JPH0552796A - Dielectric constant detection sensor of fuel - Google Patents

Dielectric constant detection sensor of fuel

Info

Publication number
JPH0552796A
JPH0552796A JP3216825A JP21682591A JPH0552796A JP H0552796 A JPH0552796 A JP H0552796A JP 3216825 A JP3216825 A JP 3216825A JP 21682591 A JP21682591 A JP 21682591A JP H0552796 A JPH0552796 A JP H0552796A
Authority
JP
Japan
Prior art keywords
coil
fuel
electrode
dielectric constant
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3216825A
Other languages
Japanese (ja)
Other versions
JP2647578B2 (en
Inventor
Hiroyoshi Suzuki
尋善 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3216825A priority Critical patent/JP2647578B2/en
Priority to KR1019920014786A priority patent/KR960010689B1/en
Priority to DE4228737A priority patent/DE4228737C2/en
Publication of JPH0552796A publication Critical patent/JPH0552796A/en
Priority to US08/279,550 priority patent/US5543722A/en
Priority to US08/487,515 priority patent/US5592098A/en
Application granted granted Critical
Publication of JP2647578B2 publication Critical patent/JP2647578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable an output for change in a dielectric constant to be increased and detection accuracy to be improved for reducing scattering by detecting the dielectric constant of fuel which passes a fuel passage between a coil and an electrode with an electrostatic capacity between a coil surface and an electrode surface. CONSTITUTION:A cylindrical single-layer winding coil 3 is provided at an outer periphery of a thin-wall portion 2 of a cylindrical case 2 which consists of a PPS resin, etc., with high dielectric constant and a pole-shaped electrode 6 is placed at a center of the case. A fuel is allowed to flow from an entrance/exit port 5 to a passage 4, a frequency which is applied to the electrode 6 is changed by a current controlled oscillation circuit, an induced voltage of the coil 3 is rectified by a full-wave rectification circuit, a maximum value of its output is detected by a peak detector, and a control input of a voltage-controlled oscillation circuit at this time is subjected to sample/hold by a sample/hold circuit and is output via a low-pass filter. Its voltage output becomes a value corresponding to a resonance frequency, namely a dielectric constant epsilon of fuel, and an amount of change becomes larger than that of a case where a coil and an electrode are provided at a same axis only by a parallel capacity, thus enabling a detection accuracy to be improved and a scattering to be reduced owing to ease of machining.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃焼器等に供給され
る燃料の誘電率を非接触で検知し、燃料の性状を判別す
る燃料の誘電率検知センサに関し、特に自動車等のエン
ジンに用いられるアルコール混合燃料中のアルコール含
有率を測定するものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel permittivity detection sensor for detecting the permittivity of fuel supplied to a combustor or the like in a non-contact manner to determine the property of the fuel, and particularly to an engine of an automobile or the like. The present invention relates to a method for measuring an alcohol content rate in a mixed alcohol fuel.

【0002】[0002]

【従来の技術】近年、米国や欧州等の各国では、石油の
消費量の低減と自動車排気ガスによる大気汚染の低減を
図るため、ガソリン中にアルコールを混合した燃料が自
動車用として導入されつつある。このようなアルコール
混合燃料をガソリン燃料の空燃比にマッチングされたエ
ンジンにそのまま用いると、アルコールはガソリンに比
べて理論空燃比が小さいので空燃比がリーン化して運転
が困難となった。そこで、アルコール混合燃料中のアル
コール含有率を検出し、この検出値に応じて空燃比、点
火時期等を調整することが行なわれている。
2. Description of the Related Art In recent years, in countries such as the United States and Europe, in order to reduce the consumption of oil and the air pollution caused by automobile exhaust gas, fuel in which alcohol is mixed with gasoline is being introduced for automobiles. .. If such an alcohol-mixed fuel is used as it is in an engine that matches the air-fuel ratio of gasoline fuel, the theoretical air-fuel ratio of alcohol is smaller than that of gasoline, so the air-fuel ratio becomes lean and operation becomes difficult. Therefore, the alcohol content rate in the alcohol-mixed fuel is detected, and the air-fuel ratio, the ignition timing, etc. are adjusted according to the detected values.

【0003】従来、このようなアルコール含有率の検出
のため、アルコール混合燃料の誘電率を静電容量の変化
により検出する方式が提案されている。かかる方式のう
ち、燃料の流路に近接してコイルを備え、かかるコイル
と近接した他のコイルとの間の浮遊容量やコイルとコイ
ルに近接した電極との間の静電容量の変化により誘電率
を検出する方式のものが特開昭62−25248号公報
や特公昭63−31734号公報に記載されている。こ
れについて、図2〜4を用いて説明する。
Conventionally, in order to detect such an alcohol content, a method has been proposed in which the dielectric constant of an alcohol-mixed fuel is detected by a change in capacitance. In such a method, a coil is provided in the vicinity of the fuel flow path, and the capacitance is changed between the coil and another coil adjacent to the coil, or the capacitance between the coil and the electrode adjacent to the coil causes a change in dielectric. A method of detecting the rate is described in JP-A-62-25248 and JP-B-63-31734. This will be described with reference to FIGS.

【0004】図2は従来における燃料の誘電率検知セン
サの構成を示し、1はセラミック、耐油性プラスチック
等の絶縁体からなり、内部に燃料通路4を有する絶縁
管、16は絶縁管1の外周の一部にリング状に巻回され
た励起電極、3は励起電極16から所定距離離れてやは
り絶縁管1に巻回された単層巻コイルであり、これらに
よりセンサ部が形成される。20はセンサ部に接続され
た検出回路であり、鋸歯状波発振回路21の出力が電圧
制御発振回路22に接続され、電圧制御発振回路22の
出力が励起電極16に接続され、単層巻コイル3の励起
電極16の反対側端部が接地され、単層巻コイル3の他
端側の信号が全波整流回路23を介してピークディテク
タ24に接続され、ピークディテクタ24の出力は鋸歯
状波発振回路21の出力が入力されたサンプルホールド
回路25に入力され、サンプルホールド回路25の出力
は低域通過フィルタ26を介して外部に出力される。図
3は上記センサ部の等価回路の説明図、図4はセンサ部
の出力特性図である。
FIG. 2 shows the structure of a conventional fuel dielectric constant detection sensor. 1 is an insulating tube made of an insulating material such as ceramic or oil resistant plastic, and has a fuel passage 4 inside, and 16 is an outer circumference of the insulating tube 1. The excitation electrode 3 wound in a ring shape on a part of the is a single layer winding coil which is also wound around the insulating tube 1 at a predetermined distance from the excitation electrode 16 and forms a sensor portion. Reference numeral 20 denotes a detection circuit connected to the sensor unit, the output of the sawtooth wave oscillation circuit 21 is connected to the voltage control oscillation circuit 22, the output of the voltage control oscillation circuit 22 is connected to the excitation electrode 16, and the single layer winding coil is provided. The opposite end of the excitation electrode 16 of 3 is grounded, the signal on the other end of the single-layer winding coil 3 is connected to the peak detector 24 via the full-wave rectifier circuit 23, and the output of the peak detector 24 is a sawtooth wave. The output of the oscillation circuit 21 is input to the sample-hold circuit 25 to which the output is input, and the output of the sample-hold circuit 25 is output to the outside via the low-pass filter 26. FIG. 3 is an explanatory diagram of an equivalent circuit of the sensor unit, and FIG. 4 is an output characteristic diagram of the sensor unit.

【0005】次に、上記した従来センサの動作について
説明する。電圧制御発振回路22から励起電極16に印
加される信号の周波数は、鋸歯状波発振回路21の出力
でスイープ制御される。このとき、単層巻コイル3の誘
起電圧は燃料の誘電率εが異なると、異なった周波数で
最大値を示す。これは、励起電極16と単層巻コイル3
間の燃料通路4内の燃料の誘電率εに対応する静電容量
f と単層巻コイル3の自己インダクタンスLとでLC
共振を生じ、共振周波数で単層巻コイル3の誘起電圧が
最大となるためである。
Next, the operation of the above-mentioned conventional sensor will be described. The frequency of the signal applied from the voltage controlled oscillator circuit 22 to the excitation electrode 16 is sweep-controlled by the output of the sawtooth wave oscillator circuit 21. At this time, the induced voltage of the single-layer winding coil 3 shows the maximum value at different frequencies when the permittivity ε of the fuel is different. This is the excitation electrode 16 and the single layer winding coil 3.
LC by the electrostatic capacitance C f corresponding to the dielectric constant ε of the fuel in the fuel passage 4 between them and the self-inductance L of the single-layer winding coil 3.
This is because resonance occurs and the induced voltage of the single-layer winding coil 3 becomes maximum at the resonance frequency.

【0006】センサ部の概略等価回路は図3に示すよう
になり、その直列共振周波数fo は fo =1/[2π√L√{Cf /(1+Cf /Cs ) +Cp +Cpa}](1) で表わされる。ここに、Lは単層巻コイル3の自己イン
ダクタンス、Cf は励起電極16と単層巻コイル3との
間の燃料通路4内の容量であり、燃料の誘電率εに対応
するものである。Cs は絶縁管1の管壁の容量、Cp
電極16とコイル3間の絶縁管1の軸方向の容量、Cpa
は電極16とコイル3間の外部浮遊容量、Cpcはコイル
3と並列に存在する浮遊容量である。
[0006] schematic equivalent circuit of the sensor unit is as shown in FIG. 3, it is the series resonance frequency f o f o = 1 / [ 2π√L√ {C f / (1 + C f / C s) + C p + C pa }] (1). Here, L is the self-inductance of the single-layer winding coil 3, C f is the capacity in the fuel passage 4 between the excitation electrode 16 and the single-layer winding coil 3, and corresponds to the permittivity ε of the fuel. .. C s is the capacity of the wall of the insulating tube 1, C p is the axial capacity of the insulating tube 1 between the electrode 16 and the coil 3, and C pa
Is an external stray capacitance between the electrode 16 and the coil 3, and C pc is a stray capacitance existing in parallel with the coil 3.

【0007】共振周波数fo は、(1)式に示すように
容量Cf即ち燃料の誘電率εが大きいほど低下する。コ
イル3の誘起電圧は全波整流回路23で直流信号に変換
され、ピークディテクタ24でその最大値が検出され、
ピークディテクトパルスがサンプルホールド回路25に
出力されて鋸歯状波発振回路21のスイープ出力がサン
プルホールドされる。従って、このときのホールド電圧
は共振周波数fo に相当し、この電圧出力が低域通過フ
ィルタ26を介して外部にVout として出力される。
The resonance frequency f o decreases as the capacity C f, that is, the permittivity ε of fuel increases, as shown in the equation (1). The induced voltage of the coil 3 is converted into a DC signal by the full-wave rectifying circuit 23, and the maximum value is detected by the peak detector 24,
The peak detect pulse is output to the sample hold circuit 25, and the sweep output of the sawtooth wave oscillator circuit 21 is sampled and held. Therefore, the hold voltage at this time corresponds to the resonance frequency f o, the voltage output is outputted as V out to the outside through the low-pass filter 26.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た従来センサにおいては、電極16がコイル3の端面上
に同軸配置されているため、以下のような課題があっ
た。例えば、L=20μH、絶縁管1の外径φ=10m
m、絶縁管1の管壁の厚さt=1mm、コイル3の端面と
電極16の端面との距離d=2mmとすると、燃料がε=
2のガソリンとε=33のメタノールの場合では、共振
周波数fo は共に約8MHz 程度であるが、燃料の誘電率
εにより変化する容量Cf に対して大きな並列容量
p ,Cpaが存在するため、共振周波数fo の変化は図
4に示すように約5%程度しか得られなかった。
However, the above-mentioned conventional sensor has the following problems because the electrode 16 is coaxially arranged on the end face of the coil 3. For example, L = 20 μH, outer diameter of insulating tube 1 = 10 m
Assuming that m is m, the thickness of the tube wall of the insulating tube 1 is t = 1 mm, and the distance d between the end surface of the coil 3 and the end surface of the electrode 16 is d = 2 mm, the fuel is ε =
In the case of gasoline of 2 and methanol of ε = 33, both the resonance frequencies f o are about 8 MHz, but there are large parallel capacitances C p and C pa with respect to the capacitance C f that changes depending on the permittivity ε of the fuel. to change the resonant frequency f o was about 5% only be obtained as shown in FIG.

【0009】又、dは端面間の距離であるため精度が確
保しにくく、共振周波数fo のバラツキが大きく、さら
に絶縁管1の汚れ等の表面状態、外部湿度等により浮遊
容量Cpaが変化し、出力の再現性が悪いという課題があ
った。又、精度を確保するために距離dを大きくする
と、容量Cp ,Cpaは小さくなるが容量Cf も小さくな
り、共振周波数fo が平均的に増大するのみでfo の変
化率はかえって低下した。即ち、従来センサでは誘電率
εの変化に対する出力変化率が大きくとれず、センサ間
の出力バラツキが大きく、センサ出力が外部状態により
影響されやすく、センサの精度が悪いという課題があっ
た。
Further, since d is the distance between the end faces, it is difficult to ensure accuracy, the resonance frequency f o varies greatly, and the stray capacitance C pa changes depending on the surface condition of the insulating tube 1 such as dirt and the external humidity. However, there is a problem that output reproducibility is poor. Also, increasing the distance d in order to ensure accuracy, capacitance C p, C pa is reduced is also small capacitance C f, the rate of change of only f o resonance frequency f o increases on average is rather Fell. That is, the conventional sensor has a problem that the output change rate with respect to the change of the dielectric constant ε cannot be large, the output variation between the sensors is large, the sensor output is easily influenced by the external state, and the accuracy of the sensor is poor.

【0010】この発明は上記のような課題を解決するた
めに成されたものであり、誘電率εの変化に対する出力
変化を大きくすることができるとともに、出力のパラツ
キや外部状態による影響を小さくすることができ、精度
の良い燃料の誘電率検知センサを得ることを目的とす
る。
The present invention has been made in order to solve the above problems, and it is possible to increase the output change with respect to the change of the dielectric constant ε, and to reduce the influence of the output variation and the external condition. It is an object of the present invention to obtain a fuel permittivity detection sensor with high accuracy.

【0011】[0011]

【課題を解決するための手段】この発明に係る燃料の誘
電率検知センサは、燃料に接する側の周面又は平面に密
着して高誘電率の絶縁性薄壁が設けられた筒状又は平面
状単層巻コイルと、このコイルに対向しコイルとの間に
燃料通路を形成した金属電極と、コイルと電極間の静電
容量より燃料の誘電率を検出する手段を設けたものであ
る。
A fuel dielectric constant detection sensor according to the present invention is a tubular or flat surface provided with an insulating thin wall having a high dielectric constant in close contact with a peripheral surface or a flat surface on the side in contact with fuel. The single-layer winding coil, a metal electrode facing the coil and forming a fuel passage between the coil and a means for detecting the permittivity of the fuel from the capacitance between the coil and the electrode are provided.

【0012】[0012]

【作用】この発明においては、単層巻コイルと金属電極
との間に形成された燃料通路に燃料を流し、燃料の誘電
率をコイルと電極間の静電容量により検出する。
In the present invention, the fuel is caused to flow in the fuel passage formed between the single-layer coil and the metal electrode, and the dielectric constant of the fuel is detected by the capacitance between the coil and the electrode.

【0013】[0013]

【実施例】【Example】

実施例1.以下、この発明の実施例を図面とともに説明
する。図1(a),(b)は実施例1による誘電率検知
センサの斜視図及びそのA−A線断面図、図5は該セン
サの等価回路の説明図、図4は出力特性図である。
Example 1. Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are a perspective view and a sectional view taken along the line AA of the dielectric constant detection sensor according to the first embodiment, FIG. 5 is an explanatory diagram of an equivalent circuit of the sensor, and FIG. 4 is an output characteristic diagram. ..

【0014】図1において、2はプラスチック等の絶縁
体で形成され、中央部を薄壁部2aとされた円筒容器状
ケースであり、プラスチックとしては比較的高誘電率の
耐油性エポキシ樹脂やPPS樹脂等を用いると出力変化
率の向上及び燃料に対する耐性上好ましいが、射出成型
可能な点でPPS樹脂が特によい。3はケース2の薄壁
部2aの外周に筒状に巻回された筒状単層巻コイル、4
はケース2の内部に形成された燃料通路、5は燃料通路
4の両端に設けられた一対の燃料出入口、6はコイル3
の内周面に対して対向する位置にコイル3と同軸に配さ
れた柱状電極であり、ステンレスやチタン、あるいは
銅、真鋳、鉄などにニッケルメッキを施したものにより
形成し、燃料に対して耐性があるものを用いる。
In FIG. 1, reference numeral 2 denotes a cylindrical container-like case which is formed of an insulating material such as plastic and has a thin wall portion 2a at the center thereof. As plastic, an oil resistant epoxy resin or PPS having a relatively high dielectric constant is used. Use of a resin or the like is preferable in terms of improvement in output change rate and resistance to fuel, but PPS resin is particularly preferable in that injection molding is possible. Reference numeral 3 denotes a tubular single-layer winding coil wound in a tubular shape on the outer periphery of the thin wall portion 2a of the case 2.
Is a fuel passage formed inside the case 2, 5 is a pair of fuel inlets and outlets provided at both ends of the fuel passage 4, and 6 is a coil 3
Is a columnar electrode coaxially arranged with the coil 3 at a position opposed to the inner peripheral surface of, and is formed of stainless steel, titanium, copper, brass, iron or the like plated with nickel, and Use a resistant one.

【0015】柱状電極6の径はコイル3が巻回された薄
壁部2aの内径に対して小さい方が、センサの出力変化
率の向上の点で有利である。柱状電極6はその一端の径
をケース2の内径に合せてOリング8を取付け、他端は
ケース2に設けた凹部2bに挿入固定し、燃料のシール
を行なう。止め金具7は柱状電極6の一端を押えるため
にケース2にカシメ固定し、柱状電極6をケース2に固
定する。9はケース2にインサート成型で取付けられ、
コイル3の両端がハンダ付けされた一対のコイル端子、
10は柱状電極6の一部を止め金具7の中心孔を通して
外部に突出させて形成した電極端子、11はケース2の
強度を補強するために薄壁部2aの外周に設けられた補
強ビームである。
It is advantageous that the diameter of the columnar electrode 6 is smaller than the inner diameter of the thin wall portion 2a around which the coil 3 is wound in terms of improving the output change rate of the sensor. The columnar electrode 6 is fitted with an O-ring 8 so that the diameter of one end thereof matches the inner diameter of the case 2, and the other end is inserted and fixed in the recess 2b provided in the case 2 to seal the fuel. The stopper 7 is crimped and fixed to the case 2 to press one end of the columnar electrode 6, and the columnar electrode 6 is fixed to the case 2. 9 is attached to the case 2 by insert molding,
A pair of coil terminals with both ends of the coil 3 soldered,
Reference numeral 10 is an electrode terminal formed by protruding a part of the columnar electrode 6 to the outside through the central hole of the stopper 7, and 11 is a reinforcing beam provided on the outer periphery of the thin wall portion 2a to reinforce the strength of the case 2. is there.

【0016】次に、上記センサの動作を説明する。セン
サの検出回路20は図2に示した従来と同等であり、電
圧制御発振回路22の出力が柱状電極6の電極端子10
に接続され、コイル3の一方のコイル端子9が接地され
るとともに、他方のコイル端子9と全波整流回路23が
接続される。従来と異なり、コイル端子9はどちらを接
地してもよい。
Next, the operation of the above sensor will be described. The detection circuit 20 of the sensor is equivalent to the conventional one shown in FIG. 2, and the output of the voltage controlled oscillation circuit 22 is the electrode terminal 10 of the columnar electrode 6.
And the one coil terminal 9 of the coil 3 is grounded, and the other coil terminal 9 and the full-wave rectifier circuit 23 are connected. Unlike the conventional case, either of the coil terminals 9 may be grounded.

【0017】図5はこのような接続をした場合のセンサ
の等価回路の概略を示し、Cf は柱状電極6の外周と薄
壁部2aの内周との間の燃料通路4を誘電率εの燃料が
流れたときのこの間の静電容量、Cs は薄壁部2aの厚
さ方向の静電容量、Cpcは従来と同じくコイル3と並列
に存在する浮遊容量であり、Cf は従来と同じくコイル
3の自己インダクタンスLと直列共振回路を形成し、そ
の共振周波数fm は fm =1/[2π√L√{Cf /(1+Cf /Cs )}] (2) で与えられ、共振周波数fm は燃料の誘電率εが大なる
ほど低下する。
FIG. 5 shows an outline of an equivalent circuit of the sensor in the case of such a connection, where C f is the permittivity ε of the fuel passage 4 between the outer circumference of the columnar electrode 6 and the inner circumference of the thin wall portion 2a. Capacitance when the fuel flows, C s is the capacitance in the thickness direction of the thin wall portion 2a, C pc is the stray capacitance existing in parallel with the coil 3, and C f is As in the conventional case, a series resonance circuit is formed with the self-inductance L of the coil 3, and the resonance frequency f m is f m = 1 / [2π√L√ {C f / (1 + C f / C s )}] (2) Given that, the resonance frequency f m decreases as the permittivity ε of the fuel increases.

【0018】従って、柱状電極6に印加する周波数を電
圧制御発振回路22により変化させ、このときのコイル
3の誘起電圧を全波整流回路23で整流し、その出力の
最大値をピークディテクタ24で検出し、このときの電
圧制御発振回路22の制御入力をサンプルホールド回路
25でサンプルホールドし、低域通過フィルタ26を介
して出力することにより、その電圧出力Vout はセンサ
の共振周波数fm 即ち燃料の誘電率εに対応した値とな
る。この場合、誘電率εの変化に対する共振周波数fm
の変化率は(2)式あるいは図5の等価回路に示すよう
にCf に対する並列容量Cp ,Cpaの寄与がないため
に、大きくなる。又、ケース2の寸法、柱状電極6の寸
法精度を高めることにより、Cf ,Cs の幾何容量精度
を上げることができ、センサの出力バラツキを低減する
ことができる。
Therefore, the frequency applied to the columnar electrode 6 is changed by the voltage controlled oscillator circuit 22, the induced voltage of the coil 3 at this time is rectified by the full wave rectifier circuit 23, and the maximum value of the output is peak detector 24. By detecting and controlling the control input of the voltage controlled oscillator 22 at this time by the sample hold circuit 25 and outputting it through the low pass filter 26, the voltage output V out is the resonance frequency f m of the sensor, that is, The value corresponds to the permittivity ε of the fuel. In this case, the resonance frequency f m with respect to the change of the dielectric constant ε
The rate of change of is large because there is no contribution of the parallel capacitances C p and C pa to C f as shown in the equation (2) or the equivalent circuit of FIG. Further, by increasing the dimension of the case 2 and the dimensional accuracy of the columnar electrodes 6, the geometric capacitance accuracy of C f and C s can be increased, and the output variation of the sensor can be reduced.

【0019】図4はL=30μH、ケース2の薄壁部2
aの外径φ=10mm、薄壁部2aの厚さt=1mm、薄壁
部2aの内周と柱状電極6の外周間の燃料通路4の幅d
=2mmとした場合のセンサの出力特性を同程度の寸法の
従来センサの出力特性と比較したものである。燃料がε
=2のガソリンとε=33のメタノールの場合の共振周
波数fm の変化はこの実施例では約20%以上あり、従
来と比べて変化範囲が大幅に向上している。
FIG. 4 shows L = 30 μH, the thin wall portion 2 of the case 2.
The outer diameter φ of a is 10 mm, the thickness t of the thin wall portion 2 a is 1 mm, the width d of the fuel passage 4 between the inner circumference of the thin wall portion 2 a and the outer circumference of the columnar electrode 6.
This is a comparison of the output characteristics of the sensor in the case of = 2 mm with the output characteristics of the conventional sensor of the same size. Fuel is ε
In the case of = 2 gasoline and ε = 33 methanol, the change of the resonance frequency f m is about 20% or more in this embodiment, and the change range is greatly improved as compared with the conventional case.

【0020】実施例2.図6はこの発明の実施例2によ
るセンサ部の断面図であり、12はコイルボビン、13
はコイル3が巻回された部分が薄壁部13aとなるよう
にコイル3を一体成型したコイル成型体、14はケース
を兼ねた筒状ケース電極である。コイル成型体13は、
円柱又は同筒状コイルボビン12の外周に単層巻コイル
3を巻回した後、コイル3の両端をコイルボビン12に
インサート成型した一対のコイル端子9にハンダ付け
し、さらにこの周囲にプラスチックを射出成型してモー
ルドしたものである。このモールド材料としては、PP
S樹脂等が適当である。
Example 2. FIG. 6 is a sectional view of a sensor portion according to Embodiment 2 of the present invention, in which 12 is a coil bobbin and 13
Is a coil molded body in which the coil 3 is integrally molded so that the wound portion of the coil 3 becomes the thin wall portion 13a, and 14 is a cylindrical case electrode which also serves as a case. The coil molded body 13 is
After winding the single-layer winding coil 3 around the outer circumference of the columnar or tubular coil bobbin 12, both ends of the coil 3 are soldered to a pair of coil terminals 9 insert-molded in the coil bobbin 12, and further plastic is injection-molded around this. It was then molded. This mold material is PP
S resin or the like is suitable.

【0021】コイルボビン12は燃料に接しないため、
必ずしも燃料に対して耐性のあるプラスチックを使用す
る必要はないが、コイル成型体13と同一素材を用いる
と熱変形を回避できるので良い。コイル成型体13はコ
イル3が巻回された薄壁部13aを除き、その両端の径
を筒状ケース電極14の内径にほぼ合うようにし、ここ
に一対のOリング8を設けて燃料シールを行なってお
り、その両端には筒状ケース電極14が曲げられカシメ
固定される。
Since the coil bobbin 12 does not come into contact with fuel,
Although it is not always necessary to use plastic that is resistant to fuel, it is preferable to use the same material as the coil molded body 13 because thermal deformation can be avoided. Except for the thin wall portion 13a on which the coil 3 is wound, the coil molded body 13 has its both ends having a diameter substantially matched with the inner diameter of the tubular case electrode 14, and a pair of O-rings 8 are provided here to provide a fuel seal. The cylindrical case electrodes 14 are bent and fixed at both ends by crimping.

【0022】燃料通路4は筒状ケース電極14の内周と
コイル成型体13の外周との間に形成されており、その
両端部に筒状ケース電極14に溶接等で接続された一対
の燃料出入口5が設けられて燃料を流通させる。実施例
2では薄壁部13aは図1の円筒容器状ケース2とは異
なり、燃料圧力を薄壁部13aのみで負担する必要がな
い。従って、薄壁部13aをより薄くすることができ、
容量Cf と直列に接続された薄壁部13aの容量Cs
より大きくすることができ、燃料の誘電率変化に対する
共振周波数変化をさらに大きく取ることができる。
The fuel passage 4 is formed between the inner periphery of the cylindrical case electrode 14 and the outer periphery of the coil molded body 13, and a pair of fuels connected to the cylindrical case electrode 14 by welding or the like at both ends thereof. A doorway 5 is provided to allow the fuel to flow. In the second embodiment, unlike the cylindrical container-shaped case 2 of FIG. 1, the thin wall portion 13a does not need to bear the fuel pressure only by the thin wall portion 13a. Therefore, the thin wall portion 13a can be made thinner,
The capacitance C s of the thin wall portion 13a connected in series with the capacitance C f can be further increased, and the change in the resonance frequency with respect to the change in the dielectric constant of the fuel can be further increased.

【0023】筒状ケース電極14と一方のコイル端子9
を接地し、他方のコイル端子9に抵抗Rを介して検出回
路20の電圧制御発振回路22の出力を印加し、コイル
3と抵抗Rの接続部の電圧を全波整流回路23に入力し
た場合のセンサ部の等価回路を図7に示す。この場合、
センサ部は並列共振回路を構成し、その共振周波数fn
は fn =1/[2π L {Cf /(1+Cf /Cs )+Cpc}] (3) で与えられ、共振周波数fn はやはり燃料の誘電率εが
大きいほど低下する。
Cylindrical case electrode 14 and one coil terminal 9
Is grounded, the output of the voltage controlled oscillation circuit 22 of the detection circuit 20 is applied to the other coil terminal 9 via the resistor R, and the voltage at the connection between the coil 3 and the resistor R is input to the full-wave rectifier circuit 23. FIG. 7 shows an equivalent circuit of the sensor part of FIG. in this case,
The sensor section constitutes a parallel resonance circuit, and its resonance frequency f n
Is given by f n = 1 / [2π L {C f / (1 + C f / C s ) + C pc }] (3), and the resonance frequency f n decreases as the permittivity ε of the fuel increases.

【0024】共振周波数fn においてはLC並列共振回
路のインピーダンスは最大となり、コイル3と抵抗Rの
接続部の電圧も最大となる。従って、抵抗Rを介してコ
イル3に印加する周波数を電圧制御発振回路22で変化
させ、コイル3と抵抗Rの接続部電圧を全波整流回路2
3で整流してその出力の最大値をピークディテクタ24
で検出し、このときの電圧制御発振回路22の制御入力
をサンプルホールド回路25でサンプルホールドし、低
域通過フィルタ26を介して出力することにより、その
電圧出力Vout は共振周波数即ち燃料の誘電率εに対応
した値となる。
At the resonance frequency f n , the impedance of the LC parallel resonance circuit becomes maximum, and the voltage at the connection between the coil 3 and the resistor R also becomes maximum. Therefore, the frequency applied to the coil 3 via the resistor R is changed by the voltage controlled oscillator circuit 22, and the connection voltage between the coil 3 and the resistor R is changed to the full-wave rectifier circuit 2.
The maximum value of the output is rectified by the peak detector 24.
By detecting the control input of the voltage controlled oscillator circuit 22 at this time by the sample hold circuit 25 and outputting it through the low pass filter 26, the voltage output V out is the resonance frequency, that is, the fuel dielectric. The value corresponds to the rate ε.

【0025】(3)式においてコイル3の並列容量Cpc
は容量Cf に対して小さくでき、またコイル3がモール
ドされているので、湿度等による外部の影響を受けるこ
とがない。又、コイル3が接地した筒状ケース電極14
に覆われているため、筒状ケース電極14に内面をニッ
ケルメッキして燃料耐性を確保した鉄等の磁性体を用い
ることにより、コイル3に及ぼす外部磁界の影響を除去
できる。このように実施例2では、燃料の誘電率変化に
対する共振周波数変化を大きく取れるばかりでなく、セ
ンサ出力に対する外部環境の影響をより完全に除去する
ことができる。
In equation (3), the parallel capacitance C pc of the coil 3
Can be made smaller than the capacitance C f , and since the coil 3 is molded, it is not affected by external factors such as humidity. Also, the cylindrical case electrode 14 with the coil 3 grounded
Since the cylindrical case electrode 14 is covered with a magnetic substance such as iron whose inner surface is nickel-plated to ensure fuel resistance, the effect of the external magnetic field on the coil 3 can be eliminated. As described above, in the second embodiment, not only the change in the resonant frequency with respect to the change in the dielectric constant of the fuel can be made large, but also the influence of the external environment on the sensor output can be removed more completely.

【0026】実施例3.図8は実施例3によるセンサ部
の断面図であり、15はコーティング部材である。コイ
ルボビン12には燃料シールのためのOリング81を介
して一対のコイル端子9がインサート成型されるととも
に、コイルボビン12の外周にコイル3が巻回され、コ
イル3の両端をコイル端子9にハンダ付け等で接続した
後、コイル3をディッピングによりコーティング部材1
5でコーティングし、最後にボビン12を筒状ケース電
極14にOリング8を取付けて挿入し、筒状ケース電極
14の端部を曲げてカシメ固定する。コーティング部材
15としては、耐油性エポキシ樹脂やPPS樹脂が使用
される。かかる構成によれば、薄壁部をコーティング部
材15により構成できるため、その厚さをさらに薄くす
ることができ、容量Cs をさらに大きくすることができ
るので、共振周波数変化をさらに大きくとれるととも
に、製作工程が簡素化されてセンサをより安価にするこ
とができる。
Example 3. FIG. 8 is a sectional view of the sensor unit according to the third embodiment, and 15 is a coating member. The coil bobbin 12 is insert-molded with a pair of coil terminals 9 via an O-ring 81 for fuel sealing, the coil 3 is wound around the outer circumference of the coil bobbin 12, and both ends of the coil 3 are soldered to the coil terminals 9. And the like, and then the coil 3 is dipped to form the coating member 1
5, the bobbin 12 is finally inserted into the tubular case electrode 14 with the O-ring 8 attached, and the end of the tubular case electrode 14 is bent and fixed by caulking. As the coating member 15, an oil resistant epoxy resin or PPS resin is used. According to this configuration, since the thin wall portion can be configured by the coating member 15, the thickness thereof can be further reduced, and the capacitance C s can be further increased, so that the resonance frequency change can be further increased and The manufacturing process can be simplified and the sensor can be made cheaper.

【0027】なお、上記各実施例においては、コイル3
と柱状電極6あるいは筒状ケース電極14とを同軸とし
たが、コイル3の外周と電極14の内周、あるいはコイ
ル3の内周と電極6の外周とが対向していれば必ずしも
同軸でなくても良く、略軸平行であればよい。又、燃料
の誘電率の測定に利用する場合について述べたが、一般
的に液体の誘電率測定にも使用することができる。
In each of the above embodiments, the coil 3
The columnar electrode 6 and the cylindrical case electrode 14 are coaxial, but they are not necessarily coaxial as long as the outer circumference of the coil 3 and the inner circumference of the electrode 14 or the inner circumference of the coil 3 and the outer circumference of the electrode 6 face each other. Alternatively, it may be substantially parallel to the axis. Further, although the case of using it for measuring the dielectric constant of fuel has been described, it can be generally used for measuring the dielectric constant of liquid.

【0028】実施例4.図9(a),(b)は実施例4
によるセンサのセンサ部の斜視図及びそのB−B線断面
図を示し、図10(a),(b)は同じくコイル部の斜
視図を示す。17はプラスチック等の絶縁体で形成され
た丸皿容器状部材であり、プラスチックのうちでも比較
的高誘電率の耐油性エポキシ樹脂やPPS樹脂等が出力
変化率の向上及び燃料に対する耐性上好ましいが、PP
S樹脂が射出成型できる点で有利である。18は表面に
平面状単層巻コイル19をパターン配線したコイル基
板、27はコイル基板18を貫通してコイル19の両端
に接続された一対のコイル端子であり、コイル基板1
8、コイル19及びコイル端子27によりコイル部を形
成する。
Example 4. 9A and 9B show the fourth embodiment.
FIG. 10 shows a perspective view of a sensor part of the sensor according to FIG. 1 and a sectional view taken along line BB thereof, and FIGS. 10A and 10B show perspective views of the coil part. Reference numeral 17 denotes a round plate container-like member formed of an insulator such as plastic. Among the plastics, an oil-resistant epoxy resin or PPS resin having a relatively high dielectric constant is preferable for improving the output change rate and resistance to fuel. , PP
It is advantageous in that S resin can be injection molded. Reference numeral 18 denotes a coil substrate on which a planar single-layer winding coil 19 is patterned, and 27 denotes a pair of coil terminals penetrating the coil substrate 18 and connected to both ends of the coil 19.
8, the coil 19 and the coil terminal 27 form a coil portion.

【0029】コイル部は図10(a)に示すように例え
ばガラスエポキシ等の丸板状プラスチック積層基板18
に丸螺旋状コイル19を配し、その両端のリード接続部
にスルーホールを設けてコイル端子27をハンダ付けし
ている。コイル基板18にはセラミック基板を用いても
よい。又、図10(b)に示すように角板状基板18に
角螺旋状のコイル19を配してもよい。コイル部は丸皿
容器状部材17の底部に内底面から薄壁部17aを残し
てインサート成型される。
As shown in FIG. 10A, the coil portion is a round plate-shaped plastic laminated substrate 18 such as glass epoxy.
A round spiral coil 19 is arranged on the above, through holes are provided in the lead connecting portions at both ends thereof, and the coil terminals 27 are soldered. A ceramic substrate may be used as the coil substrate 18. Further, as shown in FIG. 10B, a square spiral coil 19 may be arranged on the square plate substrate 18. The coil portion is insert-molded on the bottom portion of the round dish container-shaped member 17 from the inner bottom surface, leaving the thin wall portion 17a.

【0030】28は平面状単層巻コイル19が配され丸
皿容器状部材17の内底面から所定距離離してその底面
の平面部が対向して設けられた円筒容器状の金属ケース
電極であり、この対向面間に燃料通路4を形成してい
る。電極28の薄壁部17aとの対向部の厚さは、薄壁
部2aの厚さに対して5倍程度以上厚い方がセンサの出
力変化率の向上の点で有利である。
Reference numeral 28 denotes a cylindrical case-shaped metal case electrode in which the flat single-layer winding coil 19 is arranged and is spaced a predetermined distance from the inner bottom surface of the round dish container-shaped member 17 so that the flat portions of the bottom surface face each other. The fuel passage 4 is formed between the facing surfaces. The thickness of the portion of the electrode 28 facing the thin wall portion 17a is thicker than the thickness of the thin wall portion 2a by about 5 times or more, which is advantageous in improving the output change rate of the sensor.

【0031】金属ケース電極28の底面には、燃料通路
4に燃料を供給、排出する一対のニップル29が燃料通
路4と連通するよう、溶接、ロー付け等で取付けられて
いる。かかる金属ケース電極28は材料としてステンレ
ス、チタン等を用いるか、あるいは鉄等で作製してニッ
プル29を取付けた後内面にニッケルメッキを施すこと
により、燃料に対する耐性を確保する。丸皿容器状部材
17はその外周にOリング8を配して金属ケース電極2
8の円筒部に挿入して燃料シールを確保し、この円筒部
の端を曲げてカシメ固定する。10はこのカシメ部を一
部曲げずに残して形成した電極端子である。
A pair of nipples 29 for supplying and discharging the fuel to the fuel passage 4 are attached to the bottom surface of the metal case electrode 28 by welding, brazing or the like so as to communicate with the fuel passage 4. The metal case electrode 28 is made of stainless steel, titanium, or the like as a material, or is made of iron or the like and has a nipple 29 attached thereto, and then nickel plating is applied to the inner surface thereof to secure fuel resistance. The O-ring 8 is arranged on the outer circumference of the round plate container-shaped member 17 to form the metal case electrode 2
8 is inserted into the cylindrical portion to secure a fuel seal, and the end of the cylindrical portion is bent and fixed by caulking. Reference numeral 10 denotes an electrode terminal formed by leaving the crimped portion without bending it.

【0032】次に、実施例4によるセンサの動作を説明
する。センサの検出回路は図2に示した従来と同じであ
り、電圧制御発振回路22の出力が金属ケース電極28
の電極端子10に接続され、一方のコイル端子27が接
地されるとともに、他方のコイル端子27が全波整流回
路23に接続される。コイル端子27はどちらを接地し
てもよい。図11は上記構成のセンサ部の等価回路を示
し、Cf は金属ケース電極28の底面と薄壁部17aの
面との間の燃料通路4を誘電率εの燃料が流れるときの
この間の静電容量、Cs は薄壁部17aの厚さ方向の静
電容量、Cpcは単層巻コイル19に並列に存在する浮遊
容量であり、Cf はコイル19の自己インダクタンスL
と直列共振回路を形成し、その共振周波数fm は上述し
た(2)式で与えられ、共振周波数fm は燃料の誘電率
εが大なるほど低下する。
Next, the operation of the sensor according to the fourth embodiment will be described. The detection circuit of the sensor is the same as the conventional one shown in FIG. 2, and the output of the voltage controlled oscillation circuit 22 is the metal case electrode 28.
Of the coil terminal 27 is grounded, and the other coil terminal 27 is connected to the full-wave rectifier circuit 23. Either of the coil terminals 27 may be grounded. FIG. 11 shows an equivalent circuit of the sensor portion having the above-mentioned configuration, and C f is the static passage between when the fuel of permittivity ε flows through the fuel passage 4 between the bottom surface of the metal case electrode 28 and the surface of the thin wall portion 17a. The capacitance, C s is the capacitance in the thickness direction of the thin wall portion 17a, C pc is the stray capacitance existing in parallel with the single-layer coil 19, and C f is the self-inductance L of the coil 19.
And a resonance frequency f m thereof is given by the above equation (2), and the resonance frequency f m decreases as the permittivity ε of the fuel increases.

【0033】従って、金属ケース電極28に印加する周
波数を電圧制御発振回路22により変化させ、コイル1
9の誘起電圧を全波整流回路23で整流してその出力の
最大値をピークディテクタ24で検出し、このときの電
圧制御発振回路22の制御入力をサンプルホールド回路
25でサンプルホールドし、低域通過フィルタ26を介
して出力することにより、その電圧出力Vout はセンサ
部の共振周波数fm 即ち燃料の誘電率εに対応した値と
なる。
Therefore, the frequency applied to the metal case electrode 28 is changed by the voltage controlled oscillator circuit 22, and the coil 1
The induced voltage of 9 is rectified by the full-wave rectifier circuit 23, and the maximum value of its output is detected by the peak detector 24. The control input of the voltage controlled oscillator circuit 22 at this time is sample-held by the sample-hold circuit 25, and the low range By outputting through the pass filter 26, the voltage output V out becomes a value corresponding to the resonance frequency f m of the sensor unit, that is, the permittivity ε of the fuel.

【0034】この場合、誘電率εの変化に対する共振周
波数fm の変化率は、(2)式あるいは図11に示すよ
うに、従来のようなCf に対する並列容量Cp ,Cpa
寄与がないために大きく取ることができる。又、金属ケ
ース電極28の底面と薄壁部17aの面間距離及び薄壁
部17aの厚さは各部材の工作精度を高めることにより
寸法精度を確保することができるので、Cf ,Cs の幾
何容量精度を高めることができ、センサの出力がバラツ
キを低減することができる。実施例4の出力特性も図4
に示すようになり、燃料がε=2のガソリンとε=33
のメタノールの場合の共振周波数fm の変化は従来のセ
ンサに比べて大幅に向上している。
In this case, as for the rate of change of the resonance frequency f m with respect to the change of the dielectric constant ε, as shown in the equation (2) or FIG. 11, the contribution of the parallel capacitances C p and C pa to the conventional C f is shown. You can take big because there is no. Further, since the surface distance between the bottom surface of the metal case electrode 28 and the thin wall portion 17a and the thickness of the thin wall portion 17a can secure dimensional accuracy by increasing the working precision of each member, C f , C s It is possible to improve the geometric capacity accuracy of the sensor and reduce variations in the output of the sensor. The output characteristic of the fourth embodiment is also shown in FIG.
As shown in Fig., The fuel is gasoline with ε = 2 and ε = 33.
The change of the resonance frequency f m in the case of methanol is significantly improved as compared with the conventional sensor.

【0035】図12は上記構成のセンサ部の検出回路と
の接続を変更した場合の等価回路を示し、この場合金属
ケース電極28及び一方のコイル端子27を接地すると
ともに、他方のコイル端子27を抵抗Rを介して電圧制
御発振回路23に接続し、かつコイル端子27を全波整
流回路22に接続したものである。センサ部は並列共振
回路を形成し、その共振周波数fn は(3)式に示すよ
うになり、共振周波数fn は燃料の誘電率εが大なるほ
ど低下する。
FIG. 12 shows an equivalent circuit in the case where the connection with the detection circuit of the sensor portion having the above-mentioned configuration is changed. In this case, the metal case electrode 28 and one coil terminal 27 are grounded, and the other coil terminal 27 is connected. It is connected to the voltage controlled oscillator circuit 23 via the resistor R, and the coil terminal 27 is connected to the full-wave rectifier circuit 22. The sensor portion forms a parallel resonance circuit, and its resonance frequency f n is as shown in the equation (3), and the resonance frequency f n decreases as the permittivity ε of fuel increases.

【0036】周波数が共振周波数fn になると、LC並
列共振回路のインピーダンスは最大となり、コイル19
と抵抗Rの接続部電圧も最大となる。従って、電圧制御
発振回路22から抵抗Rを介してコイル19に印加する
信号の周波数を変化させ、上記接続部電圧を全波整流回
路23で整流してその出力の最大値をピークディテクタ
24で検出し、このときの電圧制御発振回路22の制御
入力をサンプルホールド回路25でサンプルホールド
し、低域通過フィルタ26を介して出力することによ
り、その電圧出力Vout はセンサ部の共振周波数fn
ち燃料の誘電率εに対応したものとなる。
When the frequency reaches the resonance frequency f n , the impedance of the LC parallel resonance circuit becomes maximum and the coil 19
The voltage at the connection between the resistor R and the resistor R also becomes maximum. Therefore, the frequency of the signal applied from the voltage controlled oscillator circuit 22 to the coil 19 via the resistor R is changed, the connection voltage is rectified by the full-wave rectifier circuit 23, and the maximum value of its output is detected by the peak detector 24. Then, the control input of the voltage controlled oscillation circuit 22 at this time is sampled and held by the sample and hold circuit 25, and is output through the low pass filter 26, so that the voltage output V out is the resonance frequency f n of the sensor unit, that is, It corresponds to the dielectric constant ε of the fuel.

【0037】又、(3)式において並列容量Cpcは、コ
イル19の厚さが極めて薄くコイルターン間の対向面積
が小さいため、容量Cf に対して小さくすることがで
き、またコイル19がモールドされているので、従来の
ように湿度等による外部の影響を受けることがない。
又、コイル19が接地された金属ケース電極28に覆わ
れているので、金属ケース電極28として内面をニッケ
ルメッキして燃料耐性を確保した鉄等の磁性体を用いる
ことにより、コイル19に及ぼす外部磁界の影響を低減
することができる。即ち、実施例4では、燃料の誘電率
変化に対する共振周波数変化を大きく取れるばかりでな
く、センサ出力への外部環境の影響をより低減すること
ができる。
Further, in the equation (3), the parallel capacitance C pc can be made smaller than the capacitance C f because the coil 19 is extremely thin and the facing area between the coil turns is small. Since it is molded, it is not affected by external factors such as humidity as in the past.
Further, since the coil 19 is covered with the grounded metal case electrode 28, by using a magnetic material such as iron whose inner surface is nickel-plated and fuel resistance is secured as the metal case electrode 28, an external effect on the coil 19 is exerted. The influence of the magnetic field can be reduced. That is, in the fourth embodiment, not only can the resonance frequency change with respect to the fuel dielectric constant change be large, but the influence of the external environment on the sensor output can be further reduced.

【0038】実施例5.図13は実施例5によるセンサ
部の断面を示し、15はコーティング部であり、コイル
基板18上に平面状単層巻コイル19をパターン配線
し、コイル19の両端にはコイル端子27を接続したコ
イル部において、コイル19上に印刷あるいはディッピ
ング等により耐燃料性で誘電率が大きなプラスチックを
コーティングして形成する。このような構成のコイル部
を燃料シールのためにコイル端子27にOリング30を
挿入した後、丸皿容器状部材17の底面に取付ける。こ
の場合、コイル部の固定は、耐燃料性接着剤によりコイ
ル基板18を丸皿容器状部材17の底面の凹部に接着す
るか、あるいはコイル基板18を該凹部に位置合せした
後、この凹部の周囲に溶融カシメ固定すればよく、また
接着とカシメの同時使用により固定してもよい。丸皿容
器状部材17の誘電率は特に考慮する必要がない。実施
例5によれば、コーティング部15の厚さを実施例4の
モールドによる薄壁部17aよりさらに薄くできるた
め、Cf との直列容量Cs をより大きくすることがで
き、燃料の誘電率変化に対する共振周波数変化をさらに
大きくすることができる。
Example 5. FIG. 13 shows a cross section of the sensor section according to the fifth embodiment, and 15 is a coating section, in which a planar single-layer winding coil 19 is patterned on a coil substrate 18, and coil terminals 27 are connected to both ends of the coil 19. In the coil portion, the coil 19 is formed by coating a plastic having fuel resistance and a large dielectric constant by printing or dipping. After the O-ring 30 is inserted into the coil terminal 27 for the fuel seal of the coil portion having such a structure, it is attached to the bottom surface of the round dish container-shaped member 17. In this case, the coil portion may be fixed by adhering the coil substrate 18 to a concave portion on the bottom surface of the round dish container-shaped member 17 with a fuel-resistant adhesive, or after aligning the coil substrate 18 with the concave portion, It may be fixed by melting and caulking around, or may be fixed by adhesion and caulking simultaneously. It is not necessary to consider the dielectric constant of the round plate container-shaped member 17. According to the fifth embodiment, since the thickness of the coating portion 15 can be made thinner than that of the thin wall portion 17a formed by the molding of the fourth embodiment, the series capacitance C s with C f can be further increased, and the dielectric constant of the fuel can be increased. The change in the resonance frequency with respect to the change can be further increased.

【0039】実施例6.図14は実施例6によるセンサ
部の断面図であり、31は金属電極板32を底面にイン
サート成型するとともに、ニップル29を一体成型した
円筒容器状プラスチックケースであり、コイル部をイン
サート成型した丸皿容器状部材17はOリング8を取付
けて円筒容器状プラスチックケース31の円筒部に挿入
して位置合せした後、この円筒部の端部を溶融カシメし
て固定するか、あるいは超音波溶着等で溶着固定する。
プラスチックケース31の素材は丸皿容器状部材17と
同一ものを使用すればよい。
Example 6. FIG. 14 is a cross-sectional view of the sensor unit according to the sixth embodiment, and 31 is a cylindrical container-shaped plastic case in which a metal electrode plate 32 is insert-molded on the bottom surface and a nipple 29 is integrally molded, and a coil part is insert-molded in a circular shape. The dish container-shaped member 17 is fitted with an O-ring 8 and inserted into the cylindrical portion of the cylindrical container-shaped plastic case 31 for alignment, and then the end of the cylindrical portion is fixed by melting caulking, or by ultrasonic welding or the like. Weld and fix with.
The material of the plastic case 31 may be the same as that of the round plate container-shaped member 17.

【0040】なお、実施例4〜6ではコイル19として
コイル基板18上にパターン配線したものを示したが、
略平面状の単層巻コイルであればどのようなものでもよ
い。又、燃料の誘電率測定に利用する場合について述べ
たが、液体一般の誘電率測定にも利用することができ
る。
Although the coils 19 are patterned on the coil substrate 18 in the fourth to sixth embodiments,
Any coil may be used as long as it is a substantially flat single-layer winding coil. Further, although the case of using it for measuring the dielectric constant of fuel has been described, it can also be used for measuring the dielectric constant of liquids in general.

【0041】[0041]

【発明の効果】以上のようにこの発明によれば、コイル
と電極との間に燃料通路を形成し、この燃料通路を通流
する燃料の誘電率をコイル面と電極面間の静電容量によ
り検出しており、この静電容量は並列容量の影響を受け
難いので誘電率の変化によって大きく変化して検出さ
れ、検出精度を高めることができる。又、コイルと電極
間の距離を精度良く定めることができるので、検出バラ
ツキを低減することができる。
As described above, according to the present invention, the fuel passage is formed between the coil and the electrode, and the permittivity of the fuel flowing through the fuel passage is determined by the capacitance between the coil surface and the electrode surface. Since the capacitance is hardly affected by the parallel capacitance, the capacitance is significantly changed and detected by the change of the dielectric constant, and the detection accuracy can be improved. Further, since the distance between the coil and the electrode can be accurately determined, it is possible to reduce the detection variation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1によるセンサのセンサ部の
斜視図及び断面図である。
FIG. 1 is a perspective view and a sectional view of a sensor unit of a sensor according to a first embodiment of the present invention.

【図2】従来センサの構成図である。FIG. 2 is a configuration diagram of a conventional sensor.

【図3】従来センサのセンサ部の等価回路図である。FIG. 3 is an equivalent circuit diagram of a sensor unit of a conventional sensor.

【図4】この発明及び従来のセンサの出力特性図であ
る。
FIG. 4 is an output characteristic diagram of the sensor of the present invention and the conventional sensor.

【図5】この発明の実施例1によるセンサのセンサ部の
等価回路図である。
FIG. 5 is an equivalent circuit diagram of the sensor unit of the sensor according to the first embodiment of the present invention.

【図6】この発明の実施例2によるセンサのセンサ部の
断面図である。
FIG. 6 is a sectional view of a sensor portion of a sensor according to a second embodiment of the present invention.

【図7】この発明の実施例2によるセンサのセンサ部の
等価回路図である。
FIG. 7 is an equivalent circuit diagram of a sensor section of a sensor according to a second embodiment of the present invention.

【図8】この発明の実施例3によるセンサのセンサ部の
断面図である。
FIG. 8 is a sectional view of a sensor portion of a sensor according to a third embodiment of the present invention.

【図9】この発明の実施例4によるセンサのセンサ部の
斜視図及び断面図である。
9A and 9B are a perspective view and a sectional view of a sensor portion of a sensor according to a fourth embodiment of the present invention.

【図10】この発明の実施例4によるセンサのコイル部
の斜視図である。
FIG. 10 is a perspective view of a coil part of a sensor according to a fourth embodiment of the present invention.

【図11】この発明の実施例4によるセンサのセンサ部
の等価回路図である。
FIG. 11 is an equivalent circuit diagram of a sensor part of a sensor according to a fourth embodiment of the present invention.

【図12】この発明の実施例4によるセンサのセンサ部
の検出回路との接続を変更した場合の等価回路図であ
る。
FIG. 12 is an equivalent circuit diagram in the case where the connection with the detection circuit of the sensor unit of the sensor according to the fourth embodiment of the present invention is changed.

【図13】この発明の実施例5によるセンサのセンサ部
の断面図である。
FIG. 13 is a sectional view of a sensor portion of a sensor according to a fifth embodiment of the present invention.

【図14】この発明の実施例6によるセンサのセンサ部
の断面図である。
FIG. 14 is a sectional view of a sensor portion of a sensor according to a sixth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

2 円筒容器状ケース 2a,13a,17a 薄壁部 3 筒状単層巻コイル 4 燃料通路 6 柱状電極 13 コイル成型体 14 筒状ケース電極 15 コーティング部材 17 丸皿容器状部材 19 平面状単層巻コイル 20 検出回路 28 金属ケース電極 31 金属電極板 32 円筒容器状プラスチックケース 2 Cylindrical container case 2a, 13a, 17a Thin wall part 3 Cylindrical single layer winding coil 4 Fuel passage 6 Columnar electrode 13 Coil molded body 14 Cylindrical case electrode 15 Coating member 17 Round plate container member 19 Planar single layer winding Coil 20 Detection circuit 28 Metal case electrode 31 Metal electrode plate 32 Cylindrical container-shaped plastic case

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月30日[Submission date] July 30, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記し
た従来センサにおいては、電極16がコイル3の端面上
に同軸配置されているため、以下のような課題があっ
た。例えば、L=20μH、絶縁管1の外径φ=10m
m、絶縁管1の管壁の厚さt=1mm、コイル3の端面と
電極16の端面との距離d=2mmとすると、燃料がε=
2のガソリンとε=33のメタノールの場合、燃料の誘
電率εにより変化する容量Cf に対して大きな並列容量
p ,Cpaが存在するため、共振周波数fo は共に約8
MHz となってその差は図4に示すように約5%程度しか
得られなかった。
However, the above-mentioned conventional sensor has the following problems because the electrode 16 is coaxially arranged on the end face of the coil 3. For example, L = 20 μH, outer diameter of insulating tube 1 = 10 m
Assuming that m is m, the thickness of the tube wall of the insulating tube 1 is t = 1 mm, and the distance d between the end surface of the coil 3 and the end surface of the electrode 16 is d = 2 mm, the fuel is ε =
For methanol 2 of gasoline and epsilon = 33, since a large parallel capacitance C p with respect to capacitance C f which varies by the dielectric constant of the fuel epsilon, is C pa exists, the resonant frequency f o are both about 8
In MHz, the difference was only about 5% as shown in Fig. 4.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】28は平面状単層巻コイル19が配された
丸皿容器状部材17の内底面から所定距離離してその底
面の平面部が対向して設けられた円筒容器状の金属ケー
ス電極であり、この対向面間に燃料通路4を形成してい
る。電極28の薄壁部17aとの対向部の厚さは、薄壁
部2aの厚さに対して5倍程度以上厚い方がセンサの出
力変化率の向上の点で有利である。
Reference numeral 28 denotes a cylindrical container-like member provided with the flat surface portions of the bottom surface facing each other at a predetermined distance from the inner bottom surface of the round plate container-shaped member 17 on which the flat single-layer winding coil 19 is arranged . It is a metal case electrode, and the fuel passage 4 is formed between the facing surfaces. The thickness of the portion of the electrode 28 facing the thin wall portion 17a is thicker than the thickness of the thin wall portion 2a by about 5 times or more, which is advantageous in improving the output change rate of the sensor.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0034】この場合、誘電率εの変化に対する共振周
波数fm の変化率は、(2)式あるいは図11に示すよ
うに、従来のようなCf に対する並列容量Cp ,Cpa
寄与がないために大きく取ることができる。又、金属ケ
ース電極28の底面と薄壁部17aの面間距離及び薄壁
部17aの厚さは各部材の工作精度を高めることにより
寸法精度を確保することができるので、Cf ,Cs の幾
何容量精度を高めることができ、センサの出力のバラツ
を低減することができる。実施例4の出力特性も図4
に示すようになり、燃料がε=2のガソリンとε=33
のメタノールの場合の共振周波数fm の変化は従来のセ
ンサに比べて大幅に向上している。
In this case, as for the rate of change of the resonance frequency f m with respect to the change of the dielectric constant ε, as shown in the equation (2) or FIG. 11, the contribution of the parallel capacitances C p and C pa to the conventional C f is shown. You can take big because there is no. Further, since the surface distance between the bottom surface of the metal case electrode 28 and the thin wall portion 17a and the thickness of the thin wall portion 17a can secure dimensional accuracy by increasing the working precision of each member, C f , C s Accuracy of the sensor can be increased, and
The key can be reduced. The output characteristic of the fourth embodiment is also shown in FIG.
As shown in Fig., The fuel is gasoline with ε = 2 and ε = 33.
The change of the resonance frequency f m in the case of methanol is significantly improved as compared with the conventional sensor.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料に接する側の周面に密着して高誘電
率の絶縁性薄壁が設けられた筒状単層巻コイルと、単層
巻コイルと同軸あるいは軸平行でかつ周面が上記コイル
周面に対向して設けられ、単層巻コイルとの間に燃料通
路を形成する柱状あるいは筒状金属電極と、単層巻コイ
ルの周面と金属電極の周面間の静電容量より燃料流路を
流れる燃料の誘電率を検出する手段を備えたことを特徴
とする燃料の誘電率検知センサ。
1. A tubular single-layer winding coil having a high-dielectric-constant insulating thin wall in close contact with a peripheral surface on the side in contact with fuel; and a peripheral surface coaxial with or axially parallel to the single-layer winding coil. A columnar or cylindrical metal electrode that is provided so as to face the coil circumferential surface and forms a fuel passage between the coil and the single-layer winding coil, and a capacitance between the circumferential surface of the single-layer winding coil and the circumferential surface of the metal electrode. A fuel permittivity detection sensor comprising means for detecting the permittivity of fuel flowing through a fuel flow path.
【請求項2】 燃料に接する側の面に密着して高誘電率
の絶縁性薄壁が設けられた平面状単層巻コイルと、単層
巻コイルと対向して設けられ、単層巻コイルとの間に燃
料通路を形成された平板状金属電極と、単層巻コイルと
金属電極との間の静電容量により燃料通路を流れる燃料
の誘電率を検出する手段を備えたことを特徴とする燃料
の誘電率検知センサ。
2. A flat single-layer winding coil having a high-dielectric-constant insulating thin wall provided in close contact with the surface in contact with fuel, and a single-layer winding coil provided so as to face the single-layer winding coil. And a means for detecting the permittivity of the fuel flowing through the fuel passage by the electrostatic capacitance between the single-layer winding coil and the metal electrode. Sensor for detecting permittivity of fuel.
JP3216825A 1991-08-28 1991-08-28 Fuel permittivity detection sensor Expired - Fee Related JP2647578B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3216825A JP2647578B2 (en) 1991-08-28 1991-08-28 Fuel permittivity detection sensor
KR1019920014786A KR960010689B1 (en) 1991-08-28 1992-08-17 Sensor
DE4228737A DE4228737C2 (en) 1991-08-28 1992-08-28 Device for determining the dielectric constant of fuel
US08/279,550 US5543722A (en) 1991-08-28 1994-07-25 Channel forming fuel permittivity sensor with automatic temperature compensation
US08/487,515 US5592098A (en) 1991-08-28 1995-06-07 Channel forming fuel permittivity sensor with automatic temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3216825A JP2647578B2 (en) 1991-08-28 1991-08-28 Fuel permittivity detection sensor

Publications (2)

Publication Number Publication Date
JPH0552796A true JPH0552796A (en) 1993-03-02
JP2647578B2 JP2647578B2 (en) 1997-08-27

Family

ID=16694486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3216825A Expired - Fee Related JP2647578B2 (en) 1991-08-28 1991-08-28 Fuel permittivity detection sensor

Country Status (1)

Country Link
JP (1) JP2647578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513926A (en) * 2006-12-18 2010-04-30 シュレイダー エレクトロニクス リミテッド Fuel composition detection system and method using EMF wave propagation
WO2022124375A1 (en) * 2020-12-09 2022-06-16 京セラ株式会社 Bubble fraction sensor, flowmeter using same, and cryogenic liquid transfer pipe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104243A (en) * 1980-01-25 1981-08-19 Hitachi Ltd Alcohol sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104243A (en) * 1980-01-25 1981-08-19 Hitachi Ltd Alcohol sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513926A (en) * 2006-12-18 2010-04-30 シュレイダー エレクトロニクス リミテッド Fuel composition detection system and method using EMF wave propagation
WO2022124375A1 (en) * 2020-12-09 2022-06-16 京セラ株式会社 Bubble fraction sensor, flowmeter using same, and cryogenic liquid transfer pipe

Also Published As

Publication number Publication date
JP2647578B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US5543722A (en) Channel forming fuel permittivity sensor with automatic temperature compensation
US5182523A (en) Apparatus for ascertaining the alcohol content or calorific value of a mixture by capacitance measurement
US6192753B1 (en) Inductive sensor for monitoring fluid level and displacement
US4490773A (en) Capacitive pressure transducer
JPH02213760A (en) Apparatus for measuring content and/or heating value of alcohol of fuel
US6320393B1 (en) Fluid dielectric constant sensing device and method employing the same
US20020021125A1 (en) Method and apparatus for the nondestructive measurement of the thickness of thin layers
JPH0572164A (en) Detecting device for dielectric constant of fuel
JPH0425751A (en) Inspecting device for alcohol sensor
US5414367A (en) Apparatus for detecting alcohol concentration in a mixed fuel
JP2647578B2 (en) Fuel permittivity detection sensor
CN111566459B (en) Probe unit
US5337017A (en) Apparatus for detecting alcohol content of liquid
US7080543B2 (en) Sensor and method for manufacturing the same
US20040206177A1 (en) Acceleration sensor
EP0169633A2 (en) Compact displacement transducer
JPH0572166A (en) Dielectric constant detecting device for fuel
JPH0552797A (en) Dielectric constant detection device
JP2950082B2 (en) Liquid permittivity measuring device
CN110501051A (en) Impedance limit sensors
US20110156726A1 (en) Measuring sensor, fuel feed line and method for manufacturing a measuring sensor
JPH0580014A (en) Alcohol fuel ratio sensor
JPH0572165A (en) Dielectric constant detecting device for fuel
RU2246118C2 (en) Device for measuring concentration in mixture
JPH03249553A (en) Sensor for quality and state of fuel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees