JPH0552834A - Calibration of process gas chromatograph - Google Patents

Calibration of process gas chromatograph

Info

Publication number
JPH0552834A
JPH0552834A JP3218954A JP21895491A JPH0552834A JP H0552834 A JPH0552834 A JP H0552834A JP 3218954 A JP3218954 A JP 3218954A JP 21895491 A JP21895491 A JP 21895491A JP H0552834 A JPH0552834 A JP H0552834A
Authority
JP
Japan
Prior art keywords
component
measured
output
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3218954A
Other languages
Japanese (ja)
Inventor
Shozo Shibata
省三 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP3218954A priority Critical patent/JPH0552834A/en
Publication of JPH0552834A publication Critical patent/JPH0552834A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain correct concn. even when the base line of an output value is changed by calculating the concn. of a component to be measured from the outputs obtained at the times when the component to be measured is present and absent in a sample using a specific formula. CONSTITUTION:An electrical breaker 6 is turned ON and a zero position signal S13 is generated in a photodetector 12. This signal S13 is processed by a waveform processing circuit 2 to become a signal V0 by an operation circuit 3 to be stored in a memory circuit 4. Next, the breaker 6 is turned OFF to set such a state that no zero position signal S13 is generated in the photodetector 12. A sample is analyzed in this state by a process gas chromatograph and, when a component to be measured is not detected by a flame photometer 11, a signal V1 is obtained as the output of the circuit 3 and, when said component is detected, a signal V2 is obtained as output. Since the relation between the concn. C of the component to be measured and the output V of the circuit 3 is C=f(V), the concn. C of the component to be measured is calculated using formula C=f(V2-V0)-f(V1-V0).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、FPDの略称で知られ
ている炎光光度検出器を搭載したプロセスガスクロマト
グラフの校正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calibrating a process gas chromatograph equipped with a flame photometric detector known by the abbreviation FPD.

【0002】[0002]

【従来の技術】従来のプロセスガスクロマトグラフにお
いては、被測定成分の濃度を求める方法として、次のよ
うな方法が用いられていた。即ち、基準となる既知濃度
の試料を最初に分析し、その後、該分析値(積分値やピ
―クハイト値)の対応する出力と、未知濃度の被測定成
分を含む試料を分析した分析値とを比較して演算する方
法が多く用いられていた。
2. Description of the Related Art In a conventional process gas chromatograph, the following method has been used as a method for obtaining the concentration of a component to be measured. That is, a reference sample of known concentration is first analyzed, and then the corresponding output of the analysis value (integral value or peak height value) and the analysis value of the sample containing the measured component of unknown concentration are analyzed. The method of comparing and calculating is often used.

【0003】しかし、炎光光度検出器を検出器とするプ
ロセスガスクロマトグラフを用いて、硫黄を含む試料を
分析する場合には、該硫黄と炎光光度検出器の出力に直
線性がないため、出力値のベ―スラインが変化した場合
などには、出力のピ―ク値も変化し、被測定成分の正し
い濃度を求めることができないという欠点があった。
However, when a sample containing sulfur is analyzed using a process gas chromatograph having a flame photometric detector as a detector, since the sulfur and the output of the flame photometric detector are not linear, If the base line of the output value changes, the peak value of the output also changes, and the correct concentration of the measured component cannot be obtained.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0004】本発明は、かかる従来例の欠点に鑑みてな
されたものであり、その目的は、出力値のベ―スライン
が変化した場合などにも、被測定成分の正しい濃度を求
めることができるようなプロセスガスクロマトグラフの
校正方法を提供することにある。
The present invention has been made in view of the drawbacks of the conventional example, and an object thereof is to obtain the correct concentration of the measured component even when the base line of the output value changes. It is to provide a calibration method for such a process gas chromatograph.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

<問題点を解決するための手段>上述のような問題点を
解決する本発明の特徴は、プロセスガスクロマトグラフ
の校正方法において、検出器の出力を電気的または光学
的に零にしたときの出力V0 と、試料中に被測定成分が
存在しないときの出力V1 と、試料中に被測定成分が存
在するときの出力V2 から、f(V)をVの関数とする
下式を用いて被測定成分の濃度Cを求めるようにしたこ
とにある。 C=f(V2 −V0 )−f(V1 −V0
<Means for Solving the Problems> The feature of the present invention for solving the above problems is that the output of the detector when the output of the detector is made electrically or optically zero in the calibration method of the process gas chromatograph. From V 0 , the output V 1 when the measured component does not exist in the sample, and the output V 2 when the measured component exists in the sample, the following equation using f (V) as a function of V is used. The concentration C of the component to be measured is obtained by the above. C = f (V 2 -V 0 ) -f (V 1 -V 0)

【0006】[0006]

【作用】本発明は次のように作用する。即ち、最初、電
気的もしくは光学的な遮断器がオンにされ、光検出器で
発生した零位の信号は、波形処理回路で波形処理されて
後、演算回路で処理されて信号V0 となり、メモリ回路
に格納される。次に、電気的もしくは光学的な遮断器を
オフにし、光検出器に零位の信号が発生しない状態で、
試料をプロセスガスクロマトグラフで分析し、被測定成
分が炎光光度検出器で検出されない場合には演算回路の
出力としてV1 を得、被測定成分が炎光光度検出器で検
出された場合には演算回路の出力としてV2 を得る。こ
こで、被測定成分の濃度Cと演算回路の出力Vの関係が
C=f(V)であるため、下式から被測定成分の濃度C
が算出される。 C=f(V2 −V0 )−f(V1 −V0
The present invention operates as follows. That is, first, the electrical or optical breaker is turned on, and the zero-level signal generated by the photodetector is waveform-processed by the waveform processing circuit and then processed by the arithmetic circuit to become the signal V 0 . It is stored in the memory circuit. Next, turn off the electrical or optical circuit breaker, and in the state where the zero signal is not generated in the photodetector,
The sample is analyzed by the process gas chromatograph, and V 1 is obtained as the output of the arithmetic circuit when the measured component is not detected by the flame photometric detector, and when the measured component is detected by the flame photometric detector. V 2 is obtained as the output of the arithmetic circuit. Since the relationship between the concentration C of the component to be measured and the output V of the arithmetic circuit is C = f (V), the concentration C of the component to be measured can be calculated from the following equation.
Is calculated. C = f (V 2 -V 0 ) -f (V 1 -V 0)

【0007】[0007]

【実施例】以下、本発明について図を用いて詳細に説明
する。図1は本発明実施例の要部ブロック回路図であ
る。この図において、1は検出部、11は炎光光度検出
器、12は炎光光度検出器11の出力を受けて光電変換
すると共に、電圧電源5から電気的遮断器6を介して送
出される電圧信号S12によって零位の信号を発する光検
出器、13は光検出器12の出力S13を増幅する増幅
器、2は検出部1の出力S14を受けて波形処理する波形
処理回路、3は波形処理回路2の出力S15を受けて演算
増幅する演算回路、4は演算回路3で演算増幅された値
などを記憶するメモリ回路である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a block circuit diagram of an essential part of an embodiment of the present invention. In this figure, 1 is a detection unit, 11 is a flame photometric detector, 12 is an output of the flame photometric detector 11 for photoelectric conversion, and it is sent from a voltage power source 5 through an electrical breaker 6. photodetector that emits the zero position signal by the voltage signal S12, 13 is an amplifier for amplifying the output S 13 of the photodetector 12, the waveform processing circuit 2 for waveform processing by receiving an output S 14 of the detection unit 1, 3 An arithmetic circuit 4 that receives the output S 15 of the waveform processing circuit 2 and performs operational amplification is denoted by 4, and a memory circuit 4 stores the values that are arithmetically amplified by the operational circuit 3.

【0008】また、5は電気的遮断器(例えば、スイッ
チ)6を介して光検出器12に零位の信号を発生させる
電圧電源である。このような構成からなる本発明の実施
例において、最初、電気的遮断器6がオン(即ち、導
通)にされ、光検出器12に零位の信号S13´が発生す
る。この信号S13´は、波形処理回路2で波形処理され
て後、演算回路3で処理されて信号V0 となり、メモリ
回路4に格納される。
Reference numeral 5 is a voltage power source for generating a zero-level signal to the photodetector 12 via an electrical breaker (eg switch) 6. In the embodiment of the present invention having such a configuration, first, the electrical breaker 6 is turned on (that is, made conductive), and the null signal S 13 ′ is generated in the photodetector 12. The signal S 13 ′ is waveform-processed by the waveform processing circuit 2 and then processed by the arithmetic circuit 3 to become a signal V 0 , which is stored in the memory circuit 4.

【0009】次に、電気的遮断器6をオフ(即ち、遮
断)にし、光検出器12に零位の信号S13´が発生しな
い状態にする。この状態で、試料をプロセスガスクロマ
トグラフで分析し、被測定成分が炎光光度検出器11で
検出されない場合には演算回路3の出力としてV1
得、被測定成分が炎光光度検出器11で検出された場合
には演算回路3の出力としてV2 を得る。
Next, the electrical breaker 6 is turned off (that is, cut off) so that the photodetector 12 does not generate the zero-level signal S 13 ′. In this state, the sample is analyzed by the process gas chromatograph, and when the measured component is not detected by the flame photometric detector 11, V 1 is obtained as the output of the arithmetic circuit 3 and the measured component is the flame photometric detector 11. When it is detected at, V 2 is obtained as the output of the arithmetic circuit 3.

【0010】ここで、被測定成分の濃度Cと演算回路3
の出力Vの関係がC=f(V)であるため、下式のよ
うにして被測定成分の濃度Cが算出される。 C=f(V2 −V0 )−f(V1 −V0 )………………
Here, the concentration C of the component to be measured and the arithmetic circuit 3
Since the output V has a relationship of C = f (V), the concentration C of the component to be measured is calculated by the following equation. C = f (V 2 −V 0 ) −f (V 1 −V 0 ) ………………

【0011】尚、前記従来例においては、下式のよう
にして被測定成分の濃度Cが算出されていた。 C=f(V2 −V1 )………………
In the above-mentioned conventional example, the concentration C of the component to be measured was calculated by the following equation. C = f (V 2 −V 1 ) ………………

【0012】図2は被測定成分の濃度Cと上記演算回路
3の出力Vの関係を示す特性曲線図であり、図中、横軸
は被測定成分の濃度Cを示し、縦軸は出力電圧Vを示し
ている。また、図2における曲線Aは上記式を示して
おり、光検出器12の零位の信号に対応する電圧V0
変動しても被測定成分の濃度Cが正確に測定できること
を示している。
FIG. 2 is a characteristic curve diagram showing the relationship between the concentration C of the component to be measured and the output V of the arithmetic circuit 3, wherein the horizontal axis represents the concentration C of the component to be measured and the vertical axis represents the output voltage. V is shown. Further, the curve A in FIG. 2 shows the above formula, and shows that the concentration C of the component to be measured can be accurately measured even if the voltage V 0 corresponding to the null signal of the photodetector 12 fluctuates. ..

【0013】一方、図3は本発明の他の実施例のブロッ
ク回路図であり、図中、図1と同一記号は同一意味をも
たせて使用しここでの重複説明は省略する。また、13
は例えばチョッパ―でなり炎光光度検出器11と光検出
器12の間の光路を遮断する光学的遮断器である。
On the other hand, FIG. 3 is a block circuit diagram of another embodiment of the present invention. In the figure, the same symbols as those in FIG. 1 are used with the same meanings and duplicate explanations are omitted. Also, 13
Is an optical circuit breaker which is composed of, for example, a chopper and blocks the optical path between the flame photometric detector 11 and the photodetector 12.

【0014】[0014]

【発明の効果】以上詳しく説明したような本発明の実施
例によれば、被測定成分が検出されない場合の出力(い
ゆゆるベ―スライン)の変動によって検出感度が変化す
る場合にも、電気的または光学的に零位との比較ができ
るようになっている。このため、出力値のベ―スライン
が変化した場合などにも、被測定成分の正しい濃度を求
めることができるようなプロセスガスクロマトグラフの
校正方法が実現し、プロセスガスクロマトグラフを正確
に校正できるようになる。
According to the embodiment of the present invention described in detail above, even when the detection sensitivity changes due to the fluctuation of the output (Isuru base line) when the measured component is not detected, It is possible to compare with the zero position optically or optically. Therefore, even if the base line of the output value changes, a process gas chromatograph calibration method that can obtain the correct concentration of the measured component is realized, and the process gas chromatograph can be calibrated accurately. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の要部ブロック回路図である。FIG. 1 is a block circuit diagram of an essential part of an embodiment of the present invention.

【図2】特性曲線図である。FIG. 2 is a characteristic curve diagram.

【図3】本発明の他の実施例の要部ブロック回路図であ
る。
FIG. 3 is a block circuit diagram of a main part of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 炎光光度検出器 2 波形処理回路 3 演算回路 4 メモリ回路 5 電圧電源 6 電気的遮断器 11 炎光光度検出器 12 光検出器 13 増幅器 14 光学的遮断器 1 flame photometric detector 2 waveform processing circuit 3 arithmetic circuit 4 memory circuit 5 voltage power supply 6 electrical breaker 11 flame photometric detector 12 photodetector 13 amplifier 14 optical breaker

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炎光光度検出器を搭載したプロセスガスク
ロマトグラフの校正方法において、検出器の出力を電気
的または光学的に零にしたときの出力V0 と、試料中に
被測定成分が存在しないときの出力V1 と、試料中に被
測定成分が存在するときの出力V2 から、f(V)をV
の関数とする下式を用いて被測定成分の濃度Cを求める
ことを特徴とするプロセスガスクロマトグラフの校正方
法。 C=f(V2 −V0 )−f(V1 −V0
1. A method for calibrating a process gas chromatograph equipped with a flame photometric detector, wherein the output V 0 when the output of the detector is electrically or optically zero and the component to be measured is present in the sample. F (V) is calculated as V from the output V 1 when there is no measured component and the output V 2 when the measured component exists in the sample.
A method for calibrating a process gas chromatograph, characterized in that the concentration C of a component to be measured is obtained by using the following equation that is a function of C = f (V 2 -V 0 ) -f (V 1 -V 0)
JP3218954A 1991-08-29 1991-08-29 Calibration of process gas chromatograph Pending JPH0552834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3218954A JPH0552834A (en) 1991-08-29 1991-08-29 Calibration of process gas chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3218954A JPH0552834A (en) 1991-08-29 1991-08-29 Calibration of process gas chromatograph

Publications (1)

Publication Number Publication Date
JPH0552834A true JPH0552834A (en) 1993-03-02

Family

ID=16727944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3218954A Pending JPH0552834A (en) 1991-08-29 1991-08-29 Calibration of process gas chromatograph

Country Status (1)

Country Link
JP (1) JPH0552834A (en)

Similar Documents

Publication Publication Date Title
AU659025B2 (en) Pulsed pressure sensor circuit and method therefor
US4201472A (en) Apparatus for converting light signals into digital electrical signals
ATE363152T1 (en) AN ACCURATE POWER DETECTOR FOR USE IN A POWER AMPLIFIER
JPH0552834A (en) Calibration of process gas chromatograph
US4341994A (en) Power level measurement system
JP2003232681A (en) Spectrophotometer
EP0261452A2 (en) Gas analyzer
JPS59780B2 (en) measuring device
JP2570546B2 (en) Atomic absorption spectrophotometer
GB1265638A (en)
JPH0668467B2 (en) Photometric device for emission spectroscopy
JPS61149883A (en) Range measuring instrument
EP0227038A2 (en) Atomic absorption spectrophotometer
JPH06138231A (en) Distance measuring equipment
JPH06323907A (en) Temperature-drift correction device used in optical analyzer
SU485368A1 (en) Radiometric flaw detector
JP3179858B2 (en) Single beam gas analyzer
KR930008562B1 (en) Measurement device
JPH05180698A (en) Temperature measuring instrument
JPH0851328A (en) Small signal amplifier circuit
SU1413460A1 (en) Radio isotope ionization pressure gauge
JPH07209247A (en) Gas detector with temperature compensating function forelectrochemical gas sensor
JPS6340849A (en) Gas chromatography mass spectrometer
JPH0534279A (en) Infrared absorption type humidity fluctuation meter
JPH08304278A (en) Infrared absorption humidity variation meter