JPH055322B2 - - Google Patents

Info

Publication number
JPH055322B2
JPH055322B2 JP15286487A JP15286487A JPH055322B2 JP H055322 B2 JPH055322 B2 JP H055322B2 JP 15286487 A JP15286487 A JP 15286487A JP 15286487 A JP15286487 A JP 15286487A JP H055322 B2 JPH055322 B2 JP H055322B2
Authority
JP
Japan
Prior art keywords
optical
light
porous photoelectric
station
photoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15286487A
Other languages
Japanese (ja)
Other versions
JPS63316810A (en
Inventor
Shoji Mukohara
Toyohiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15286487A priority Critical patent/JPS63316810A/en
Publication of JPS63316810A publication Critical patent/JPS63316810A/en
Publication of JPH055322B2 publication Critical patent/JPH055322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は光導波路における光信号の分岐装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical signal branching device in an optical waveguide.

〔従来の技術〕[Conventional technology]

第5図及び第6図は例えば、特開昭62−73225
号“光スイツチ”に示された従来の光分岐通信装
置である。
Figures 5 and 6 are, for example, published in Japanese Patent Application Laid-Open No. 62-73225.
This is a conventional optical branch communication device shown in the No. ``Optical Switch.''

第5図、第6図において、第5図aは光スイツ
チの分岐装置を示しており透過プリズム51は上
の光入力端52からの光を下の光出力端53から
出し、これが例えば第6図のB局61を通つて下
の光入力端54を通りプリズム51を通過、上の
光出力端55を通り、次の局C局62の光スイツ
チ63に光伝送する様構成している。このように
してA局64からの光信号が、光フアイバー65
を通して、D局66へと伝送される。そして正常
時、各局B,C,D局では光信号を増幅して、光
路での減衰を補償している。もし、これらの局で
故障が生じた時は、第5図bに示す様にプリズム
51を光スイツチ63の上の光路より取り除き、
光を分岐及び増幅することなく、次の局へ伝送す
る様に構成されている。
In FIGS. 5 and 6, FIG. 5a shows a branching device of an optical switch, and a transmission prism 51 outputs light from an upper light input end 52 to a lower light output end 53. The light is transmitted through the B station 61 in the figure, through the lower optical input end 54, through the prism 51, through the upper optical output end 55, and to the optical switch 63 of the next C station 62. In this way, the optical signal from the A station 64 is transferred to the optical fiber 65.
The signal is then transmitted to the D station 66 through the network. During normal operation, each of the stations B, C, and D amplifies the optical signal to compensate for attenuation in the optical path. If a failure occurs in any of these stations, remove the prism 51 from the optical path above the optical switch 63 as shown in Figure 5b.
It is configured to transmit light to the next station without branching or amplifying the light.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の光スイツチ(光分岐装置)は以上の
様に、構成されているので、光分岐の為に高価で
量産できにくい光学的透過プリズムを使用するこ
と、又、それぞれの通信局の光増幅部が故障時、
第5図bに示す様に機械的に透過プリズム51を
メインの光路より取り除く為の駆動機構を要する
為、装置が高価で大型になる問題点があつた。
This conventional optical switch (optical branching device) is configured as described above, so it requires the use of an optical transmission prism that is expensive and difficult to mass-produce for optical branching, and the optical amplification of each communication station. When the part breaks down,
As shown in FIG. 5b, since a driving mechanism is required to mechanically remove the transmission prism 51 from the main optical path, there is a problem that the apparatus becomes expensive and large.

〔問題点を解決するための手段〕[Means for solving problems]

上述の問題点を解決するため、この発明では、
光フアイバー等の導波路と導波路の間に多孔質光
電素子を配置し、この素子の出力を増幅して発光
素子を付勢し、この発光素子の光を後の導波路内
に注入するものである。
In order to solve the above-mentioned problems, in this invention,
A porous photoelectric element is placed between waveguides such as optical fibers, the output of this element is amplified, the light emitting element is energized, and the light from this light emitting element is injected into the subsequent waveguide. It is.

〔作用〕[Effect]

この構成により、入力された光信号は多孔質光
電素子で分岐され、増幅されて発光素子より導波
路中へ出力され、何らかの理由で発光素子から光
信号が出力されないときでも、入力された光信号
は多孔質光電素子を透過して出力される。
With this configuration, the input optical signal is branched by the porous photoelectric element, amplified, and output from the light emitting element into the waveguide, so even if the light emitting element does not output the optical signal for some reason, the input optical signal is transmitted through the porous photoelectric element and output.

〔実施例〕〔Example〕

以下、この発明を一実施例により説明する。第
1図において、光の一部を受光し、他の透過光は
そのまま上りの導波路である光フアイバー2から
下りの導波路である光フアイバー3に、透過させ
る多孔質光電素子1を、上りと下りの光フアイバ
ーの光路の中間に配置する。多孔質光電素子は、
電子増幅器回路4、定電圧電源5、出力ドライブ
トランジスター6に接続されており、上り光フア
イバーからの光信号の一部を光・電気交換し、増
幅してトランジスター6よりデイジタルパルス出
力する様構成されている。その出力は発光素子
LED,LD、7のカソードに電流制限抵抗8を通
して接続され、そのアノードは定電圧電源5に接
続される。ここで発光素子7は、例えば光フアイ
バーケーブルのコア9とクラツド10の屈折率の
中間の屈折率を持つ接合材(光を導波路内に注入
する手段)11を通して下りの光フアイバー3に
光を注入する役割りを持つ。
This invention will be explained below by way of an example. In FIG. 1, a porous photoelectric element 1 is connected to a porous photoelectric element 1 that receives part of the light and transmits the other transmitted light as it is from the optical fiber 2, which is an upstream waveguide, to the optical fiber 3, which is a downstream waveguide. and the optical path of the downstream optical fiber. The porous photoelectric element is
It is connected to an electronic amplifier circuit 4, a constant voltage power supply 5, and an output drive transistor 6, and is configured to optically and electrically exchange a part of the optical signal from the upstream optical fiber, amplify it, and output it as a digital pulse from the transistor 6. ing. Its output is a light emitting element
It is connected to the cathode of the LED, LD, 7 through a current limiting resistor 8, and its anode is connected to a constant voltage power supply 5. Here, the light emitting element 7 transmits light to the downstream optical fiber 3 through a bonding material (means for injecting light into the waveguide) 11 having a refractive index between, for example, the refractive index of the core 9 and the cladding 10 of the optical fiber cable. It has the role of injecting.

ここで、上りからの光フアイバーの多孔質光電
素子1の透過光と、光増幅されて注入される光と
の位相ずれが心配されるが、実験によれば例えば
応答遅れ1μSとした場合でも9600bPSとかの低速
の信号伝送には何ら問題がないことがわかつた。
Here, there is a concern about the phase shift between the light transmitted through the porous photoelectric element 1 of the optical fiber from the upstream and the optically amplified and injected light, but according to experiments, even when the response delay is 1 μS, the power output is 9600 bPS. It turns out that there is no problem with low-speed signal transmission.

本実施例は、さらに小型するため、第3図で示
すように多孔質光電素子1、電子増幅器回路4、
定電圧電源5、出力ドライブトランジスタ6を一
体化して受光IC、12化することにより、ほんの
3mm四方の受光IC、12、それと約10mm立体ほど
の発光素子7の組合せにできるから、光フアイバ
ーの接続構造をもつた超小型の一体型光分岐装置
13を提供できる。これを光分岐コネクターとす
ることもできる。
In order to further reduce the size of this embodiment, as shown in FIG. 3, a porous photoelectric element 1, an electronic amplifier circuit 4,
By integrating the constant voltage power supply 5 and the output drive transistor 6 into a light receiving IC, 12, it is possible to combine the light receiving IC, 12, which is only 3 mm square, and the light emitting element 7, which is approximately 10 mm in size, making it possible to connect optical fibers. It is possible to provide an ultra-compact integrated optical branching device 13 having a structure. This can also be used as an optical branch connector.

ここで、本実施例の作用、使用方法を第2図に
より説明する。
Here, the function and method of use of this embodiment will be explained with reference to FIG.

A局より送信される光信号は光フアイバー2を
通りB局の光分岐装置13に達する。前述した様
に、多孔質光電素子1により受信し、光分岐装置
内で光信号を自己増幅し、下りの光フアイバー3
を通し、C局の光分岐装置13方向に十分に良質
な光信号を強力に発光送信する。よつてD局にも
ダイレクトにC局を透過して伝送できる。又B局
では、受光ICの出力14が、バツフアーを通し、
例えばマイコン15によりRD入力し信号解読さ
れる。さらに自局が、他の局へ送信の必要が有れ
ば、TD出力よりドライバー(外部信号による駆
動回路)16をパルス駆動し、メイン光路2,3
の信号空き時間を狙つて送信すれば、発光素子7
がパルス発光し送信通信できる。
The optical signal transmitted from the A station passes through the optical fiber 2 and reaches the optical branching device 13 of the B station. As mentioned above, the optical signal is received by the porous photoelectric element 1, self-amplified within the optical branching device, and transmitted to the downstream optical fiber 3.
A sufficiently high-quality optical signal is powerfully emitted and transmitted in the direction of the optical branching device 13 of the C station. Therefore, the signal can be directly transmitted to the D station by passing through the C station. Also, at station B, the output 14 of the photodetector IC passes through the buffer,
For example, the microcomputer 15 inputs the RD and decodes the signal. Furthermore, if the local station needs to send data to another station, it pulses the driver (driving circuit using an external signal) 16 from the TD output, and
If the signal is transmitted aiming at the idle time of the light emitting element 7
emits pulses and can transmit and communicate.

ここでもし、B局及びB局の光分岐装置13の
電気的接続が故障した時、例えば電源Vccの接続
不良、受光IC、12発光素子7の故障時でも、A
局からの伝送信号はB局の光分岐装置を透過し、
C局までは到達し、C局が生きていれば、次のD
局以後の方向へ次々と伝送できる。
Here, if there is a failure in the electrical connection between the B station and the optical branching device 13 of the B station, for example, if there is a failure in the connection of the power supply Vcc, or if the light receiving IC or 12 light emitting element 7 fails, the A
The transmission signal from the station passes through the optical branching device of the B station,
If the C station is reached and the C station is alive, the next D
It can be transmitted one after another in the direction after the station.

次に第4図に多孔質光電素子1の構造の例を示
す。多孔質光電素子1の入射光21と透過光22
の割合は微小な孔23の数による自由に選択可能
であり、発光素子7やフアイバーの種類、伝送距
離により最適な受光と透過光の割合を設定でき
る。
Next, an example of the structure of the porous photoelectric element 1 is shown in FIG. Incident light 21 and transmitted light 22 of porous photoelectric element 1
The ratio can be freely selected depending on the number of minute holes 23, and the optimal ratio of received light and transmitted light can be set depending on the type of light emitting element 7, fiber, and transmission distance.

又、本発明の応用例として、光フアイバーの光
信号を双方向に受信及び送信するものも提示可能
である。つまり、第1図においての、多孔質光電
素子1を2個直列に光の受光面を逆向きにして並
べて配置し、検出、増幅すれば、光フアイバー2
らか3への光信号のみでなく、光フアイバー3か
ら2への逆方向の光信号も受信できる光分岐コネ
クターを提供することができる。よつて、光フア
イバー一本を第2図のA局からD局までループす
ることにより、左右どちらのループにも光送信を
できる双方向光マルチバスが、安価に提供できる
という画期的な効果がある。
Further, as an application example of the present invention, it is also possible to provide an optical fiber that receives and transmits optical signals in both directions. In other words, if two porous photoelectric elements 1 in FIG.
It is possible to provide an optical branching connector that can receive not only an optical signal from the optical fiber 3 to the optical fiber 3 but also an optical signal in the opposite direction from the optical fiber 3 to the optical fiber 2. Therefore, by looping a single optical fiber from station A to station D in Figure 2, a bidirectional optical multibus capable of transmitting light to both the left and right loops can be provided at low cost, an epoch-making effect. There is.

〓発明の効果〓 以上のように、この発明により機械的駆動部が
なく、小型で安価な光分岐装置が提供することが
でき、光マルチバスシステムの信号伝送の信頼性
を高める構成部品として利用することができる。
〓Effects of the Invention〓 As described above, the present invention makes it possible to provide a small and inexpensive optical branching device without a mechanical drive unit, which can be used as a component to improve the reliability of signal transmission in an optical multi-bus system. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は
同実施例の作用、利用方法の説明図、第3図は他
の実施例の構成図、第4図は多孔質光電素子の一
実施例の構成図である。第5図は従来装置の構成
図で、aは正常時、bは故障時を示し、第6図は
同従来装置の作用、利用方法の説明図である。 図中、1は多孔質光電素子、7は発光素子、1
1は光を導波路内に注入する手段であり、同一符
号は同一又は相当部分を示す。
Fig. 1 is a block diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of the function and usage of the same embodiment, Fig. 3 is a block diagram of another embodiment, and Fig. 4 is a porous photoelectric element. FIG. 2 is a configuration diagram of an embodiment of the present invention. FIG. 5 is a block diagram of a conventional device, in which a shows a normal state and b shows a faulty state, and FIG. 6 is an explanatory diagram of the operation and usage of the conventional device. In the figure, 1 is a porous photoelectric element, 7 is a light emitting element, 1
1 is a means for injecting light into the waveguide, and the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 光フアイバー等の導波路と導波路の間に光の
一部を受け一部を透過させる多孔質光電素子を配
置したことを特徴とする光分岐装置。 2 光フアイバー等の導波路と導波路の間に光の
一部を受け一部を透過させる多孔質光電素子を配
置した部材と、該多孔質光電素子の出力を増幅す
る手段と、該手段により付勢される発光素子と、
該発光素子からの光を後の導波路内に注入する手
段とを具備することを特徴とする光分岐装置。 3 多孔光電素子と該多孔光電素子の出力を増幅
する手段及びこれらの電源を一体化し受光ICと
したことを特徴とする特許請求の範囲第2項記載
の光分岐装置。 4 外部信号による駆動回路を発光素子に接続し
たことを特徴とする特許請求の範囲第2項又は第
3項記載の光分岐装置。
[Scope of Claims] 1. An optical branching device characterized in that a porous photoelectric element that receives part of light and transmits part of light is disposed between waveguides such as optical fibers. 2. A member in which a porous photoelectric element that receives part of light and transmits part of the light is arranged between waveguides such as optical fibers, a means for amplifying the output of the porous photoelectric element, and a member that uses the means to amplify the output of the porous photoelectric element. a light emitting element to be energized;
An optical branching device comprising means for injecting light from the light emitting element into a subsequent waveguide. 3. The optical branching device according to claim 2, characterized in that a porous photoelectric element, a means for amplifying the output of the porous photoelectric element, and a power source thereof are integrated into a light receiving IC. 4. The optical branching device according to claim 2 or 3, characterized in that a drive circuit using an external signal is connected to the light emitting element.
JP15286487A 1987-06-19 1987-06-19 Optical branching device Granted JPS63316810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15286487A JPS63316810A (en) 1987-06-19 1987-06-19 Optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15286487A JPS63316810A (en) 1987-06-19 1987-06-19 Optical branching device

Publications (2)

Publication Number Publication Date
JPS63316810A JPS63316810A (en) 1988-12-26
JPH055322B2 true JPH055322B2 (en) 1993-01-22

Family

ID=15549787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15286487A Granted JPS63316810A (en) 1987-06-19 1987-06-19 Optical branching device

Country Status (1)

Country Link
JP (1) JPS63316810A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2071037A1 (en) * 1991-06-14 1992-12-15 Hayato Yuuki Active optical coupler

Also Published As

Publication number Publication date
JPS63316810A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
US4475789A (en) Optical fiber power tap
US4910727A (en) Optical transceiver having waveguide couplers for filtering and duplexing transmit and receive wavelengths
US4660973A (en) Arrangement for locating faults in an optical information transmission system
JPH0993201A (en) Optical repeater having redundancy
US4736359A (en) Single fiber optical communication system
JPH055322B2 (en)
JPH11344631A (en) Optical device
JPH08166527A (en) Optical conversion device
JPH11112065A (en) Optical fiber amplifier
JP2591608B2 (en) LED stabilized light source
JP3583841B2 (en) Optical device for monitoring
JPH02151138A (en) Optical fiber transmission equipment
JP2005338288A (en) Bidirectional optical module and single bidirectional optical communication system
JPS62187304A (en) Directional optical coupling component
JPS5929979B2 (en) Bidirectional optical communication system
JP2749643B2 (en) Light coupler
JP2522163B2 (en) Optical transceiver circuit
JPS6075137A (en) Two-way transmission system of optical fiber
JP2907037B2 (en) Bidirectional line monitor
JPH06125308A (en) Optical signal transmitter
JPH065839A (en) Optical circuit device
JPS63316809A (en) Optical branching device
JP2000046565A (en) Optical fiber gyro
JP3009061B2 (en) Optical transceiver
JPS63271407A (en) Optical connector

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees