JPH0552754A - Material gas detector for producing semiconductor - Google Patents

Material gas detector for producing semiconductor

Info

Publication number
JPH0552754A
JPH0552754A JP23724291A JP23724291A JPH0552754A JP H0552754 A JPH0552754 A JP H0552754A JP 23724291 A JP23724291 A JP 23724291A JP 23724291 A JP23724291 A JP 23724291A JP H0552754 A JPH0552754 A JP H0552754A
Authority
JP
Japan
Prior art keywords
gas
dust
detected
signal
converted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23724291A
Other languages
Japanese (ja)
Other versions
JP2741120B2 (en
Inventor
Hideo Ueda
秀雄 植田
Fumio Tamura
文雄 田村
Yasuo Akamatsu
康夫 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17012504&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0552754(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP23724291A priority Critical patent/JP2741120B2/en
Publication of JPH0552754A publication Critical patent/JPH0552754A/en
Application granted granted Critical
Publication of JP2741120B2 publication Critical patent/JP2741120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Alarm Systems (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To enhance selectivity without being interfered with the gas or solvent in working environment by decomposing gas to be detected to a fine particulate powder and taking the concn. of said powder measured by a dust sensor as an electrical signal. CONSTITUTION:A predetermined volume of dry air is received in a bag 1 and a predetermined amount of tetraethoxysilane is injected in the bag 1 by a microsyringe to be evaporated. The generated vapor is controlled in its flow rate by a flow rate controller 5 and allowed to flow in a decomposing furnace 3 preliminarily held to predetermined temp. by the supply of a current while the dust in the vapor is removed by a filter 2. The fine particles (smoke) of SiO2 in the component converted to fine particulate components such as dust or mist in said furnace are detected by a dust sensor 4 to be converted to electrical signal output. This output is inputted to an amplification signal control part 6 to be converted to a signal which is, in turn, displayed on a display device 7 as a measured value and, when said signal becomes a definite value or more, an alarm is emitted from an alarm device 8. Therefore, this detector responds only to SiO2 with high selectivity without responding to other alcohols.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造に用いられ
る各種材料ガスの微量検出用装置に関するもので、許容
濃度(スレッシホルド レベル バリュウ) 以下で、 警報
を発し得る検出装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for detecting minute amounts of various material gases used in semiconductor manufacturing, and is a detection device capable of issuing an alarm when the concentration is lower than an allowable concentration (threshold level value).

【0002】[0002]

【従来の技術】この種の半導体製造用の材料ガス検出装
置は、取り扱いの簡便性、保安上の安全性を厳に要求さ
れ、また、対象ガスを高感度で検出するのみでなく、高
い選択性を備えていることを求められる。現在、 多種類
の半導体製造に用いられる材料ガスの内、 シリコン薄膜
形成等に多用されるシラン(SiH4,モノシラン) が、
重要視されているが、 シランは、濃度が高くなると自然
発火して、 燃焼する自燃性をもつが、その室内環境中へ
の漏洩を検知するのに定電位電解式センサあるいは半導
体式センサが使用されてきた。 したがって、従来のこの
種半導体製造用の材料ガス検出装置にあっては、シラン
が高濃度で漏洩した場合、 自然発火して燃焼し、 その結
果、 高濃度シランが消失してしまって、室内環境中に多
量の漏洩があるにも拘わらず、シランを検出できず、 事
故を惹起するというような問題があった。あるいはま
た、前記の定電位電解式あるいは半導体式ガスセンサ
は、半導体製造工場で雰囲気中に混在するエチルアルコ
ール等の有機溶剤にも感応して、漏洩の誤警報を発し
て、生産管理工程上不要のトラブルになるという問題も
あった。
2. Description of the Related Art This type of material gas detector for semiconductor production is strictly required to be easy to handle and safe to operate, and it is not only highly sensitive to the target gas but also highly selective. It is required to have sex. Currently, silane (SiH 4 , monosilane), which is often used for forming silicon thin films, is used among the material gases used for manufacturing various types of semiconductors.
It is important to note that silane has a self-combusting property that spontaneously ignites and burns when its concentration increases, but a potentiostatic electrolytic sensor or a semiconductor sensor is used to detect the leakage into the indoor environment. It has been. Therefore, in the conventional material gas detector for manufacturing semiconductors of this type, when silane leaks at a high concentration, it spontaneously ignites and burns, resulting in the disappearance of the high-concentration silane, which leads to an indoor environment. Despite the large amount of leakage inside, there was a problem that silane could not be detected, causing an accident. Alternatively, the potentiostatic electrolysis type or semiconductor type gas sensor is sensitive to an organic solvent such as ethyl alcohol mixed in the atmosphere in a semiconductor manufacturing factory and gives a false alarm of leakage, which is unnecessary in the production control process. There was also the problem of getting into trouble.

【0003】そこで、このような従来の半導体材料ガス
検出装置が有していた問題点を解決するために、定電位
電解式のシランセンサと、 シラン燃焼後の生成物である
SiO2(ダスト,煙) を検出する煙センサの二種類のセ
ンサを複合して組み合わせたシラン漏洩検知センサが用
いられるようになった。
Therefore, in order to solve the problems of such a conventional semiconductor material gas detection device, a potentiostatic electrolysis type silane sensor and SiO 2 (dust, A silane leak detection sensor that combines and combines two types of smoke sensors that detect (smoke) has come to be used.

【0004】しかるところ、近年、 その取り扱いの簡便
性、 安全性以外に、 超VLSI製造時の優れた特性の利
点から、テトラエトキシシラン(Tetra Ethyl Ortho Si
licate,以下 TEOS と略称する)が、シランの代替
品として使用されるようになった。しかしながら、TE
OSは毒性がシランより高いといわれており、その漏洩
検出の重要さはシランより遥かに大である。そして、そ
のような重要度故にエタノール等有機溶剤に干渉され
ず、TEOSのみを検出する装置としては、非分散型赤
外線吸収式、あるいはフーリエ変換赤外線分光度法とい
うような、高度に精密、かつ高価な大型高級測定装置が
使われているのである。
However, in recent years, tetraethoxysilane (Tetra Ethyl Ortho Si
Clone, hereinafter abbreviated as TEOS) has come to be used as a substitute for silane. However, TE
OS is said to be more toxic than silane, and its leak detection is far more important than silane. Due to such importance, as a device for detecting only TEOS without being interfered by an organic solvent such as ethanol, a highly accurate and expensive device such as a non-dispersive infrared absorption type or a Fourier transform infrared spectroscopy method is used. A large, high-class measuring device is used.

【0005】[0005]

【発明が解決しょうとする課題】本発明は、SiH4,G
eH4,AsH3,SbH3,TEOS等の半導体製造用材
料ガスの検出装置において、選択性の向上を図ることを
目的とし、作業環境中に混在する雑ガスや、エタノール
等の有機溶剤等の成分に全く干渉されずに、精密かつ正
確に、高選択度をもって、かつ高感度に検出することが
できる小型で、安価なガス検出装置を提供することにあ
る。
The present invention is based on SiH 4 , G
For the purpose of improving the selectivity in the detector of the material gas for semiconductor manufacturing such as eH 4 , AsH 3 , SbH 3 , and TEOS, the miscellaneous gas mixed in the working environment and the organic solvent such as ethanol are used. It is an object of the present invention to provide a small-sized and inexpensive gas detection device capable of detecting with precision, accuracy, high selectivity, and high sensitivity without any interference with components.

【0006】[0006]

【課題を解決するための手段】該目的を達成するための
本発明の構成を、実施例に対応する図1乃至図2を用い
て説明すると、本第1発明は、被検出ガスを、加熱分解
または燃焼により微粒子粉末に分解し、ダストセンサに
よりその濃度を測定し、その出力を電気的信号として取
り出すことを特徴とする半導体製造用材料ガス検出装置
である。
The structure of the present invention for achieving the above object will be described with reference to FIGS. 1 and 2 corresponding to the embodiments. In the first invention, the gas to be detected is heated. It is a material gas detection device for semiconductor manufacturing, characterized in that it is decomposed into fine particle powder by decomposition or combustion, its concentration is measured by a dust sensor, and its output is taken out as an electric signal.

【0007】第2発明は、前記被検出ガスがテトラエト
キシシランである前記の半導体製造用材料ガス検出装置
である。
A second aspect of the invention is the material gas detector for semiconductor manufacturing, wherein the gas to be detected is tetraethoxysilane.

【0008】[0008]

【作用】以下、 TEOS を例に説明する。本発明は、
このような構成としたものであるから、TEOS をバ
ッグに封入し、ポンプで吸引し、分解炉で600℃以上
で0.1〜1sec程度加熱分解(燃焼)すると、 SiO2
微粒子(煙)になる。
The function of TEOS will be described below as an example. The present invention is
Due to this structure, when TEOS is sealed in a bag, sucked by a pump, and thermally decomposed (combusted) in a decomposition furnace at 600 ° C or higher for about 0.1 to 1 second , fine particles of SiO 2 (smoke) become.

【0009】すなわち、 その燃焼化学式は、 となり、 SiO2 のみが残り、他は残らない。そのガス
体 SiO2(煙)をダストセンサにかけて電気的信号と
して取り出し、その濃度を測定して検出するようにして
用いればよい。従って、本発明の半導体製造用材料ガス
検出装置センサ感度は、SiO2 のみに高い選択性をも
って感応して、その他のアルコール類には干渉されな
い。上記同様に、他の半導体製造用材料ガスについて例
示すれば、 SiH4+2O2 → SiO2+2H2O GeH4+2O2 → GeO2+2H2O 2AsH3+3O2 → As23+3H2O 2SbH3+3O2 → Sb23+3H2O の反応により生成されるSiO2,GeO2,As23
Sb23 等をダストセンサにより検出すればよい。
That is, the combustion chemical formula is Therefore, only SiO 2 remains and the others do not. The gas body SiO 2 (smoke) can be used by applying it to a dust sensor to extract it as an electrical signal and measuring and detecting its concentration. Therefore, the sensor sensitivity of the material gas detector for semiconductor manufacturing of the present invention is sensitive to only SiO 2 and is not interfered with other alcohols. In the same manner as described above, if illustrated for other semiconductor manufacturing materials gas, SiH 4 + 2O 2 → SiO 2 + 2H 2 O GeH 4 + 2O 2 → GeO 2 + 2H 2 O 2AsH 3 + 3O 2 → As 2 O 3 + 3H 2 O 2SbH 3 + 3O 2 → Sb 2 O 3 + 3H 2 O SiO 2 , GeO 2 , As 2 O 3 , generated by the reaction of
Sb 2 O 3 etc. may be detected by a dust sensor.

【0010】[0010]

【実施例】以下本発明の実施例について図面に基づいて
説明する。図中、図1及び図2は、本発明の1実施例を
示す図であって、図1に示す本発明のブロツク構成図に
ついて構成を説明する。 (1)は、 例えばガス吸着しない性質の材料で作ったバ
ッグで、 所定のガス濃度を保つよう調製する。 すなわ
ち、 ボンベから10l容量の乾燥(合成)空気を、 それに
対してマイクロシリジンによりTEOSを所定量、それ
ぞれバッグ(1)へ注入し、常温で均一濃度になるように
軽くたたいて蒸発させる。 バッグ(1)から0.1μ程度の穴径のフィルタ(2)に導
き、ダストセンサ(4)に誤差を与えないように、雰囲気
内に存在するダストを除去する。 (3)は分解炉で、 例えば図2に示すように、加熱用発
熱体(3a)の外周に、 ガスが通るステンレス鋼製のパイプ
(3b)を巻回して、 ガスの入口と出口をフィルタ(2)とダ
ストセンサ(4)の間に配設してある。 分解炉(3)によっ
て、ガス成分をダスト、ミスト等の微粒子成分に変換さ
せる。測定対象ガスの分解温度以上で作動させる。(T
EOSの場合600℃以上) ダストセンサ(4)によって、 ガス成分を電気的信号出
力に変換する。 一般的に650nm程度の光線による光
散乱式ダストセンサが適している。 それ以外のレーザ光
線、 赤外線LED、 または赤外線ランプ等を光源として
センシング空間を形成する、光散乱式煙(微粒子)セン
サも使用できる。そして又、気体中に浮遊する微粒子の
質量、あるいは煙の濃度を計測するものもある。 (5)は、 大気を前段の分解炉(3)、ダストセンサ(4)へ
吸引する流量制御部で、エアポンプ(5a)、ニードルバル
ブ(5b)、流量計(5c)からなり、流量は1l/min程度が
適当値である。 (7)は、 ダストセンサ(4)の出力をそのままのカウン
ト値として、または対象成分ガス濃度に換算してアナロ
グメータあるいは、ディジタル(数値)で表示する指示
部である。 (8)は、 測定ガス成分の許容濃度等のレベルにあわせ
て警報を発する警報部である。 (6)は、 ダストセンサ(4)の出力信号を受けて、信号
を加工して、指示計(7)、警報部(8)へ送信する増幅信号
制御部である。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are diagrams showing one embodiment of the present invention, and the configuration will be described with respect to the block configuration diagram of the present invention shown in FIG. (1) is, for example, a bag made of a material that does not adsorb gas, and is prepared so as to maintain a predetermined gas concentration. That is, 10 liters of dry (synthetic) air from a cylinder is injected into the bag (1) with a predetermined amount of TEOS by microcyridine, and is tapped to evaporate so as to have a uniform concentration at room temperature. The dust existing in the atmosphere is removed so as not to give an error to the dust sensor (4) by introducing it from the bag (1) to the filter (2) having a hole diameter of about 0.1 μm. (3) is a decomposition furnace, for example, as shown in FIG. 2, a stainless steel pipe through which gas passes around the heating heating element (3a).
The gas inlet and the gas outlet are arranged between the filter (2) and the dust sensor (4) by winding (3b). The decomposition furnace (3) converts gas components into fine particle components such as dust and mist. Operate above the decomposition temperature of the gas to be measured. (T
In the case of EOS, 600 ° C or higher) The gas component is converted into an electric signal output by the dust sensor (4). Generally, a light scattering type dust sensor using a light beam of about 650 nm is suitable. A light-scattering smoke (fine particle) sensor that forms a sensing space using a laser beam, an infrared LED, an infrared lamp or the like as a light source other than the above can also be used. Further, there is also one that measures the mass of fine particles suspended in the gas or the concentration of smoke. (5) is a flow rate control unit that sucks atmospheric air into the preceding decomposition furnace (3) and dust sensor (4), which consists of an air pump (5a), a needle valve (5b), and a flow meter (5c). / Min is an appropriate value. (7) is an instruction unit for displaying the output of the dust sensor (4) as it is as a count value or by converting it to the concentration of the target component gas and displaying it as an analog meter or digital (numerical value). (8) is an alarm unit that issues an alarm according to the level such as the allowable concentration of the measurement gas component. Reference numeral (6) is an amplified signal control unit that receives the output signal of the dust sensor (4), processes the signal, and sends the processed signal to the indicator (7) and the alarm unit (8).

【0011】つぎに装置について、 操作手順を説明す
る。 予め分解炉(3)に通電し、 600℃以上に保ってお
き、サンプルガスの入ったバッグ(1)をフィルタ(2)に接
続する。 エアポンプ(5a)を作動し、 サクションをかけて、 流
量計(5c)で流量をみながら、 ニードルバルブ(5b)で調節
して流量を調節する。 ダストセンサ(4)が微粒子(煙)を検出し、 その検出し
た信号を増幅信号制御部(6)に入力し、 変換した信号を
指示計(7)で測定値として表示する。 指示計(7)の表示値
が一定以上になると、警報器(8)が動作する。
Next, the operation procedure of the apparatus will be described. The decomposition furnace (3) is previously energized and kept at 600 ° C or higher, and the bag (1) containing the sample gas is connected to the filter (2). Operate the air pump (5a), apply suction, check the flow rate with the flow meter (5c), and adjust with the needle valve (5b). The dust sensor (4) detects fine particles (smoke), inputs the detected signal to the amplified signal control unit (6), and displays the converted signal as a measurement value on the indicator (7). When the display value of the indicator (7) exceeds a certain value, the alarm device (8) operates.

【0012】次に、 本発明実施例で実測したデータを示
す。表1は、以上の手順で作成したTEOSの標準サン
プルを使用して、ダストセンサ(4)の出力を指示計(7)の
指示値として読んだ、TEOS濃度対測定装置の出力数
値である。
Next, the data actually measured in the examples of the present invention will be shown. Table 1 shows the TEOS concentration versus the output numerical value of the measuring device, in which the output of the dust sensor (4) was read as the indicator of the indicator (7) using the standard sample of TEOS prepared in the above procedure.

【0013】[0013]

【表1】 [Table 1]

【0014】表2は、TEOSのみ50PPm、TEOS
とエチルアルコール各50PPM、エチルアルコールのみ
50PPMの3種の試料について、 定電位電解式アルコール
測定器と本発明装置とで測定した測定値である。
Table 2 shows that only TEOS is 50 PPm, TEOS
These are the measured values measured with a potentiostatic electrolysis alcohol measuring device and the device of the present invention for three samples of 50 ppm of ethyl alcohol and 50 ppm of only ethyl alcohol.

【0015】[0015]

【表2】 [Table 2]

【0016】以上本発明の代表的と思われる実施例につ
いて説明したが、本発明は必ずしもこれらの実施例構造
のみに限定されるものではなく、本発明にいう前記の構
成要件を備え、かつ、本発明にいう目的を達成し、以下
にいう効果を有する範囲内において適宜改変して実施す
ることができるものである。
Although the examples considered to be typical of the present invention have been described above, the present invention is not necessarily limited to the structures of these examples, and has the above-mentioned constitutional requirements referred to in the present invention, and The present invention can be appropriately modified and carried out within the scope of achieving the object of the present invention and having the following effects.

【0017】[0017]

【発明の効果】以上の説明から既に明らかなように、本
発明は、バッグに封入したTEOSを取り出して加熱分
解(燃焼)して生成した SiO2 の微粒子(煙)を、ダ
ストセンサにかけて電気的信号として取り出し、その濃
度を測定して検出するようにしたものであるから、本発
明のセンサ感度は、SiO2 のみに高い選択度をもっ
て感応して、その他のアルコール類には感応せず、正確
な被測定ガスの濃度を測定できて、的確な検出を可能な
らしめることができるという従来のものには期待するこ
とが出来ない顕著な効果を有するに至ったのである。
As is apparent from the above description, according to the present invention, the fine particles of SiO 2 (smoke) produced by taking out TEOS enclosed in a bag and thermally decomposing (combusting) it are electrically connected to a dust sensor. Since the signal is taken out as a signal and the concentration thereof is measured and detected, the sensor sensitivity of the present invention is sensitive to only SiO 2 with high selectivity and not sensitive to other alcohols. It is possible to measure the concentration of the gas to be measured and to achieve accurate detection, which has a remarkable effect that cannot be expected from the conventional one.

【0018】また、本発明は、 以上に説明したTEOS
以外の、燃焼して微粒子、ダスト、ミストが生成する
シラン、ゲルマン、スチビン、アルシン、シボラン 等
の他の半導体製造用材料ガスに対しても適用して検出測
定可能である。
The present invention is also based on the TEOS described above.
Other than, burns to produce fine particles, dust, and mist
It can be detected and measured by applying it to other material gases for semiconductor manufacturing such as silane, germane, stibine, arsine, and civolane.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示したブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1中の分解炉の内部構造の一例を示す図。FIG. 2 is a diagram showing an example of the internal structure of the decomposition furnace in FIG.

【符号の説明】[Explanation of symbols]

(1) バッグ (2) フィルタ (3) 分解炉 (3a) 炉芯 (3c) パイプ (4) ダストセンサ (5) 流量制御部 (5a) エアポンプ (5b) ニードルバルブ (5c) 流量計 (6) 増幅信号制御部 (7) 指示計 (8) 警報部 (1) Bag (2) Filter (3) Decomposition furnace (3a) Core (3c) Pipe (4) Dust sensor (5) Flow controller (5a) Air pump (5b) Needle valve (5c) Flow meter (6) Amplified signal control unit (7) Indicator (8) Alarm unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被検出ガスを、加熱分解または燃焼によ
り微粒子粉末に分解し、ダストセンサによりその濃度を
測定し、その出力を電気的信号として取り出すことを特
徴とする半導体製造用材料ガス検出装置。
1. A material gas detection device for semiconductor manufacturing, characterized in that a gas to be detected is decomposed into fine powder particles by thermal decomposition or combustion, its concentration is measured by a dust sensor, and its output is taken out as an electric signal. .
【請求項2】 前記被検出ガスがテトラエトキシシラン
である請求項1に記載の半導体製造用材料ガス検出装
置。
2. The material gas detection device for semiconductor manufacturing according to claim 1, wherein the gas to be detected is tetraethoxysilane.
JP23724291A 1991-08-22 1991-08-22 Material gas detector for semiconductor manufacturing Expired - Lifetime JP2741120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23724291A JP2741120B2 (en) 1991-08-22 1991-08-22 Material gas detector for semiconductor manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23724291A JP2741120B2 (en) 1991-08-22 1991-08-22 Material gas detector for semiconductor manufacturing

Publications (2)

Publication Number Publication Date
JPH0552754A true JPH0552754A (en) 1993-03-02
JP2741120B2 JP2741120B2 (en) 1998-04-15

Family

ID=17012504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23724291A Expired - Lifetime JP2741120B2 (en) 1991-08-22 1991-08-22 Material gas detector for semiconductor manufacturing

Country Status (1)

Country Link
JP (1) JP2741120B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1049788A (en) * 1996-07-08 1998-02-20 Samsung Electron Co Ltd Gas pressure and gas leakage sensing system
WO2001063250A1 (en) * 2000-02-24 2001-08-30 Tokyo Electron Limited Method and apparatus for leak detecting, and apparatus for semiconductor manufacture
US6493086B1 (en) 1995-10-10 2002-12-10 American Air Liquide, Inc. Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
JP2012177694A (en) * 2011-02-25 2012-09-13 Wacker Chemie Ag Device and method for determining gas concentration in flowing gas mixture
JP2014048224A (en) * 2012-09-03 2014-03-17 Taiyo Nippon Sanso Corp Sampling method of sample gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493086B1 (en) 1995-10-10 2002-12-10 American Air Liquide, Inc. Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
JPH1049788A (en) * 1996-07-08 1998-02-20 Samsung Electron Co Ltd Gas pressure and gas leakage sensing system
WO2001063250A1 (en) * 2000-02-24 2001-08-30 Tokyo Electron Limited Method and apparatus for leak detecting, and apparatus for semiconductor manufacture
US6900439B2 (en) 2000-02-24 2005-05-31 Tokyo Electron Limited Gas leakage detection system, gas leakage detection method and semiconductor manufacturing apparatus
JP4804692B2 (en) * 2000-02-24 2011-11-02 東京エレクトロン株式会社 Gas leak detection system, gas leak detection method, and semiconductor manufacturing apparatus
JP2012177694A (en) * 2011-02-25 2012-09-13 Wacker Chemie Ag Device and method for determining gas concentration in flowing gas mixture
US8576397B2 (en) 2011-02-25 2013-11-05 Wacker Chemie Ag Device and method for determining a gas concentration in a flowing gas mixture
JP2014048224A (en) * 2012-09-03 2014-03-17 Taiyo Nippon Sanso Corp Sampling method of sample gas

Also Published As

Publication number Publication date
JP2741120B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
US5935519A (en) Apparatus for the detection of sulfur
JP5542854B2 (en) Method for measuring gas concentration in a flowing gas mixture
Keller et al. Open photoacoustic sensor as smoke detector
CA2785467A1 (en) Stack gas measurement device and method therefor
CN110988272A (en) Method for correcting measured values of a hydrogen sensor
JPH0552754A (en) Material gas detector for producing semiconductor
US6484563B1 (en) Method at detection of presence of hydrogen gas and measurement of content of hydrogen gas
AU2014241145B2 (en) In situ probe with improved diagnostics and compensation
CA2345801C (en) Instrument for combustible gas detection
CN111157477A (en) Total hydrocarbon concentration detector and total hydrocarbon concentration detection method
US3094392A (en) Gas detection
US3702397A (en) Infra-red gas detectors
US4190368A (en) Sulfur monitor analyzer
JP2002365264A (en) Ionizing type gas sensor
US3977830A (en) Silver nitrite reactant for measuring SO2
CN108169290A (en) The quantitative detecting method of semiconductor transducer and sarin gas or sarin simulant gas
US3498294A (en) Inhalation aerosol dosimeter and method of measuring dosage
CA3173444A1 (en) Gas measuring device and process for measuring cyanogen in the presence of hydrogen cyanide
US3074308A (en) Spectrometry apparatus
JP2964350B2 (en) Method and apparatus for detecting hydrogenated gas
Frankel et al. Spectral correlator technologies
Nörthemann et al. Early forest fire detection using low-energy hydrogen sensors
JPH0940427A (en) Compound metal oxide film
JPH04204133A (en) Calibrating device for reference vacuum gage
JP3042651B2 (en) Semiconductor material gas detector

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080130

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120130