JPH0552456B2 - - Google Patents

Info

Publication number
JPH0552456B2
JPH0552456B2 JP10698184A JP10698184A JPH0552456B2 JP H0552456 B2 JPH0552456 B2 JP H0552456B2 JP 10698184 A JP10698184 A JP 10698184A JP 10698184 A JP10698184 A JP 10698184A JP H0552456 B2 JPH0552456 B2 JP H0552456B2
Authority
JP
Japan
Prior art keywords
cell
value
measurement
ratio
zero point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10698184A
Other languages
Japanese (ja)
Other versions
JPS60250233A (en
Inventor
Masashi Endo
Hideyuki Miki
Ryuzo Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59106981A priority Critical patent/JPS60250233A/en
Publication of JPS60250233A publication Critical patent/JPS60250233A/en
Publication of JPH0552456B2 publication Critical patent/JPH0552456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 (イ) 目的 (産業上の利用分野) 本発明は各種工業プロセスのガス濃度の監視や
制御、公害監視のための排ガス濃度測定などに使
用される分析計であつて、ガス分子の赤外線吸収
効果を利用してガス分子の赤外線吸収の強さによ
り試料ガス中の特定成分の濃度を測定する非分散
形赤外線ガス分析計(NDIR)に関する。
[Detailed Description of the Invention] (a) Purpose (Field of Industrial Application) The present invention is an analyzer used for monitoring and controlling gas concentrations in various industrial processes, measuring exhaust gas concentrations for pollution monitoring, etc. , relates to a non-dispersive infrared gas analyzer (NDIR) that uses the infrared absorption effect of gas molecules to measure the concentration of a specific component in a sample gas based on the strength of the infrared absorption of gas molecules.

(従来の技術) 従来の非分散形赤外線ガス分析計においては、
セル内面の汚れについては監視する方法がなく、
出来る限り内面の汚れに影響を受けにくいように
光源からの光束が平行になるように工夫を行なつ
ていた。また、実際の使用に当つては、ゼロ点及
びスパン点変化が大きくなつた場合、その原因の
1つの内面汚れがあるので、光学系を分解し、目
視により汚れ具合をチエツクするのが普通であつ
た。
(Prior art) In a conventional non-dispersive infrared gas analyzer,
There is no way to monitor dirt on the inside of the cell.
Efforts were made to make the light beam from the light source parallel so that it would be as unaffected by dirt on the inside as possible. In addition, in actual use, if the zero point and span point changes become large, one of the causes is dirt on the internal surface, so it is normal to disassemble the optical system and visually check the degree of dirt. It was hot.

(発明が解決しようとする問題点) 従来の赤外線ガス分析計では、セル内面の汚れ
具合はゼロ点及びスパン感度が変化するという問
題が発生しなければなかなか解りにくかつた。
(Problems to be Solved by the Invention) In conventional infrared gas analyzers, it is difficult to determine the degree of contamination on the inner surface of a cell unless the problem of changes in zero point and span sensitivity occurs.

本発明はゼロ点校正時に自動的に検出すること
ができ、問題が発生する以前に定量的に汚れの状
態を正確に把握できる赤外線ガス分析計を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an infrared gas analyzer that can automatically detect contamination during zero point calibration and can accurately and quantitatively determine the state of contamination before a problem occurs.

(ロ) 発明の構成 (問題点を解決するための手段) 本発明の赤外線ガス分析計では、その光学系は
比較セルの透過光と測定セルの透過光を独立して
検出するように構成されており、その検出信号処
理系において、ゼロ点校正時の比較セル側測定値
と測定セル側測定値との比を算出する手段と、最
初のゼロ点校正時のその比の値を基準値として記
憶する手段と、2回目以降のゼロ点校正時のその
比の値を基準値と比較し、測定セルの汚れ具合を
示す値として両値の比を算出する手段とを備えた
ものである。
(B) Structure of the Invention (Means for Solving Problems) In the infrared gas analyzer of the present invention, the optical system is configured to independently detect the transmitted light of the comparison cell and the transmitted light of the measurement cell. In the detection signal processing system, there is a means for calculating the ratio between the comparison cell side measurement value and the measurement cell side measurement value at the time of zero point calibration, and a means for calculating the ratio value at the time of the first zero point calibration as a reference value. It is equipped with a means for storing, and a means for comparing the value of the ratio during the second and subsequent zero point calibration with a reference value, and calculating the ratio of both values as a value indicating the degree of contamination of the measurement cell.

(作用) 測定セルに測定ガスを流して測定を続けている
と、測定セルの内面が次第に汚れてきて透過光量
が減少してくる。そのため、最初の測定値の比
Ro/Moに対し、測定セル内面が汚れた後の測定
値の比Ri/Miを比較すると、(Ri/MI)/
(Ro/Mo)の値がいくらであるかを知ることに
より、試料セルの内面の汚れ具合を知ることがで
きる。
(Function) When measurement is continued by flowing the measurement gas through the measurement cell, the inner surface of the measurement cell gradually becomes dirty and the amount of transmitted light decreases. Therefore, the ratio of the first measurements
Comparing the ratio Ri/Mi of the measured value after the inner surface of the measurement cell is dirty with respect to Ro/Mo, we find that (Ri/MI)/
By knowing the value of (Ro/Mo), it is possible to know how dirty the inner surface of the sample cell is.

(実施例) 第2図は本発明の一実施例の光学系を表わす。(Example) FIG. 2 shows an optical system according to an embodiment of the present invention.

1は測定セル、2は比較セルで、測定セル1は
一端にガス入口3、他端にガス出口4を有する。
1 is a measurement cell, 2 is a comparison cell, and the measurement cell 1 has a gas inlet 3 at one end and a gas outlet 4 at the other end.

5は光源で、モータ6により一定速度で回転す
るセクタ7により、光源5の赤外光線が測定セル
1と比較セル2に交互に導入される。8は測定セ
ル1と比較セル2の透過光を検出する検出器、9
は検出器8の出力信号を増幅する増幅器である。
Reference numeral 5 denotes a light source, and infrared light from the light source 5 is alternately introduced into the measurement cell 1 and the comparison cell 2 by a sector 7 which is rotated at a constant speed by a motor 6. 8 is a detector for detecting the transmitted light of measurement cell 1 and comparison cell 2; 9;
is an amplifier that amplifies the output signal of the detector 8.

測定セル1には、測定ガス、一定濃度の測定成
分を含有するスパンガス、及びN2のように赤外
線に対して吸収のない不活性なゼロガスが切り替
えて流されるようになつており、比較セル2には
不活性なガスが封入されている。
Measurement cell 1 is configured to alternately flow a measurement gas, a span gas containing a certain concentration of measurement components, and an inert zero gas that does not absorb infrared rays, such as N2 , and comparison cell 2. is filled with an inert gas.

セクタ7には、第3図に示されるように、測定
セル1に光量を導入させる窓10と、比較セル2
に光量を導入させる窓11とが隔れた位置で偏心
して開けられている。そのため、このセクタ7の
回転により、光源5からの光量が測定セル1と比
較セル2に交互に導入される。
As shown in FIG.
A window 11 through which the amount of light is introduced is eccentrically opened at a separate position. Therefore, by rotating this sector 7, the amount of light from the light source 5 is alternately introduced into the measurement cell 1 and the comparison cell 2.

検出器8は測定セル1と比較セル2とで共通の
受光部を有し、例えばコンデンサマイクロホンも
しくはマイクロフローセンサを使用した一方向形
圧力検出方式もしくは前後室形検出方式のもの、
又は半導体検出器である。
The detector 8 has a light receiving part common to the measurement cell 1 and the comparison cell 2, and is, for example, a one-way pressure detection system using a condenser microphone or a micro flow sensor, or a front-and-front chamber type detection system.
Or a semiconductor detector.

検出器8の出力波形は第4図に示されるよう
に、比較セルの透過光量による信号20と、測定
セルの透過光量による信号21とが交互に現れ
る。
As shown in FIG. 4, the output waveform of the detector 8 alternates between a signal 20 based on the amount of light transmitted through the comparison cell and a signal 21 based on the amount of light transmitted through the measurement cell.

検出器8の検出信号により、ゼロ点校正時に測
定セル1の汚れ具合を検出するための信号処理系
を第1図に示す。
A signal processing system for detecting the degree of contamination of the measuring cell 1 during zero point calibration using the detection signal of the detector 8 is shown in FIG.

30は演算手段で、測定セル1にゼロガスが導
入されるゼロ点校正時に、増幅器9から信号2
0,21の増幅信号を入力してそれぞれの面積値
を算出して比較信号Rと測定信号Mとし、その比
R/Mを算出する。31は初回のゼロ点校正時の
値Ro/Moを記憶するメモリである。32は比較
手段で、2回目以降の比較信号Riと測定信号Mi
との比Ri/Miと、メモリ31に記憶されている
初回の値Ro/Moとを比較して (Ri/Mi)/(Ro/Mo) (1) の値を算出し、その値は表示手段33により表示
される。
Reference numeral 30 denotes an arithmetic means, which receives the signal 2 from the amplifier 9 during zero point calibration when zero gas is introduced into the measurement cell 1.
The amplified signals of 0 and 21 are input, their respective area values are calculated and used as a comparison signal R and a measurement signal M, and their ratio R/M is calculated. Reference numeral 31 is a memory for storing the values Ro/Mo at the time of initial zero point calibration. 32 is a comparison means, which compares the second and subsequent comparison signals Ri and measurement signals Mi.
(Ri/Mi)/(Ro/Mo) (1) is calculated by comparing the ratio Ri/Mi with the initial value Ro/Mo stored in the memory 31, and the value is displayed. Displayed by means 33.

なお、本実施例では、図示は省略されている
が、測定ガスの濃度を測定するための信号処理系
が備えられており、増幅器9からの出力信号を入
力し、比較信号Rと測定信号Mとの差Δ=(R−
M)により測定ガス濃度が測定されるようになつ
ている。すなわち、測定セル1にゼロガスを導入
したときの値Δoをゼロ点とし、スパンガスを導
入したときの値Δsをスパン点として、測定ガス
を導入したときの値Δをゼロ点とスパン点の間で
比較配分することにより測定ガス濃度が求られ
る。
Although not shown, this embodiment is equipped with a signal processing system for measuring the concentration of the measurement gas, which inputs the output signal from the amplifier 9 and outputs the comparison signal R and the measurement signal M. Difference Δ=(R-
The measurement gas concentration is measured by M). In other words, the value Δo when zero gas is introduced into measurement cell 1 is taken as the zero point, the value Δs when the span gas is introduced is taken as the span point, and the value Δ when the measurement gas is introduced is set between the zero point and the span point. By comparing and allocating, the measured gas concentration is determined.

さて、適当な頻度で行なわれるゼロ点校正時に
おいて、もし、セル内面に汚れがなければ上記第
(1)式の値は1となる。しかし、通常は測定ガス中
に含まれるダストにより試料セルの内面が時間の
経過とともに汚染されていき、測定信号Mもゼロ
点校正時の回を追つて減少して行く。そのため、
本実施例によつて表示手段33により表示される
第(1)式の値は、回を追つて増大して行く。
Now, when zero point calibration is carried out at an appropriate frequency, if there is no dirt on the inside of the cell, then the above
The value of equation (1) is 1. However, normally, the inner surface of the sample cell becomes contaminated with the passage of time due to dust contained in the measurement gas, and the measurement signal M also decreases with each zero point calibration. Therefore,
According to this embodiment, the value of equation (1) displayed by the display means 33 increases with time.

したがつて、この表示された値をみると、測定
セル1がどの程度、汚染されているかを定量的に
把握できる。
Therefore, by looking at the displayed value, it is possible to quantitatively understand how contaminated the measurement cell 1 is.

また、本発明の方式の赤外線ガス分析計では、
例えば光源5のエネルギー変化による光量の変動
や、検出器8の劣替による感度低下があつても、
比較信号Rと測定信号Mに同じ割合で影響が現れ
るため、その比R/Mにはそれらの影響は現れ
ず、安定した測定結果を得ることができる。
Furthermore, in the infrared gas analyzer of the present invention,
For example, even if the light intensity fluctuates due to energy changes in the light source 5 or sensitivity decreases due to deterioration of the detector 8,
Since the comparison signal R and the measurement signal M are influenced at the same rate, these influences do not appear on the ratio R/M, and stable measurement results can be obtained.

RとMとの比はR/MであつてもM/Rであつ
てもよい。
The ratio of R and M may be R/M or M/R.

本発明では上記実施例の他に、種々の変形が可
能である。例えば、セクタの形状を変更し、更に
測定セルと比較セルの組を付加することにより、
実施例のような単一成分測定用だけでなく、多成
分測定用にも利用することができる。
In addition to the above embodiments, the present invention can be modified in various ways. For example, by changing the shape of the sector and adding a set of measurement cells and comparison cells,
It can be used not only for measuring a single component as in the embodiment, but also for measuring multiple components.

また、上記実施例では比較信号Rと測定信号M
として検出器出力波形の面積値を利用している
が、面積値に代えて特定の位置でのピーク値を利
用して同様の演算処理を行なうようにしてもよ
い。ただこの場合は、実施例の面積値を用いる方
式に比べてS/Nが悪くなる。
Furthermore, in the above embodiment, the comparison signal R and the measurement signal M
Although the area value of the detector output waveform is used as the area value, similar arithmetic processing may be performed using the peak value at a specific position instead of the area value. However, in this case, the S/N is worse than the method using the area value of the embodiment.

(ハ) 発明の効果 本発明によつてあらかじめセル内面の汚れ具合
が定量的に把握できるため、クレーム等の問題が
発生する以前に適当な処置を行なうことができ
る。
(C) Effects of the Invention According to the present invention, the degree of contamination on the inner surface of the cell can be quantitatively grasped in advance, so that appropriate measures can be taken before problems such as complaints arise.

更には最初に測定した比較信号と測定信号の値
を管理することにより品質向上にも役立たせるこ
とができる。
Furthermore, by managing the values of the first measured comparison signal and measurement signal, it is possible to improve the quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の信号処理系を示す
ブロツク図、第2図は一実施例の光学系を示す概
略図、第3図は同実施例で使用されているセクタ
を示す平面図、第4図は同実施例における検出器
の検出出力を示す波形図である。 1……測定セル、2……比較セル、8……検出
器、30……演算手段、31……メモリ、32…
…比較手段。
Fig. 1 is a block diagram showing a signal processing system according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing an optical system according to an embodiment, and Fig. 3 is a plane diagram showing sectors used in the embodiment. 4 are waveform diagrams showing the detection output of the detector in the same embodiment. DESCRIPTION OF SYMBOLS 1...Measurement cell, 2...Comparison cell, 8...Detector, 30...Calculating means, 31...Memory, 32...
…A means of comparison.

Claims (1)

【特許請求の範囲】 1 比較セルの透過光と測定セルの透過光を単一
の検出器に交互に導入してそれぞれ独立に測定す
る光学系を備えた赤外線ガス分析計であつて、 ゼロ点校正時の比較セル側測定値と測定セル側
測定値との比を算出する手段と、 最初のゼロ点校正時の前記比の値を基準値とし
て記憶する手段と、 2回目以降のゼロ点校正時の前記比の値を前記
基準値と比較し、測定セルの汚れ具合を示す値と
して両値の比を算出する手段と、をその検出信号
の処理系に備えたことを特徴とする赤外線ガス分
析計。 2 各セルの測定値R及びMは、検出波形の面積
に対応する値である特許請求の範囲第1項に記載
の赤外線ガス分析計。
[Scope of Claims] 1. An infrared gas analyzer equipped with an optical system that alternately introduces transmitted light of a comparison cell and transmitted light of a measurement cell into a single detector and measures each independently, which has a zero point. means for calculating the ratio between the comparison cell-side measurement value and the measurement cell-side measurement value at the time of calibration; a means for storing the value of the ratio at the time of the first zero point calibration as a reference value; and a means for the second and subsequent zero point calibrations. The infrared gas is characterized in that its detection signal processing system is equipped with means for comparing the ratio value of the time with the reference value and calculating the ratio of both values as a value indicating the degree of contamination of the measurement cell. Analyzer. 2. The infrared gas analyzer according to claim 1, wherein the measured values R and M of each cell are values corresponding to the area of the detected waveform.
JP59106981A 1984-05-26 1984-05-26 Infrared gas analyzer Granted JPS60250233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59106981A JPS60250233A (en) 1984-05-26 1984-05-26 Infrared gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59106981A JPS60250233A (en) 1984-05-26 1984-05-26 Infrared gas analyzer

Publications (2)

Publication Number Publication Date
JPS60250233A JPS60250233A (en) 1985-12-10
JPH0552456B2 true JPH0552456B2 (en) 1993-08-05

Family

ID=14447444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59106981A Granted JPS60250233A (en) 1984-05-26 1984-05-26 Infrared gas analyzer

Country Status (1)

Country Link
JP (1) JPS60250233A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063136A1 (en) * 2021-10-12 2023-04-20 株式会社堀場製作所 Gas analysis device, gas analysis method, and program for gas analysis device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582640A (en) * 1981-06-29 1983-01-08 Shimadzu Corp Non-dispersive infrared analyzer
JPS5956153A (en) * 1982-09-25 1984-03-31 Horiba Ltd Discriminating device of abnormal operation in cross-flow infrared gas analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS582640A (en) * 1981-06-29 1983-01-08 Shimadzu Corp Non-dispersive infrared analyzer
JPS5956153A (en) * 1982-09-25 1984-03-31 Horiba Ltd Discriminating device of abnormal operation in cross-flow infrared gas analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063136A1 (en) * 2021-10-12 2023-04-20 株式会社堀場製作所 Gas analysis device, gas analysis method, and program for gas analysis device

Also Published As

Publication number Publication date
JPS60250233A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
US7957001B2 (en) Wavelength-modulation spectroscopy method and apparatus
US4193694A (en) Photosensitive color monitoring device and method of measurement of concentration of a colored component in a fluid
EP0400342B1 (en) Method of infra red analysis
JPH08327545A (en) Infrared gas analyzer
JPH0759594A (en) Measuring humor sample
KR100897279B1 (en) NDIR gas analyzer and gas analyzing method using the same
JPH07151684A (en) Infrared ray type gas analyzer
US5672874A (en) Infrared oil-concentration meter
JPS5892843A (en) Nondispersion type infrared analyzer for measurement of two components
US5528039A (en) Method and apparatus for linearization of non-dispersive infrared detector response
JP3024904B2 (en) Optical gas analyzer
JPH06249779A (en) Gas analyzer
JPH0416749A (en) Method and apparatus for measuring ozone concentration
JPH0552456B2 (en)
EP0261452B1 (en) Gas analyzer
JPH0219718Y2 (en)
JPH09178655A (en) Infrared gas analyzer
CN111929227B (en) Switching method, device, equipment and storage medium of infrared detection pool
JPH055483Y2 (en)
JPS62278436A (en) Fluorescence light measuring method and apparatus
JPH03122550A (en) Method and apparatus of measuring grain
JPH07260685A (en) Oil concentration analyzer
JP3004459U (en) Infrared gas analyzer
JPH06281578A (en) Gas analyzer
JPS609715Y2 (en) gas analyzer