP23326884A 1984-11-07 1984-11-07 Manufacture of conductive thermoplastic resin Granted JPS61112608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23326884A JPS61112608A (en) 1984-11-07 1984-11-07 Manufacture of conductive thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23326884A JPS61112608A (en) 1984-11-07 1984-11-07 Manufacture of conductive thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS61112608A JPS61112608A (en) 1986-05-30
JPH0553604B2 true JPH0553604B2 (en) 1993-08-10

Family

ID=16952421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23326884A Granted JPS61112608A (en) 1984-11-07 1984-11-07 Manufacture of conductive thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS61112608A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355602A3 (en) * 1988-08-18 1990-10-10 MITSUI TOATSU CHEMICALS, Inc. Molding material for electroconductive ic parts
US7325564B2 (en) 2004-03-24 2008-02-05 Keihin Corporation Linear solenoid valve
US7487798B2 (en) 2004-03-31 2009-02-10 Keihin Corporation Linear solenoid valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987753A (en) * 1972-12-25 1974-08-22
JPS53106752A (en) * 1977-03-02 1978-09-18 Toho Rayon Co Ltd Reinforcing material and its composition for molding product
JPS545533A (en) * 1977-06-15 1979-01-17 Mitsubishi Electric Corp Protective device for inverter
JPS56104960A (en) * 1980-01-15 1981-08-21 Bayer Ag Molding composition
JPS5824406A (en) * 1981-08-05 1983-02-14 Teijin Ltd Twin-shaft kneader
JPS58140206A (en) * 1982-02-15 1983-08-19 Aron Kasei Co Ltd Apparatus and method for extrusion molding
JPS5981359A (en) * 1982-09-30 1984-05-11 モベイ・コ−ポレ−ション Electroconductive thermoplastic composition
JPS59143608A (en) * 1983-02-07 1984-08-17 Teijin Ltd Manufacture of molding material made of polyester
JPS59189142A (en) * 1983-04-12 1984-10-26 Ube Ind Ltd Electrically conductive thermoplastic resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987753A (en) * 1972-12-25 1974-08-22
JPS53106752A (en) * 1977-03-02 1978-09-18 Toho Rayon Co Ltd Reinforcing material and its composition for molding product
JPS545533A (en) * 1977-06-15 1979-01-17 Mitsubishi Electric Corp Protective device for inverter
JPS56104960A (en) * 1980-01-15 1981-08-21 Bayer Ag Molding composition
JPS5824406A (en) * 1981-08-05 1983-02-14 Teijin Ltd Twin-shaft kneader
JPS58140206A (en) * 1982-02-15 1983-08-19 Aron Kasei Co Ltd Apparatus and method for extrusion molding
JPS5981359A (en) * 1982-09-30 1984-05-11 モベイ・コ−ポレ−ション Electroconductive thermoplastic composition
JPS59143608A (en) * 1983-02-07 1984-08-17 Teijin Ltd Manufacture of molding material made of polyester
JPS59189142A (en) * 1983-04-12 1984-10-26 Ube Ind Ltd Electrically conductive thermoplastic resin composition

Also Published As

Publication number Publication date
JPS61112608A (en) 1986-05-30

Similar Documents

Publication Publication Date Title
US4664971A (en) Plastic article containing electrically conductive fibers
KR100858603B1 (en) Electrically Conductive Thermoplastic Polymer Composition
EP0117700A1 (en) Rigid resin composition having electromagnetic shielding properties
US4500595A (en) Stainless steel fiber-thermosplastic granules and molded articles therefrom
CA1194688A (en) Plastic article containing electrically conductive fibers
GB2047253A (en) Fibre-reinforced resin compositions
US5554678A (en) Electromagnetic shielding composite
US20160176095A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
EP0337487A1 (en) Electroconductive polymer composition
US7708920B2 (en) Conductively doped resin moldable capsule and method of manufacture
JPH0553604B2 (en)
US20140322532A1 (en) Variable-thickness elecriplast moldable capsule and method of manufacture
US20070134482A1 (en) Long fiber thermoplastic process for conductive composites and composites formed thereby
JPH0778515A (en) Conductive plastic goods
CN114621562A (en) Conductive glass fiber reinforced PBT (polybutylene terephthalate) and preparation method thereof
WO2007008633A2 (en) Electrically conductive long fiber thermoplastic concentrate and method for its preparation
KR101021805B1 (en) Method for manufacturing conductive polymer compound
CN106633690A (en) Low-wear conducting PBT/PET composite material and preparation method thereof
US7148281B2 (en) Polymer blend and method of preparing same
JP2000290514A (en) Conductive resin composition and manufacture thereof
CN216334540U (en) Raw materials material loading machine is used in plastics powder production
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
WO1988004986A1 (en) Process for molding resin composition containing metallic fibers
JP3721340B2 (en) Conductive resin composition
JPH039956A (en) Highly conductive resin composition