JPH0552733A - Dispersion evaluating method for sulfur - Google Patents

Dispersion evaluating method for sulfur

Info

Publication number
JPH0552733A
JPH0552733A JP21553391A JP21553391A JPH0552733A JP H0552733 A JPH0552733 A JP H0552733A JP 21553391 A JP21553391 A JP 21553391A JP 21553391 A JP21553391 A JP 21553391A JP H0552733 A JPH0552733 A JP H0552733A
Authority
JP
Japan
Prior art keywords
sulfur
image
dispersion
rubber
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21553391A
Other languages
Japanese (ja)
Inventor
Hiroya Ogami
寛也 小神
Tatsuo Furuichi
達雄 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP21553391A priority Critical patent/JPH0552733A/en
Publication of JPH0552733A publication Critical patent/JPH0552733A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To instantaneously and simply measure the dispersion condition of sulfur with high accuracy by irradiating unvulcanized milled rubber with X rays including the wavelength which causes the absorption of sulfur element, photographing the fluoroscopic image, and analyzing the image. CONSTITUTION:An X-ray tube 3 facing the up and down directions is provided at the halfway of a conveyer 2 for conveying an unvulcanized milled rubber 1. An image sensing device 5 for the fluoroscopic image of X rays is provided and connected to an image processing device 4. These devices perform the photographing and the image processing at every specified time of at every specified length. The sample of rubber composition having the different kneading condition is set on an X-ray apparatus, which has the magnified fluoroscopic state and has the wavelengths by which the absorption of a sulfur element is generated. Then, the X-ray fluoroscopic image is picked up, and the area of the sulfur particles is obtained. As a result, the dispersion of the sulfur progesses with the increase in milling time, and the sulfur particles are decreased. Namely, the adequacy of the dispersion condition of the sulfur can be readily evaluated based on the particle area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はゴム工業において多用
されている加硫剤である硫黄の分散状態を判別する硫黄
の分散評価法に関し、さらに詳細には、未加硫の練りゴ
ムシート中に存在する配合硫黄の分散状態を判別する硫
黄の分散評価法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sulfur dispersion evaluation method for determining the dispersion state of sulfur, which is a vulcanizing agent widely used in the rubber industry, and more specifically, to an unvulcanized kneaded rubber sheet. The present invention relates to improvement of a sulfur dispersion evaluation method for discriminating the dispersion state of existing compounded sulfur.

【0002】[0002]

【従来の技術】従来に於て、未加硫練りゴムシート中の
配合硫黄の分散状態を評価する方法は少なく、わずかに
銅板にゴムシートを付けて反応させて判別する方法が提
案されているに過ぎない(特開昭62−2156号)。
2. Description of the Related Art Conventionally, there are few methods for evaluating the dispersion state of compounded sulfur in an unvulcanized and kneaded rubber sheet, and a method has been proposed in which a rubber sheet is slightly attached to a copper plate to cause a reaction to be discriminated. (JP-A-62-2156).

【0003】[0003]

【発明が解決しようとする課題】しかし特開昭62−2
156号は、銅板を供給する装置と、銅板表面を鏡面研
磨する装置と、該鏡面にされた銅板表面を加温する装置
と、該加温せしめた銅板表面に前記練りゴムを圧接支持
せしめることにより、該練りゴム中の配合硫黄と銅板表
面上の銅とを反応させ銅表面上に硫黄反応の痕跡をつく
る装置と、該圧接支持せしめた練りゴムを銅板表面より
除去せしめる装置と、前記銅板表面上の硫黄反応の痕跡
を観察し該練りゴム中の配合硫黄の分散の良否を識別判
断する装置より構成したものであるので、装置自体大き
く、かつ複雑な割に測定精度が必ずしも十分なものでは
ない点で、実用性に欠ける問題点があった。
However, JP-A-62-2 is used.
No. 156 is a device for supplying a copper plate, a device for mirror-polishing the surface of the copper plate, a device for heating the mirror-finished surface of the copper plate, and a device for press-supporting the kneaded rubber on the surface of the heated copper plate. A device for reacting the compounded sulfur in the kneaded rubber with copper on the surface of the copper plate to form a trace of a sulfur reaction on the copper surface, a device for removing the kneaded rubber supported under pressure from the copper plate surface, and the copper plate It is composed of a device for observing traces of the sulfur reaction on the surface and discriminating whether or not the dispersion of the compounded sulfur in the kneaded rubber is good, so that the device itself is large and complicated, but the measurement accuracy is not always sufficient. However, there was a problem of lack of practicality.

【0004】そもそも工場における硫黄分散を工程管理
するには、瞬時に測定することができる装置が必要であ
り、目視や化学反応させる方法は適切ではない。
In the first place, in order to control the process of sulfur dispersion in a factory, an apparatus capable of instantaneous measurement is required, and the method of visual observation or chemical reaction is not appropriate.

【0005】この発明の目的は、測定精度が良好で、簡
単かつ迅速に測定することができる硫黄の分散評価法を
提供する点にある。
An object of the present invention is to provide a method for evaluating dispersion of sulfur which has good measurement accuracy and can be measured simply and quickly.

【0006】[0006]

【課題を解決するための手段】ところでゴム工業で多用
される硫黄について検討すると、硫黄は一般に粉体であ
り、ゴム練りが進むにつれて細分化され、粒径が減少し
ていく。従って粒径が小さいほど練りは良好である。し
かし生産効率を上げるにはできるだけ練り時間を短縮す
る方が良いため、ある水準以下の粒子になれば練りが完
成されたものとみなされる。その水準は各ゴム工業の分
野により異なっているが、一般に数ミクロン以上であ
る。
By the way, when sulfur which is frequently used in the rubber industry is examined, sulfur is generally a powder, and as the rubber is kneaded, it is subdivided and the particle size is reduced. Therefore, the smaller the particle size, the better the kneading. However, since it is better to shorten the kneading time as much as possible in order to increase the production efficiency, it is considered that the kneading is completed when the particles have a particle size below a certain level. The level differs depending on the field of each rubber industry, but it is generally several microns or more.

【0007】一方、硫黄は、原子のK殼の5.3オング
ストロームにX線の吸収波長があるが、これに対してゴ
ム、カーボン、オイル等は炭素元素における44オング
ストロームに吸収波長があり、また亜鉛華は酸素元素に
おける23.7オングストローム、亜鉛は1.4オング
ストロームに吸収波長があり、これらの他の配合成分は
いずれも硫黄と離れた領域で吸収するものであるため、
かかるX線照射を利用すれば、ゴム組成物中において硫
黄の存在を分離検出可能であると考えられる。そこでこ
の発明は上記の点に鑑み、未加硫練りゴムシートに、硫
黄元素の吸収が生じる波長を含むX線を照射して、その
投影写真を撮れば、粒子の大きさや分布状態がX線の吸
収差により分かることから、硫黄の分散評価法として、
ある水準以上の粒子を透視撮影し、画像処理にて数値
化、定量化する方法を開発した。すなわちこの発明は、
未加硫練りゴムに硫黄元素の吸収を生じる波長を含むX
線を照射し、透視画像を撮影し、これを画像解析するこ
とにより硫黄の分散状態を評価することを特徴とする硫
黄の分散評価法である。
On the other hand, sulfur has an X-ray absorption wavelength at 5.3 angstroms of the atomic K shell, while rubber, carbon, oil, etc. have absorption wavelengths at 44 angstroms in the carbon element, and Zinc white has an absorption wavelength of 23.7 angstroms in oxygen element, and zinc has an absorption wavelength of 1.4 angstroms, and all of these other compounding components absorb in a region apart from sulfur,
It is considered that the presence of sulfur in the rubber composition can be separately detected by utilizing such X-ray irradiation. Therefore, in view of the above points, the present invention irradiates an unvulcanized kneaded rubber sheet with X-rays containing a wavelength at which absorption of elemental sulfur occurs, and when a projection photograph thereof is taken, the particle size and distribution state are X-rays. Since it can be understood from the absorption difference of, as a dispersion evaluation method of sulfur,
We have developed a method to quantify and quantify particles of a certain level or more by image processing. That is, this invention is
X containing a wavelength that causes absorption of elemental sulfur in unvulcanized kneaded rubber
It is a sulfur dispersion evaluation method characterized in that the state of sulfur dispersion is evaluated by irradiating a line, capturing a fluoroscopic image, and analyzing the image.

【0008】なお透視撮影の画像の大きさについては、
検査基準とする粒径の水準によっても異なるが、この方
法では、1〜100倍の実物大又は拡大透視画像で処理
できるものである。
Regarding the size of the fluoroscopic image,
Although it depends on the level of the particle size used as the inspection standard, this method can process a full-size or magnified perspective image of 1 to 100 times.

【0009】一方X線を照射する場合、未加硫の練りゴ
ムをX線の透視画像撮影装置にセットする必要がある
が、この場合のサンプリング法としては、例えば未加硫
の練りゴムシートを打抜いて円形状片とし、これを撮影
装置に通し撮影する方法が簡便な方法として採用でき
る。連続的に評価する方法も考えられ、例えば図面に示
す様に、未加硫練りゴムシート1を搬送するコンベヤ2
途中に上下方向に相対向するX線管3と、画像処理装置
4に接続されたX線の透視画像の撮影装置5を設置し、
一定時間ごと又は一定長さごとに撮影及び画像処理する
方法がある。なおいずれの方法も可能な限り一定のゴム
厚みで測定することが望ましいが、この発明はいずれの
方法にも特に限定されるものではない。
On the other hand, when irradiating with X-rays, it is necessary to set an unvulcanized kneaded rubber in an X-ray fluoroscopic image capturing device. As a sampling method in this case, for example, an unvulcanized kneaded rubber sheet is used. It is possible to employ a simple method in which a circular piece is punched out and the piece is passed through a photographing device and photographed. A method of continuous evaluation is also conceivable. For example, as shown in the drawing, a conveyor 2 that conveys an unvulcanized kneaded rubber sheet 1
An X-ray tube 3 facing each other in the vertical direction and an X-ray fluoroscopic imaging device 5 connected to an image processing device 4 are installed on the way,
There is a method of shooting and image processing at regular time intervals or constant length intervals. It should be noted that in any of the methods, it is desirable to measure the rubber thickness as constant as possible, but the present invention is not particularly limited to any of the methods.

【0010】[0010]

【作用】従ってこの発明は硫黄元素の吸収を生じる波長
を含むX線を照射し、透視画像を撮影し、これを画像解
析することにより評価する方法であるので、瞬時にかつ
簡単に高精度で測定することができる。
Therefore, the present invention is a method of irradiating an X-ray containing a wavelength that causes absorption of elemental sulfur, taking a fluoroscopic image, and performing image analysis to evaluate it. Can be measured.

【0011】[0011]

【実施例】表1に示す条件で配合したゴム組成物をバン
バリーミキサーにて同表に示した条件で混合し、厚み7
mm未加硫の練りゴムシートを作製した。なお比較のため
硫黄の非配合例についても作製した。
Example A rubber composition blended under the conditions shown in Table 1 was mixed in a Banbury mixer under the conditions shown in the same table to give a thickness of 7
An unvulcanized kneaded rubber sheet was prepared. For comparison, a non-blended example of sulfur was also prepared.

【0012】次にこれらのゴムシートからダンベルにて
直径30mm円形状サンプルを打ち抜き、これを拡大透視
機能を備え、硫黄元素の吸収が生じる5.3オングスト
ームの波長を含むX線装置にセットし、40倍のX線透
視画像を撮影して、この画像に見られる粒子の面積を求
めた。
Next, a circular sample having a diameter of 30 mm was punched out from these rubber sheets with a dumbbell, and this was set in an X-ray apparatus having a magnifying see-through function and containing a wavelength of 5.3 angstrom at which absorption of elemental sulfur occurs. , A 40 × X-ray fluoroscopic image was taken to determine the area of the particles seen in this image.

【0013】表1にその結果を示す。Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】表1から硫黄を配合しない比較例1〜3で
は硫黄粒子はほとんど検出されず、一方硫黄を配合した
実施例1、2では硫黄粒子が粒子面積として測定できる
ことが理解できる。また一般に亜鉛華を配合すると練り
が幾分向上することがわかっているが、実施例1と2と
の面積値の差異がこの点の対応関係をよく表わしてい
る。また混合時間の差異による混合状態の違いも実施例
2と実施例3との硫黄粒子の面積値においてその対応関
係が良好にでていることが認められる。
From Table 1, it can be understood that in Comparative Examples 1 to 3 in which sulfur is not added, almost no sulfur particles are detected, while in Examples 1 and 2 in which sulfur is added, the sulfur particles can be measured as the particle area. In addition, it is generally known that mixing of zinc white improves the kneading to some extent, but the difference in area value between Examples 1 and 2 well expresses the correspondence relationship in this respect. Further, it is recognized that the difference in the mixing state due to the difference in the mixing time also shows a good correspondence in the area value of the sulfur particles between Example 2 and Example 3.

【0016】次に、バンバリーミキサーにて下記A配合
の配合ゴムを混合し、この混合された配合ゴムと下記B
の加硫剤を表2に示す練り条件でロールにてさらに混練
し、実際の練り時間とX線の透視画像に現れる硫黄粒子
の面積との関係について検討した。なお下記Bの加硫剤
はA配合の配合ゴム中のポリマー分を100として配合
している。
Next, the compounded rubber of the following compound A is mixed with a Banbury mixer, and the compounded rubber and the compound B described below are mixed.
The vulcanizing agent of No. 1 was further kneaded with a roll under the kneading conditions shown in Table 2, and the relationship between the actual kneading time and the area of the sulfur particles appearing in the X-ray transparent image was examined. The vulcanizing agent of the following B is compounded with the polymer content in the compounded rubber of the compound A as 100.

【0017】 A配合 天然ゴム 50部 SBR1500 50部 カーボン 50部 亜鉛華 5部 ステアリン酸 2部 オイル 10部 老化防止剤(サントフレックス13) 2部 B加硫剤 促進剤(NOBS) 1部 20%オイル処理不溶性硫黄 4部 混練条件は表2に示す通り4条件で行なった。サンプリ
ングは各条件のバッチゴムを厚み5mmゴムシートにし、
これをダンベルにて直径50cmの円形状のサンプルを打
ち抜いたものを用いた。次にこのサンプルを、拡大透視
機能を備え、硫黄元素の吸収が生じる波長をもつX線装
置にセットし、30倍のX線透視画像を撮影して、この
画像に見られる粒子の面積を求めた。
A compound Natural rubber 50 parts SBR1500 50 parts Carbon 50 parts Zinc white 5 parts Stearic acid 2 parts Oil 10 parts Anti-aging agent (Santflex 13) 2 parts B Vulcanizing agent accelerator (NOBS) 1 part 20% oil Treated insoluble sulfur 4 parts The kneading conditions were 4 conditions as shown in Table 2. For sampling, make a batch of rubber under each condition into a 5 mm thick rubber sheet,
A circular sample having a diameter of 50 cm was punched out with a dumbbell. Next, this sample is set in an X-ray device having a magnifying fluoroscopic function and a wavelength at which absorption of elemental sulfur occurs, and a 30 times X-ray fluoroscopic image is taken to determine the area of particles seen in this image. It was

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示す様に、練り時間を増加させると
ともに硫黄の分散が進行し、30倍のX線透視画像に現
れる硫黄の粒子が減少していることがわかる。
As shown in Table 2, it can be seen that as the kneading time is increased, the dispersion of sulfur progresses, and the number of sulfur particles appearing in the 30-fold X-ray fluoroscopic image is reduced.

【0020】このようにX線透視画像を利用した方法で
は、その画像上に現れる粒子面積を測定することによっ
て練り状態を判別できるので、逆に各ゴム工業で所望と
する練り状態から、X線透視画像上に現れる粒子面積を
割りだし、これを硫黄の分散基準とすれば、硫黄の分散
状態の適否を容易に評価することができる。従ってかか
る評価と混練操作とを連動させれば、最適な混練操作の
自動化をも図り得る。なおこの発明は上記の実施例に限
定されるものでない。
As described above, in the method using the X-ray fluoroscopic image, the kneading state can be determined by measuring the particle area appearing on the image. Therefore, from the kneading state desired by each rubber industry, the X-ray can be changed. By determining the area of particles appearing on the fluoroscopic image and using this as the sulfur dispersion standard, it is possible to easily evaluate the suitability of the sulfur dispersion state. Therefore, if the evaluation and the kneading operation are linked, the optimum kneading operation can be automated. The present invention is not limited to the above embodiment.

【0021】[0021]

【発明の効果】以上の通り、この発明は硫黄元素のX線
吸収が他の配合成分と比較的離れた領域にあり、かつ混
練状態において一般に許容される粒径水準は数ミクロン
以上である点に着眼し、計測の対象である未加硫ゴムに
対して硫黄元素の吸収を生じる波長を含むX線を照射
し、その透視画像を撮影し、これを画像解析する評価法
を提供した。従ってX線を照射し、透視画像を撮影し、
画像解析する方法であるので、瞬時にかつ簡単に高精度
で評価することができ、しかも評価すべき水準を適宜設
定変更可能あるため、各種のゴム工業分野に資するとこ
ろ極めて大きい。
As described above, according to the present invention, the X-ray absorption of elemental sulfur is in a region relatively distant from other blending components, and the generally accepted particle size level in the kneading state is several microns or more. We provided an evaluation method of irradiating an unvulcanized rubber, which is the object of measurement, with X-rays containing a wavelength that causes absorption of elemental sulfur, photographing a fluoroscopic image of the unvulcanized rubber, and analyzing the image. Therefore, irradiate X-rays, take a fluoroscopic image,
Since this is an image analysis method, it can be evaluated instantly and easily with high accuracy, and the level to be evaluated can be set and changed as appropriate, which is extremely useful for various rubber industry fields.

【図面の簡単な説明】[Brief description of drawings]

【図1】硫黄の分散評価装置の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of a sulfur dispersion evaluation apparatus.

【符号の説明】[Explanation of symbols]

1 ゴムシート 2 コンベヤ 3 X線管 4 画像処理装置 5 撮影装置 1 rubber sheet 2 conveyor 3 X-ray tube 4 image processing device 5 imaging device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】未加硫ゴムに、硫黄元素の吸収を生じる波
長を含むX線を照射して、その透視画像を撮影し、これ
を画像解析することにより未加硫ゴムにおける硫黄の分
散状態を評価することを特徴とする硫黄の分散評価法。
1. A dispersion state of sulfur in unvulcanized rubber by irradiating the unvulcanized rubber with X-rays containing a wavelength causing absorption of elemental sulfur, capturing a perspective image of the image, and analyzing the image. A method for evaluating the dispersion of sulfur, which is characterized by evaluating
JP21553391A 1991-08-27 1991-08-27 Dispersion evaluating method for sulfur Withdrawn JPH0552733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21553391A JPH0552733A (en) 1991-08-27 1991-08-27 Dispersion evaluating method for sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21553391A JPH0552733A (en) 1991-08-27 1991-08-27 Dispersion evaluating method for sulfur

Publications (1)

Publication Number Publication Date
JPH0552733A true JPH0552733A (en) 1993-03-02

Family

ID=16674008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21553391A Withdrawn JPH0552733A (en) 1991-08-27 1991-08-27 Dispersion evaluating method for sulfur

Country Status (1)

Country Link
JP (1) JPH0552733A (en)

Similar Documents

Publication Publication Date Title
KR100775695B1 (en) X-ray inspection apparatus, and method for creating an image processing procedure of the x-ray inspection apparatus
KR102244343B1 (en) Method of evaluating neutron scattering length density
JP6294673B2 (en) Polymer material analysis method
CN102680505B (en) X-Ray Analyzer
EP2335057B1 (en) Dual energy x-ray transmission method for analysing ores
US20210170635A1 (en) Molding support apparatus and molding support method
CN106198585B (en) Method for evaluating crosslink concentration in crosslinked rubber
JP6348295B2 (en) How to determine the chemical state of sulfur
Foresti et al. Determination of low levels of free fibres of chrysotile in contaminated soils by X-ray diffraction and FTIR spectroscopy
Little et al. Shape and size of non-spherical silver nanoparticles: implications for calculating nanoparticle number concentrations
JP2018096905A (en) Abrasion proof performance prediction method
JPH0552733A (en) Dispersion evaluating method for sulfur
JP6935681B2 (en) How to evaluate the dispersion of silica aggregates
JP2020165962A (en) Ore sample analysis method
JP6859602B2 (en) Evaluation method of scattering intensity
JP2005083762A (en) X-ray analyzer for analyzing plastic
JP2017083235A (en) Sample frame and sample analytical method
JP2009080030A (en) X-ray inspection device
US20060222220A1 (en) Method for detecting specified polymer crystal
CN113390902A (en) Method and apparatus for inspecting membrane electrode assembly
Kuramochi et al. Direct observation of 890 ns dynamics of carbon black and polybutadiene in rubber materials using diffracted x-ray blinking
JP2008304480A (en) Soil condition determining method
CN106248463A (en) For calibrating the standard substance of PM2.5 sickle and preparation thereof and valued methods
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
WO2023176330A1 (en) Control device, system, method, and program

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112