JPH0552525A - Calibration device of optical plate width meter - Google Patents

Calibration device of optical plate width meter

Info

Publication number
JPH0552525A
JPH0552525A JP23724591A JP23724591A JPH0552525A JP H0552525 A JPH0552525 A JP H0552525A JP 23724591 A JP23724591 A JP 23724591A JP 23724591 A JP23724591 A JP 23724591A JP H0552525 A JPH0552525 A JP H0552525A
Authority
JP
Japan
Prior art keywords
side guide
calibration
light source
plate
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23724591A
Other languages
Japanese (ja)
Inventor
Akihiro Yamada
明弘 山田
Yasuaki Kumazawa
安哲 熊沢
Takao Ogawa
隆雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23724591A priority Critical patent/JPH0552525A/en
Publication of JPH0552525A publication Critical patent/JPH0552525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a means for enabling a plate width meter to be calibrated accurately under the same conditions as on-line situations. CONSTITUTION:A magnet type screening plate 5 is fitted onto an upper surface of a light-source detection hole 4 of a side guide liner 2. An opening of a side guide 1 is changed within a detectable range of two CCD cameras. The side guide 1 is stopped at a known calibration point, thus enabling an edge position of the screening plate to be detected. Two cameras can perform calibration within a visual field to be detected, no light source exclusively for calibration is needed, a calibration time is short, and a calibration accuracy is high.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固体撮像素子(CC
D)を有する撮像カメラにて、光学的に鋼板の板幅を測
定する板巾計の較正装置に関する。
BACKGROUND OF THE INVENTION This invention relates to a solid-state image pickup device (CC
The invention relates to a calibration device for a plate width meter that optically measures a plate width of a steel plate in an imaging camera having D).

【0002】[0002]

【従来の技術】熱間圧延において板巾を測定すること
は、品質保証上極めて重要である。従来、板巾の測定に
は固体撮像素子(CCD)を有する撮像カメラによる方
法が一般的である。この方法は、鋼板の両エッジ上方に
前記撮像カメラを設置し、両エッジの下方に光源を設
け、両エッジを境とする撮像カメラへの明暗に基づいて
両エッジ位置を検出し、その両エッジ間距離を板巾とす
る方法である。したがって、この方法の場合は、撮像カ
メラが適正に設置されているかどうか、あるいは工場内
の振動等により傾きが生じていないかどうかなどのため
に、定期的に計測装置の較正を行う必要がある。
2. Description of the Related Art Measuring the strip width in hot rolling is extremely important for quality assurance. Conventionally, a method using an image pickup camera having a solid-state image pickup device (CCD) is generally used for measuring the plate width. In this method, the imaging camera is installed above both edges of the steel plate, a light source is provided below both edges, and both edge positions are detected based on the brightness of the imaging camera on both edges. This is a method in which the distance is used as the board width. Therefore, in the case of this method, it is necessary to regularly calibrate the measuring device in order to check whether the imaging camera is properly installed, or whether the tilt is caused by the vibration in the factory. ..

【0003】その較正の方法としては、従来、大別して
次の2法がある。 (1)カメラ自己追従型の板巾計の場合の較正方法 図6および図7に示すように、挿通孔50aを精度よく
形成した定盤50に、窓孔51aを有する遮蔽板51を
セットし、この遮蔽板の下方に光源(図示せず)を配置
し、2台の撮像カメラを定盤50の長手方向外側から内
側に向って走査し、Aエッジ位置およびBエッジ位置に
撮像カメラの視野中心が一致するよう撮像カメラを移動
し、既知のA−B間長さと実測A−B間長さとの誤差に
基づいて較正するもので、必要に応じて遮蔽板51を位
置替えした後に再度較正をされる。なお、この較正装置
はラインの側方のオフラインに設置され、定期的な検定
やカメラの交換時に専ら用いられる。
Conventionally, there are the following two methods for the calibration. (1) Calibration method for a camera self-tracking width meter As shown in FIGS. 6 and 7, a shield plate 51 having a window hole 51a is set on a surface plate 50 in which an insertion hole 50a is accurately formed. A light source (not shown) is arranged below the shielding plate, and two image pickup cameras are scanned from the outer side to the inner side in the longitudinal direction of the surface plate 50, and the image pickup camera has a visual field at the A edge position and the B edge position. The image pickup camera is moved so that the centers thereof coincide with each other, and calibration is performed based on the error between the known AB length and the actually measured AB length, and the shielding plate 51 is repositioned as necessary and then recalibrated. To be This calibration device is installed off-line on the side of the line and is used exclusively for periodic verification and camera replacement.

【0004】 (2)固定型カメラを用いた板巾計の場合の較正方法 固定型カメラを用いる方式は、設備的に設置が困難な場
所や、安価な板巾計で足りる場合に用いられる。較正に
際しては、測定ライン上に板巾が既知であるサンプル板
(遮蔽板)を設置し、その幅測定値に基づき検定すると
ともに、幅が異なる他の複数種のサンプル板について
も、設置位置を替えたり、横方向(ラインと直交する方
向)に移動させながら、カメラの前後および左右方向を
調整することで較正するものである。
(2) Calibration method in the case of a board width meter using a fixed type camera The method using a fixed type camera is used in a place where installation is difficult in terms of equipment or when an inexpensive board width meter is sufficient. When calibrating, install a sample plate (shield plate) with a known plate width on the measurement line, perform verification based on the measured width value, and set the installation position for other sample plates of different widths. It is calibrated by adjusting the front-rear direction and the left-right direction of the camera while changing or moving in the lateral direction (direction orthogonal to the line).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記(1)の
方式では、実ラインにおける駆動部等が多いスタンド間
に、大型の光源および定盤を常設することは、既設サイ
ドガイドやルーパ等による干渉があってスペース的に無
理であり、さらに鋼板の上下振動等により、自己追従型
のカメラを精度よく追従させることは困難である。他
方、(2)の方式では、パスラインのセンターとサンプ
ル板の巾方向センターとの位置合わせが難しいととも
に、実操業中にカメラの視野が振動等で狂い易いこと、
サンプル板の巾方向の移動量に対するエッジ検出ビット
位置の移動量により分解能を決定する場合、サンプル板
の巾方向移動量を目視によって判断するため、分解能決
定が不正確となること、固定カメラであるため、サンプ
ル板のエッジ高さが変化した場合、板巾測定値も変化
し、誤差を招くこと、検定作業および較正作業に長時間
かかるばかりでなく、繰り返し再現性が低く、較正精度
が低いこと等の問題がある。さらに、(1)(2)の方
式はいずれも専用光源(高周波蛍光灯)や較正用サンプ
ル板を必要とする上、計測に多くの手間と時間を要する
欠点がある。
However, in the above method (1), it is necessary to permanently install a large light source and a surface plate between stands, which have many driving parts in an actual line, by using an existing side guide or looper. There is interference and it is impossible in terms of space, and it is difficult for a self-following type camera to follow accurately due to vertical vibration of the steel plate and the like. On the other hand, in the method of (2), it is difficult to align the center of the pass line with the center of the sample plate in the width direction, and the field of view of the camera is easily deviated due to vibration during actual operation.
When the resolution is determined by the amount of movement of the edge detection bit position with respect to the amount of movement of the sample plate in the width direction, the amount of movement of the sample plate in the width direction is visually determined, so the resolution is inaccurate, and the camera is fixed. Therefore, when the edge height of the sample plate changes, the plate width measurement value also changes, causing errors, not only taking a long time for the verification work and calibration work, but also low repeatability and low calibration accuracy. There are problems such as. Further, both the methods (1) and (2) require a dedicated light source (high-frequency fluorescent lamp) and a calibration sample plate, and have a drawback that a lot of labor and time are required for measurement.

【0006】この発明は従来のこのような問題点にかん
がみ、較正用の専用光源を必要とせず、既設の板巾計測
用の光源を利用して簡易迅速にかつ高精度に較正できる
装置を提供しようとするものである。
In view of the above problems of the prior art, the present invention provides a device that does not require a dedicated light source for calibration and can calibrate easily and quickly with high accuracy by using an existing light source for measuring plate width. Is what you are trying to do.

【0007】[0007]

【課題を解決するための手段】この発明の要旨は、鋼板
パスラインの下方両側に設けられ、その上面に光源検出
孔を有し、内部に下部光源を有するサイドガイドライナ
ーと、該サイドガイドライナーのいずれか一方に、サイ
ドガイド間の距離を測定すべく設けられた距離計と、鋼
板較正板幅に調整可能に前記光源検出孔上に取付けられ
た着脱式遮蔽板と、前記下部光源からの光を前記光源検
出孔を通して入力し、前記鋼板較正板幅を計測すべく鋼
板パスラインの上方両側に設けた撮像カメラを具備し、
該撮像カメラの計測値が前記鋼板較正板幅となるように
調整するとともに前記距離計の計測値によりサイドガイ
ドのセンターが鋼板パスラインのセンターとなるように
サイドガイド位置を調整可能となした較正装置にある。
SUMMARY OF THE INVENTION A gist of the present invention is a side guide liner provided on both lower sides of a steel plate pass line, having a light source detection hole on the upper surface thereof, and having a lower light source therein, and the side guide liner. A distance meter provided to measure the distance between the side guides, a detachable shield plate that is mounted on the light source detection hole so that the width of the steel plate calibration plate can be adjusted, and a distance from the lower light source. Light is input through the light source detection hole, and equipped with imaging cameras provided on both sides above the steel plate pass line to measure the steel plate calibration plate width.
Calibration in which the measurement value of the imaging camera is adjusted to be the steel plate calibration plate width, and the side guide position is adjustable so that the center of the side guide is the center of the steel plate pass line by the measurement value of the distance meter. On the device.

【0008】[0008]

【作用】着脱式遮蔽板は例えばマグネット式を採用する
ことができる。サイドガイドライナーの内側間距離を測
定する距離計としては、例えばレーザー距離計を使用す
ることができる。サイドガイドライナーの光源検出孔上
面に鋼板較正板巾と一致するように設けた着脱式遮蔽板
により、光と影(明暗部)のエッジ面は常に一定に保た
れる。この状態でサイドガイドの開度を、距離計にてサ
イドガイドライナーの内側間距離を計測しながら変化さ
せ、既知の較正基準点位置にサイドガイドの開度を設定
した状態で、この位置における遮蔽板の両エッジ位置を
CCDカメラが検出するビット数を読取ることによっ
て、この両遮蔽板間距離(鋼板較正板幅)とカメラセン
ター間距離との差(ずれ量)を検出し、カメラの位置を
較正する。
Operation The detachable shield plate may be of the magnet type, for example. A laser rangefinder, for example, can be used as a rangefinder for measuring the distance between the insides of the side guide liners. The edge surface of light and shadow (bright and dark parts) is always kept constant by the removable shield plate provided on the upper surface of the light source detection hole of the side guide liner so as to match the width of the steel plate calibration plate. In this state, change the side guide opening while measuring the inside distance of the side guide liner with a rangefinder, and set the side guide opening at a known calibration reference point position. By reading the number of bits that the CCD camera detects both edge positions of the plate, the difference (deviation amount) between the distance between the both shielding plates (steel plate calibration plate width) and the distance between the camera centers is detected, and the position of the camera is determined. Calibrate.

【0009】この装置はサイドガイドライナーに内臓さ
れた下部光源をそのまま較正用光源として使用すること
ができる。サイドガイド開度を既知の較正基準点に応じ
て変化させる方式であるから、2台のCCDカメラが検
出する視野内の較正を行うことができる。また、サイド
ガイドの開度を基準として較正する方式であるから、サ
イドガイドの開度の中心位置がパスラインセンターとな
り、光源検出孔上面に設ける遮蔽板もパスラインセンタ
ーを中心として同間隔で動くことになり、パスラインセ
ンターの位置合わせは不要である。
In this device, the lower light source incorporated in the side guide liner can be used as it is as a calibration light source. Since the side guide opening is changed according to a known calibration reference point, the calibration within the visual field detected by the two CCD cameras can be performed. In addition, since the calibration is based on the opening of the side guide, the center position of the opening of the side guide becomes the pass line center, and the shielding plate provided on the upper surface of the light source detection hole also moves at the same interval around the pass line center. Therefore, the alignment of the pass line center is unnecessary.

【0010】[0010]

【実施例】図1はこの発明の一実施例装置を示す概略図
で、1はサイドガイド、2はサイドガイドライナー、3
は下部光源、4は光源検出孔、5はマグネット式遮蔽
板、6はレーザー距離計、7はCCDカメラ、8はコン
トローラー、9は蛇行・板巾演算装置、10は距離計演
算装置、11は表示器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing an apparatus of one embodiment of the present invention, 1 is a side guide, 2 is a side guide liner, 3 is a side guide.
Is a lower light source, 4 is a light source detection hole, 5 is a magnet type shielding plate, 6 is a laser distance meter, 7 is a CCD camera, 8 is a controller, 9 is a meandering / width measuring device, 10 is a distance measuring device, and 11 is It is an indicator.

【0011】図1において、まず実ライン上方に設置さ
れた2台のCCDカメラ7の視野センターと、サイドガ
イドライナー2に設けられた光源検出孔4の中心とが一
致する位置(較正基準点)にサイドガイド1を位置決め
する。その場合、サイドガイドライナー2の内側間距離
を、レーザー距離計6で計測しながらサイドガイド1を
左右に動かし、較正基準点間距離の位置にサイドガイド
1を停止させておく。
In FIG. 1, first, a position (calibration reference point) where the visual field centers of the two CCD cameras 7 installed above the actual line and the center of the light source detection hole 4 provided in the side guide liner 2 coincide with each other. Position the side guide 1 at. In that case, the side guide 1 is moved left and right while measuring the inner distance of the side guide liner 2 with the laser distance meter 6, and the side guide 1 is stopped at the position of the distance between the calibration reference points.

【0012】次に、下部光源検出孔4とCCDカメラ7
の光軸調整を行う。図2はCCDカメラの縦振調整方法
を示す概略図で、図(A)はシンクロスコープにより2
台のCCDカメラ7が検出したアナログビデオ信号(A
V信号)の波形が小さい場合、図(B)は同上のAV信
号が最適波形の場合、図(C)は図(A)と同様AV信
号が小さい場合をそれぞれ示す。すなわち、AV信号が
図(B)の最適波形となるように縦振調整を行う。
Next, the lower light source detection hole 4 and the CCD camera 7
Adjust the optical axis of. FIG. 2 is a schematic diagram showing a vertical vibration adjustment method for a CCD camera. FIG.
Analog video signal (A
When the waveform of the V signal is small, FIG. 6B shows the case where the AV signal is the optimum waveform, and FIG. 7C shows the case where the AV signal is small as in the case of FIG. That is, vertical vibration adjustment is performed so that the AV signal has the optimum waveform shown in FIG.

【0013】図3はCCDカメライメージセンサーと光
源検出孔の平行度調整方法を示す概略図で、上記光軸調
整と同様に、2台のCCDカメラが検出したAV信号を
確認し、カメラの回転軸調整を行う。すなわち、図
(A)(C)はAV信号が不良の場合を、図(B)はA
V信号が最適の場合をそれぞれ示す。したがって、AV
信号が図(A)(C)の場合はCCDカメラの回転軸調
整を行って図(B)のAV信号が得られるようにする。
FIG. 3 is a schematic diagram showing a method for adjusting the parallelism between the CCD camera image sensor and the light source detection hole. Similar to the above optical axis adjustment, the AV signals detected by the two CCD cameras are confirmed and the camera rotation is performed. Adjust the axis. That is, FIGS. 9A and 9C show the case where the AV signal is defective, and FIG.
The respective cases where the V signal is optimum are shown. Therefore, AV
When the signals are as shown in FIGS. (A) and (C), the rotation axis of the CCD camera is adjusted so that the AV signal shown in FIG.

【0014】マグネット式遮蔽板5は図1、図4に示す
ように、サイドガイドライナー2の光源検出孔4のセン
ターより内側に嵌め込む。その際、マグネット式遮蔽板
を光源検出孔4が1/2遮蔽される位置に装着すること
により、明暗部のエッジ面は常に一定に保たれ、左右の
両遮蔽板間距離とCCDカメラセンター間距離と一致す
ることになる。
As shown in FIGS. 1 and 4, the magnet type shield plate 5 is fitted inside the center of the light source detection hole 4 of the side guide liner 2. At that time, by mounting the magnet type shield plate at the position where the light source detection hole 4 is shielded by 1/2, the edge surface of the bright and dark parts is always kept constant, and the distance between the left and right shield plates and the CCD camera center are kept. It will match the distance.

【0015】CCDカメラの横振調整は、図5に示すよ
うにコントローラー8を測定状態にして、左右のエッジ
位置出力(カメラセンターからのずれ量)を確認し、そ
の出力値の誤差が例えば±1.0mm以上の場合に横振
調整を行う。
To adjust the lateral shake of the CCD camera, the controller 8 is set in a measuring state as shown in FIG. 5, and the left and right edge position outputs (the amount of deviation from the camera center) are confirmed. When it is 1.0 mm or more, the lateral vibration is adjusted.

【0016】以上の調整作業が終了した後に較正が行わ
れる。すなわち、サイドガイド1の開度を、前記較正基
準点位置より広幅または狭幅方向に駆動して、既知の較
正点で停止させる。なお、サイドガイド1の停止位置精
度は、サイドガイドライナー2に収納しているレーザー
距離計6でサイドガイドライナー内側間距離を計測する
ことにより、既知の位置に±0.1mm以内の誤差で停
止できる。そして、上記時点でのマグネット式遮蔽板5
のエッジ位置をCCDカメラが検出するビット数を読み
取ることにより、カメラセンターからのずれ量(エッジ
位置出力)と板巾が測定できる。以下、上記と同様の手
順にてサイドガイドの開度を既知の較正点に応じて変え
ることにより、左右2台のCCDカメラの視野範囲の較
正をすべて行うことができる。遮蔽板5のエッジ面高さ
により生じる測定誤差は、予め蛇行・板巾演算装置9に
おいて板厚補正値として入力しておくことにより、測定
値への影響はなくなる。これにより、オンライン状態と
同一条件で較正でき、さらに較正精度および再現性精度
も向上する。
After the above adjustment work is completed, calibration is performed. That is, the opening degree of the side guide 1 is driven in the width direction or the width direction narrower than the position of the calibration reference point to stop at the known calibration point. The stop position accuracy of the side guide 1 is determined by measuring the distance between the insides of the side guide liners with a laser range finder 6 housed in the side guide liner 2 to stop at a known position within an error of ± 0.1 mm. it can. Then, the magnet type shielding plate 5 at the above point
The amount of deviation from the camera center (edge position output) and the plate width can be measured by reading the number of bits that the CCD camera detects the edge position of. Thereafter, by changing the opening of the side guide according to a known calibration point in the same procedure as described above, it is possible to completely calibrate the visual field ranges of the two left and right CCD cameras. The measurement error caused by the height of the edge surface of the shielding plate 5 is input as the plate thickness correction value in the meandering / plate width calculation device 9 in advance, so that the measurement value is not affected. As a result, calibration can be performed under the same conditions as in the online state, and calibration accuracy and reproducibility accuracy are improved.

【0017】[0017]

【発明の効果】以上説明したごとく、この発明装置によ
れば、サイドガイドライナー光源検出孔に着脱式の遮蔽
板を設置し、両遮蔽板距離とカメラ間センターからのず
れ量(エッジ位置出力)を測定することができるので、
2台のCCDカメラが検出する視野内の較正を行うこと
が可能となり、これによって従来より問題とされていた
サンプル板移動時の位置ずれにより生じる誤差は解消さ
れ、再現性と較正精度を大幅に向上できる。また、サイ
ドガイドの停止位置はサイドガイドライナーに収納され
ている距離計にて自動的に計測しながら設定することが
できる上、このサイドガイドの動きはパスラインセンタ
ーから常に同間隔をもって開閉させることができるの
で、較正作業の簡易迅速化がはかられる。さらに、この
発明方法は下部光源をそのまま利用できるので、オンラ
インと同一条件で高精度に較正できるという優れた効果
を奏する。
As described above, according to the device of the present invention, the side guide liner light source detection hole is provided with a detachable shield plate, and the distance between both shield plates and the amount of deviation from the center between cameras (edge position output). Because you can measure
It is possible to calibrate within the field of view detected by two CCD cameras, which eliminates the error caused by the positional displacement when moving the sample plate, which has been a problem in the past, and greatly improves reproducibility and calibration accuracy. Can be improved. In addition, the stop position of the side guide can be set while automatically measuring with the range finder stored in the side guide liner, and the movement of this side guide should always be opened and closed at the same interval from the pass line center. Therefore, the calibration work can be simplified and speeded up. Further, since the lower light source can be used as it is, the method of the present invention has an excellent effect that it can be calibrated with high accuracy under the same conditions as online.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例装置を示す概略図である。FIG. 1 is a schematic view showing an apparatus according to an embodiment of the present invention.

【図2】同上装置におけるCCDカメラの縦振調整方法
を示す説明図である。
FIG. 2 is an explanatory diagram showing a vertical shake adjustment method for a CCD camera in the same apparatus.

【図3】同上装置におけるCCDカメライメージセンサ
ーと光源検出孔の平行度調整方法を示す説明図である。
FIG. 3 is an explanatory diagram showing a method for adjusting parallelism between a CCD camera image sensor and a light source detection hole in the same apparatus.

【図4】同上装置におけるマグネット遮蔽板の装着状態
を拡大して示す概略平面図である。
FIG. 4 is an enlarged schematic plan view showing a mounted state of a magnet shield plate in the same apparatus.

【図5】同上装置におけるCCDカメラの横振調製方法
を示す説明図である。
FIG. 5 is an explanatory view showing a lateral shake adjusting method of the CCD camera in the same apparatus.

【図6】従来の較正装置の一例を示す平面図である。FIG. 6 is a plan view showing an example of a conventional calibration device.

【図7】同上較正装置の遮蔽板を示す正面図である。FIG. 7 is a front view showing a shielding plate of the above calibration device.

【符号の説明】 1 サイドガイド 2 サイドガイドライナー 3 下部光源 4 光源検出孔 5 マグネット式遮蔽板 6 レーザー距離計 7 CCDカメラ 8 コントローラー 9 蛇行・板巾演算装置 10 距離計演算装置[Explanation of symbols] 1 side guide 2 side guide liner 3 lower light source 4 light source detection hole 5 magnet type shield plate 6 laser distance meter 7 CCD camera 8 controller 9 meandering / width calculation device 10 distance meter calculation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼板パスラインの幅方向の下方両側に設
けられ、その上面に光源検出孔を有し、内部に下部光源
を有するサイドガイドライナーと、該サイドガイドライ
ナーのいずれか一方にサイドガイド間の距離を測定すべ
く設けられた距離計と、鋼板較正板幅に調整可能に前記
光源検出孔上に取付けられた着脱式遮蔽板と、前記下部
光源からの光を前記光源検出孔を通して入力し、前記鋼
板較正板幅を計測すべく鋼板パスラインの両端に設けた
撮像カメラを具備し、該撮像カメラの計測値が前記鋼板
較正板幅となるように調整するとともに、前記距離計の
計測値によりサイドガイドのセンターが鋼板パスライン
のセンターとなるようにサイドガイド位置を調整可能と
なしたことを特徴とする光学式板幅計の較正装置。
1. A side guide liner provided on both lower sides in the width direction of a steel plate pass line, having a light source detection hole on the upper surface thereof, and having a lower light source inside, and a side guide on either one of the side guide liners. A distance meter provided to measure the distance between them, a detachable shield plate mounted on the light source detection hole so that the width of the steel plate calibration plate can be adjusted, and light from the lower light source is input through the light source detection hole. Then, it is equipped with imaging cameras provided at both ends of the steel plate pass line to measure the steel plate calibration plate width, and the measurement value of the imaging camera is adjusted so as to be the steel plate calibration plate width, and the distance meter is measured. A calibration device for an optical plate width meter, wherein the side guide position can be adjusted so that the center of the side guide becomes the center of the steel plate pass line depending on the value.
JP23724591A 1991-08-22 1991-08-22 Calibration device of optical plate width meter Pending JPH0552525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23724591A JPH0552525A (en) 1991-08-22 1991-08-22 Calibration device of optical plate width meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23724591A JPH0552525A (en) 1991-08-22 1991-08-22 Calibration device of optical plate width meter

Publications (1)

Publication Number Publication Date
JPH0552525A true JPH0552525A (en) 1993-03-02

Family

ID=17012554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23724591A Pending JPH0552525A (en) 1991-08-22 1991-08-22 Calibration device of optical plate width meter

Country Status (1)

Country Link
JP (1) JPH0552525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4231353A1 (en) * 1991-09-19 1993-04-01 Toshiba Kawasaki Kk Stage switch changing coils of power electrical transformer - couples adjacent stages to tapping contacts with movable contact engaging common contact and having current limiting resistor.
KR100955918B1 (en) * 2003-06-17 2010-05-03 주식회사 포스코 Automatic Reform Apparatus and the Method of Chacking Device for Shape and Width of Hot Strip
WO2019102549A1 (en) * 2017-11-22 2019-05-31 東芝三菱電機産業システム株式会社 Industrial plant data reproduction device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4231353A1 (en) * 1991-09-19 1993-04-01 Toshiba Kawasaki Kk Stage switch changing coils of power electrical transformer - couples adjacent stages to tapping contacts with movable contact engaging common contact and having current limiting resistor.
KR100955918B1 (en) * 2003-06-17 2010-05-03 주식회사 포스코 Automatic Reform Apparatus and the Method of Chacking Device for Shape and Width of Hot Strip
WO2019102549A1 (en) * 2017-11-22 2019-05-31 東芝三菱電機産業システム株式会社 Industrial plant data reproduction device
CN111448526A (en) * 2017-11-22 2020-07-24 东芝三菱电机产业系统株式会社 Data reproducing device for industrial plant
JPWO2019102549A1 (en) * 2017-11-22 2020-12-24 東芝三菱電機産業システム株式会社 Data playback equipment for industrial plants
US11423525B2 (en) 2017-11-22 2022-08-23 Toshiba Mitsubishi-Electric Industrial Systems Corporation Industrial plant data reproduction device
CN111448526B (en) * 2017-11-22 2023-07-18 东芝三菱电机产业系统株式会社 Industrial factory data reproduction device

Similar Documents

Publication Publication Date Title
JP2505535B2 (en) Registration error measuring device, registration mark, and method for determining front-side printing and double-sided printing
KR102518930B1 (en) sheet thickness measuring device
US6700671B2 (en) Non-contact type profile measuring apparatus
US6195159B1 (en) Lens testing system
US6219442B1 (en) Apparatus and method for measuring distortion of a visible pattern on a substrate by viewing predetermined portions thereof
US4725884A (en) Optical metrology
JPH0552525A (en) Calibration device of optical plate width meter
US5107132A (en) Apparatus for the verification of corrected surfaces or in the process of correction
US11825070B1 (en) Intrinsic parameter calibration system
JP2756544B2 (en) Sheet thickness measurement method
KR100498101B1 (en) An apparatus for measuring the width of strip with error compensation function
US5321495A (en) Optical detecting system for determining particle position on a substrate
JPH069288Y2 (en) Optical width meter calibration device
CN111366531B (en) Linear array camera adjusting auxiliary device and adjusting method
KR20060014712A (en) An apparatus for measuring optic axis off-alignment of polarizing plate and phase retardation plate and method thereof
KR0155203B1 (en) Optical detecting using multi-receiving
JPS6366020B2 (en)
KR100476599B1 (en) Board Alignment Method
KR200258826Y1 (en) Cathode ray tube tester
JPH032402B2 (en)
KR19990001730A (en) Alignment Key Formation Structure of Stepper Equipment
KR100892402B1 (en) Housing for Line Scan Camera and Error Compensation Method in strip width measurement using the same
JPH0727520A (en) Height inspecting method and height inspecting device for object on printed board
JPH10136410A (en) Crt convergence measuring method
JP2001124536A (en) Method for detecting inclination of line image sensor and test sheet