JPH0552439B2 - - Google Patents

Info

Publication number
JPH0552439B2
JPH0552439B2 JP57158110A JP15811082A JPH0552439B2 JP H0552439 B2 JPH0552439 B2 JP H0552439B2 JP 57158110 A JP57158110 A JP 57158110A JP 15811082 A JP15811082 A JP 15811082A JP H0552439 B2 JPH0552439 B2 JP H0552439B2
Authority
JP
Japan
Prior art keywords
slide valve
piston
cylinder chamber
slide
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57158110A
Other languages
Japanese (ja)
Other versions
JPS5949391A (en
Inventor
Kimio Nagata
Shigekazu Nozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15811082A priority Critical patent/JPS5949391A/en
Publication of JPS5949391A publication Critical patent/JPS5949391A/en
Publication of JPH0552439B2 publication Critical patent/JPH0552439B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary-Type Compressors (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明スクリユー圧縮機の容量制御装置に係
り、特にスライド弁の移動の容易性をはかつたス
クリユー圧縮機の容量制御装置に関する。 〔従来の技術〕 スクリユー圧縮機の容量制御はスライド弁によ
つて行なわれることが多い。このスライド弁式の
容量制御方式は、該スライド弁をスクリユーロー
タの軸の方向に移動させ、圧縮カスの一部をスラ
イド弁の位置により吸入側にバイパスさせること
により容量を制御する方式である。上記のスライ
ド弁を移動させる機構はスライド弁にスライドピ
ストンを連結し、このピストンの左右に油圧等に
より圧力差を付与し、ピストンを移動させる駆動
力を得ている。 第1図を参考して従来のスクリユー圧縮機及び
その容量制御機構について説明する。 吸入口1より吸入された低温、低圧のガスは一
対のスクリユーロータ2の回転圧縮により高温、
高圧なガスに圧縮される。スクリユーロータは、
ラジアル軸受3とスラスト軸受4によつて保持さ
れる。圧縮室は、ロータ2とケーシング6および
吸入側カバ9とスライド弁11により形成され
る。又、図に示す圧縮機の場合、大気との密封の
ため軸シール5およびシールカバ7、吐出側カバ
8を有する。高温高圧のガスは、吐出口10より
吐出される。 次に容量制御機構について説明する。 圧縮機の一部を形成するスライド弁11にはロ
ツド12を介してスラスト方向にピストン13が
連結され、このピストン13の前後の室14、室
15に油圧により圧力差を生じさせ、スライド弁
11を図示左方向にピストン13を介し動かして
容量を制御する方式である。運転中のスライド弁
11前後には吐出圧力と吸入圧力が作用するが、
シリンダ室14に電磁弁16、を介し給油管18
から高圧油20を導き、またシリンダ室15から
は電磁弁22を介して、排油管19を経て吸入側
1に接続すると、ピストン13の前後に圧力差が
生じ図示の左方向に力が作用する。この力が吐出
圧力による右方向の力より大きい場合はスライド
弁11は左方向に動き、圧縮容量は少なくなる。
逆に容量を多くする場合は、シリンダ室15に電
磁弁17を介して給油管から高圧油20を導き、
またシリンダ室14から電磁弁23を介し排油管
19を経て吸入側1に接続するとピストン13の
前後に圧力差が生じ、図示の右方向に力が作用す
る。この力がスライド弁にかかる左方向の力より
大きい場合は、スライド弁11は右方向に動き、
圧縮容量は多くなる。又、ピストン13を中間位
置で保持したい場合は、全ての電磁弁16,1
7,22,23を閉めれば、ピストン前後のシリ
ンダ室の油はにげることが出来ないため、ピスト
ンは動かなく、中間位置で保持する。電磁弁1
6,17,22,23と容量の関係を纏めると次
の表に示される。
[Industrial Application Field] The present invention relates to a capacity control device for a screw compressor, and particularly to a capacity control device for a screw compressor that facilitates the movement of a slide valve. [Prior Art] The capacity of a screw compressor is often controlled by a slide valve. This slide valve type capacity control system controls the capacity by moving the slide valve in the direction of the axis of the screw rotor and bypassing a portion of the compressed scum to the suction side depending on the position of the slide valve. . The mechanism for moving the slide valve described above connects a slide piston to the slide valve, and applies a pressure difference between the left and right sides of the piston using hydraulic pressure or the like to obtain a driving force for moving the piston. A conventional screw compressor and its capacity control mechanism will be explained with reference to FIG. The low-temperature, low-pressure gas inhaled through the suction port 1 is compressed by the rotation of a pair of screw rotors 2, resulting in high temperature and low-pressure gas.
Compressed into high pressure gas. The screw rotor is
It is held by a radial bearing 3 and a thrust bearing 4. The compression chamber is formed by the rotor 2, the casing 6, the suction side cover 9, and the slide valve 11. Further, the compressor shown in the figure has a shaft seal 5, a seal cover 7, and a discharge side cover 8 for sealing against the atmosphere. The high temperature and high pressure gas is discharged from the discharge port 10. Next, the capacity control mechanism will be explained. A piston 13 is connected in the thrust direction via a rod 12 to a slide valve 11 forming a part of the compressor, and a pressure difference is created between a chamber 14 and a chamber 15 before and after the piston 13 by hydraulic pressure. This is a system in which the displacement is controlled by moving the piston 13 to the left in the figure via a piston 13. Discharge pressure and suction pressure act before and after the slide valve 11 during operation.
An oil supply pipe 18 is connected to the cylinder chamber 14 through a solenoid valve 16.
When high-pressure oil 20 is introduced from the cylinder chamber 15 and connected to the suction side 1 via the solenoid valve 22 and the oil drain pipe 19, a pressure difference is generated before and after the piston 13, and a force acts in the left direction as shown in the figure. . If this force is larger than the rightward force due to the discharge pressure, the slide valve 11 moves to the left and the compression capacity decreases.
On the other hand, when increasing the capacity, high pressure oil 20 is introduced into the cylinder chamber 15 from the oil supply pipe via the solenoid valve 17.
Further, when the cylinder chamber 14 is connected to the suction side 1 via the electromagnetic valve 23 and the oil drain pipe 19, a pressure difference is generated before and after the piston 13, and a force acts in the right direction in the drawing. If this force is greater than the leftward force on the slide valve, the slide valve 11 moves to the right;
Compression capacity increases. Also, if you want to hold the piston 13 at an intermediate position, all solenoid valves 16, 1
If 7, 22, and 23 are closed, the oil in the cylinder chambers before and after the piston cannot escape, so the piston does not move and is held at an intermediate position. Solenoid valve 1
The relationship between 6, 17, 22, 23 and capacity is summarized in the following table.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記構造によると運転中スライド弁11には、
常時、吐出圧により右方向の力が、作用している
ので、左方向に動かす力と右方向に動かす力は、
右方向の方がはるか大きい。この力関係に応じて
ピストンの動く速さも、この力に比例するので、
中間で停止する制御がむずかしい事及び電磁弁を
含んだ配管が複雑になる問題点を有する。 また、本出願人は、特開昭54−162222号公報に
記載のように、ピストンの反スライド弁側区画室
にスプリング或いは空気圧によるばね手段を設け
て容量増大の駆動力として利用し、スライド弁側
区画室に高圧油を流通してスライド弁を調整する
装置を考案したが、スライド弁側区画室に高圧油
を常時流さなければならないため、消費油量が多
く、エネルギー効率に問題があつた。 本発明は上記問題点に鑑みなされたもので、ス
クリユー圧縮機の容量制御装置において、ピスト
ンの動く速さを安定させ、電磁弁を含んだ配管を
簡略にすると共に、消費油量を少なくしてエネル
ギー効率を向上させた容量制御装置を提供するこ
とを目的とする。 〔課題を解決するための手段〕 上記目的を達成するために本発明は、ケーシン
グ6内に配設された雌雄一対のスクリユーロータ
2の下部にスライド弁11が配置され、該スライ
ド弁11の吐出側端面にロツド12を連接し、該
ロツドにスライドピストン13が配設され、該ス
ライドピストンにより油圧シリンダ内にスライド
弁側シリンダ室14と反スライド弁側シリンダ室
15とを有するスクリユー圧縮機の容量制御装置
において、前記スライド弁側シリンダ室14と反
スライド弁側シリンダ室15とは液密に区分さ
れ、且つ該スライド弁側シリンダ室14にのみ押
圧バネ21が配設されているとともに、前記反ス
ライド弁側シリンダ室15は配管24を介して吸
入ガス側へのみ常時連通され、且つ前記スライド
弁側シリンダ室14には給油及び排油を兼用する
配管のみが接続され、この配管を分岐して一方が
電磁弁16を介在させて圧油源20に接続すると
ともに他方が電磁弁23を介在させて前記配管2
4を介して吸入ガス側に接続されていることを特
徴とするものである。 〔作用〕 上記の構成によれば、圧縮機の圧縮容量を多く
する場合の容量制御は、電磁弁16を閉の状態で
電磁弁23を開き、スライド弁側シリンダ室14
にある油を吸入側に排圧すると、ピストン前後の
圧力はバランスし、シリンダ室15はシリンダ室
14と同様に低圧になる。スライド弁11には運
転中の吐出圧力としてスライド弁11が開く方向
の力が常時作用しており、この力によつてスライ
ド弁11は反シリンダ側に動き、圧縮機の圧縮容
量は多くなる。逆に圧縮容量を少なくする場合の
容量制御は、電磁弁23を閉の状態で電磁弁16
を開いて給油管18から高圧油20をスライド弁
側シリンダ室14に導き、ピストン13の前後の
圧力差により、ピストン13は反スライド弁側に
動き、圧縮容量は少なくなる。ピストン13を中
間位置で保持したい場合は、二個の電磁弁16,
23を閉めることにより、スライド弁側シリンダ
室14内の油量が固定され、ピストン13は動か
なくなり、シリンダ室14内の固定された油量に
応じた位置で保持される。また、圧縮機の運転停
止中はピストン13は押圧バネ21によつて反ス
ライド弁側に移動し、少ない圧縮容量から起動で
きるようにセツトされる。 したがつて、ピストンの動く距離は電磁弁前後
の圧力差と通電時間に限定される。ここで圧力差
は圧縮機の運転状態により刻々変化するが、制御
因子である電磁弁の通電時間が単純化されるの
で、圧縮機の運転状態に対する追従性が向上す
る。すなわち、吐出ガスの容量は、スライドピス
トンへの給油量だけ減少すると共に、排油量だけ
増大し、給油を停止すれば一定のなる。そのた
め、容量制御に用いる高圧油はスライドピストン
のシリンダ容積分だけで済み、圧縮機を含めたエ
ネルギー効率が向上する。また、電磁弁を含む油
圧配管が簡略化され、油圧ピストン自体も単純化
することができるので、制御の変動要因少なくす
ることができる。 通常、スライドピストンの大きさは、スライド
弁の断面図より約1〜3割大きく設計されてお
り、従つて、従来例におけるスライド弁の駆動力
は次のような関係にある。 容量を少なくする制御の場合の力の関係式: 駆動力=[ピストン断面積−スライド弁断面積] ×[高圧油の圧力−低圧の圧力] 容量を多くする制御の場合の力の関係式: 駆動力=[ピストン断面積+スライド弁断面図] ×[高圧油の圧力−低圧の圧力] これに対して、本発明の上記によれば、容量を
多くする場合の制御は、反スライド弁側へ高圧油
を供給するのをやめて低圧に連通させたので、駆
動力=[スライド弁断面積]×[高圧油の圧力−低
圧の圧力]となり、容量を多くする場合と少なく
する場合との駆動力のバランスを維持することが
できる。 〔実施例〕 以下本発明の一実施例を第2図に基づき説明す
る。図は第1図と相異する部分のみを示し、その
他の第1図と同様な部分は省略してある。 ケーシング6内に配設された雌雄一対のスクリ
ユーロータ2の下部にはスライド弁11が配置さ
れ、スライド弁11の吐出側端面にはロツド12
を連接しその先端にスライドピストン13が配設
されている。該ピストン13の反スライド弁側室
(左室)15は配管24を介し図示されていない
吸入ガス側へ常時接続連通されている。ピストン
13の反対側のスライド弁側室(右室)14には
押圧バネ21が配設されていると共に、該室14
は電磁弁16を介在した配管にて圧油源20に接
続され、また電磁弁23を介して上記配管24
(吸入ガス側)にも接続されている。 次に上記構造の装置の作用について説明する。
圧縮機の圧縮容量を少なくする場合の容量制御
は、電磁弁16を開いて給油管18から高圧油2
0をシリンダ右室14に導き、シリンダ左室15
は、常時低圧と連結されているので、ピストン1
3の前後の圧力差が生じ、ピストン13は左方向
に力が作用する。この力はスライド弁11の右方
向の力より大きいので、スライド弁は左方向に動
き、容量は少なくなる。逆に容量を多くする場合
の容量制御は、シリンダ右室14にある油を、電
磁弁23を開き、吸入側に排圧すると、ピストン
前後はバランスし、低圧になる。この時スライド
弁11前後には高圧と低圧の圧力差により、スラ
イド弁11は図示の右方向に力が作用するので、
スライド弁は右方向に動き、圧縮容量は多くな
る。ピストン13を中間位置で保持したい場合
は、二個の電磁弁16,23を閉めれば、シリン
ダ室14を油はにげることができないため、ピス
トンは動かなく、中間位置で保持される。電磁弁
16,23と容量の関係を次の表に示す。
According to the above structure, during operation, the slide valve 11 has:
Since a rightward force is always acting due to the discharge pressure, the force to move it to the left and the force to move it to the right are:
The one on the right is much larger. Depending on this force relationship, the speed at which the piston moves is also proportional to this force, so
There are problems in that it is difficult to control the stop in the middle and that the piping including the solenoid valve is complicated. Furthermore, as described in Japanese Patent Application Laid-Open No. 162222/1982, the present applicant provided a spring or pneumatic spring means in the compartment chamber on the opposite side of the slide valve of the piston and used it as a driving force to increase the capacity of the slide valve. We devised a device to adjust the slide valve by flowing high-pressure oil into the side compartment, but since high-pressure oil had to be constantly flowing into the slide valve side compartment, the amount of oil consumed was large and there were problems with energy efficiency. . The present invention was made in view of the above problems, and is used in a capacity control device for a screw compressor by stabilizing the moving speed of the piston, simplifying the piping including the solenoid valve, and reducing the amount of oil consumed. The purpose of the present invention is to provide a capacity control device with improved energy efficiency. [Means for Solving the Problems] In order to achieve the above object, the present invention includes a slide valve 11 disposed at the lower part of a pair of male and female screw rotors 2 disposed in a casing 6. A screw compressor having a rod 12 connected to the discharge side end face, a slide piston 13 disposed on the rod, and a slide valve side cylinder chamber 14 and a non-slide valve side cylinder chamber 15 in the hydraulic cylinder by the slide piston. In the capacity control device, the slide valve side cylinder chamber 14 and the non-slide valve side cylinder chamber 15 are liquid-tightly divided, and a pressing spring 21 is disposed only in the slide valve side cylinder chamber 14, and the pressure spring 21 is disposed only in the slide valve side cylinder chamber 14. The anti-slide valve side cylinder chamber 15 is always in communication only with the suction gas side via piping 24, and only a piping for both oil supply and oil drainage is connected to the slide valve side cylinder chamber 14, and this piping is branched. One side is connected to the pressure oil source 20 through a solenoid valve 16, and the other side is connected to the piping 2 through a solenoid valve 23.
It is characterized in that it is connected to the intake gas side via 4. [Operation] According to the above configuration, capacity control when increasing the compression capacity of the compressor is performed by opening the solenoid valve 23 with the solenoid valve 16 closed, and opening the solenoid valve 23 in the slide valve side cylinder chamber 14.
When the oil in the piston is discharged to the suction side, the pressures before and after the piston are balanced, and the pressure in the cylinder chamber 15 becomes low as in the cylinder chamber 14. A force in the direction of opening the slide valve 11 is constantly acting on the slide valve 11 as discharge pressure during operation, and this force moves the slide valve 11 toward the side opposite to the cylinder, increasing the compression capacity of the compressor. Conversely, when reducing the compression capacity, the capacity control is performed by closing the solenoid valve 23 and turning on the solenoid valve 16.
When opened, high pressure oil 20 is introduced from the oil supply pipe 18 into the slide valve side cylinder chamber 14, and due to the pressure difference between the front and rear sides of the piston 13, the piston 13 moves toward the side opposite to the slide valve, and the compression capacity decreases. If you want to hold the piston 13 in an intermediate position, use two solenoid valves 16,
By closing 23, the amount of oil in the cylinder chamber 14 on the slide valve side is fixed, the piston 13 does not move, and is held at a position corresponding to the fixed amount of oil in the cylinder chamber 14. Further, while the compressor is stopped, the piston 13 is moved by the pressure spring 21 toward the side opposite to the slide valve, and is set so that the compressor can be started from a small compression capacity. Therefore, the distance the piston moves is limited to the pressure difference before and after the solenoid valve and the energization time. Here, the pressure difference changes moment by moment depending on the operating state of the compressor, but since the energization time of the solenoid valve, which is a control factor, is simplified, the ability to follow the operating state of the compressor is improved. That is, the volume of discharged gas decreases by the amount of oil supplied to the slide piston, increases by the amount of oil discharged, and remains constant when the oil supply is stopped. Therefore, the amount of high-pressure oil used for capacity control is only the cylinder volume of the slide piston, improving energy efficiency including the compressor. Further, the hydraulic piping including the electromagnetic valve is simplified, and the hydraulic piston itself can be simplified, so that control fluctuation factors can be reduced. Usually, the size of the slide piston is designed to be about 10 to 30% larger than the cross-sectional view of the slide valve, and therefore, the driving force of the slide valve in the conventional example has the following relationship. Force relational expression for control to reduce capacity: Driving force = [piston cross-sectional area - slide valve cross-sectional area] × [high pressure oil pressure - low pressure pressure] Force relational expression for control to increase capacity: Driving force = [piston cross-sectional area + slide valve cross-sectional view] × [pressure of high pressure oil - pressure of low pressure] On the other hand, according to the above aspect of the present invention, control when increasing the capacity is performed on the opposite side of the slide valve. Since we stopped supplying high pressure oil to low pressure and connected it to low pressure, driving force = [slide valve cross-sectional area] x [pressure of high pressure oil - pressure of low pressure], and the drive when increasing the capacity and when decreasing it. Able to maintain power balance. [Example] An example of the present invention will be described below based on FIG. 2. The figure shows only parts that are different from FIG. 1, and other parts that are similar to FIG. 1 are omitted. A slide valve 11 is disposed at the bottom of a pair of male and female screw rotors 2 disposed inside the casing 6, and a rod 12 is disposed at the discharge side end surface of the slide valve 11.
A slide piston 13 is disposed at the tip of the piston. The anti-slide valve side chamber (left chamber) 15 of the piston 13 is constantly connected to the suction gas side (not shown) via a pipe 24. A pressure spring 21 is disposed in the slide valve side chamber (right chamber) 14 on the opposite side of the piston 13, and
is connected to the pressure oil source 20 through a piping with a solenoid valve 16 interposed therebetween, and is connected to the piping 24 through a solenoid valve 23.
(Suction gas side) is also connected. Next, the operation of the device having the above structure will be explained.
Capacity control when reducing the compression capacity of the compressor is performed by opening the solenoid valve 16 and supplying high pressure oil 2 from the oil supply pipe 18.
0 into the cylinder right ventricle 14 and into the cylinder left ventricle 15.
is always connected to low pressure, so piston 1
A pressure difference occurs between the front and rear sides of piston 13, and a force acts on the piston 13 in the left direction. Since this force is greater than the rightward force on the slide valve 11, the slide valve moves to the left and its capacity decreases. On the other hand, to control the capacity when increasing the capacity, open the electromagnetic valve 23 to discharge the oil in the cylinder right chamber 14 to the suction side, and the front and rear of the piston are balanced and the pressure becomes low. At this time, a force acts on the slide valve 11 in the right direction as shown in the figure due to the pressure difference between the high pressure and the low pressure before and after the slide valve 11.
The slide valve moves to the right and the compression capacity increases. If it is desired to hold the piston 13 at an intermediate position, the two electromagnetic valves 16 and 23 are closed. Since oil cannot escape from the cylinder chamber 14, the piston does not move and is held at the intermediate position. The relationship between the solenoid valves 16 and 23 and their capacity is shown in the following table.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、容量制御
の変動要因を減少することができたので、スライ
ドピストンの動く速さは従来技術に比べてはるか
に安定し、中間位置による容量制御も簡単にな
り、同時に電磁弁の個数が半減されるので配管を
簡単にすることができるばかりか、容量制御に用
いる消費油量が減少するので、圧縮機を含めた機
械のエネルギー効率が向上する。
As explained above, according to the present invention, the fluctuation factors in displacement control can be reduced, so the moving speed of the slide piston is much more stable than in the conventional technology, and displacement control at intermediate positions can be easily performed. At the same time, the number of solenoid valves is halved, which not only simplifies piping, but also reduces the amount of oil consumed for capacity control, improving the energy efficiency of the machine including the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のスクリユー圧縮機の縦断面図
で、第2図は本発明の一実施例を示す容量制御機
構の部分断面図である。 2……ロータ、6……ケーシング、11……ス
ライド弁、12……ロツド、13……ピストン、
14……右室、15……左室、16……電磁弁、
18……給油管、20……高圧油、21……バ
ネ、23……電磁弁、24……配管。
FIG. 1 is a longitudinal sectional view of a conventional screw compressor, and FIG. 2 is a partial sectional view of a capacity control mechanism showing an embodiment of the present invention. 2... Rotor, 6... Casing, 11... Slide valve, 12... Rod, 13... Piston,
14... Right ventricle, 15... Left ventricle, 16... Solenoid valve,
18... Oil supply pipe, 20... High pressure oil, 21... Spring, 23... Solenoid valve, 24... Piping.

Claims (1)

【特許請求の範囲】 1 ケーシング6内に配設された雌雄一対のスク
リユーロータ2の下部にスライド弁11が配置さ
れ、該スライド弁11の吐出側端面にロツド12
を連接し、該ロツドにスライドピストン13が配
設され、該スライドピストンにより油圧シリンダ
内にスライド弁側シリンダ室14と反スライド弁
側シリンダ室15とを有するスクリユー圧縮機の
容量制御装置において、 前記スライド弁側シリンダ室14と反スライド
弁側シリンダ室15とは液密に区分され、且つ該
スライド弁側シリンダ室14にのみ押圧バネ21
が配設されているとともに、前記反スライド弁側
シリンダ室15は配管24を介して吸入ガス側へ
のみ常時連通され、且つ前記スライド弁側シリン
ダ室14には給油及び排油を兼用する配管のみが
接続され、この配管を分岐して一方が電磁弁16
を介在させて圧油源20に接続するとともに他方
が電磁弁23を介在させて前記配管24を介して
吸入ガス側に接続されていることを特徴とするス
クリユー圧縮機の容量制御装置。
[Claims] 1. A slide valve 11 is disposed at the bottom of a pair of male and female screw rotors 2 disposed in a casing 6, and a rod 12 is disposed on the discharge side end surface of the slide valve 11.
A displacement control device for a screw compressor, in which a slide piston 13 is arranged on the rod, and a slide valve side cylinder chamber 14 and a non-slide valve side cylinder chamber 15 are formed in a hydraulic cylinder by the slide piston, The slide valve side cylinder chamber 14 and the anti-slide valve side cylinder chamber 15 are separated in a liquid-tight manner, and the pressing spring 21 is installed only in the slide valve side cylinder chamber 14.
The cylinder chamber 15 on the non-slide valve side is always in communication only with the intake gas side via the piping 24, and the cylinder chamber 14 on the slide valve side is provided with only piping for both oil supply and oil drainage. is connected, and this piping is branched and one end is connected to the solenoid valve 16.
A capacity control device for a screw compressor, characterized in that one end is connected to a pressure oil source 20 through an intervening solenoid valve 23, and the other is connected to the suction gas side through the piping 24 through an electromagnetic valve 23.
JP15811082A 1982-09-13 1982-09-13 Volume control device of screw compressor Granted JPS5949391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15811082A JPS5949391A (en) 1982-09-13 1982-09-13 Volume control device of screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15811082A JPS5949391A (en) 1982-09-13 1982-09-13 Volume control device of screw compressor

Publications (2)

Publication Number Publication Date
JPS5949391A JPS5949391A (en) 1984-03-21
JPH0552439B2 true JPH0552439B2 (en) 1993-08-05

Family

ID=15664516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15811082A Granted JPS5949391A (en) 1982-09-13 1982-09-13 Volume control device of screw compressor

Country Status (1)

Country Link
JP (1) JPS5949391A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068312Y2 (en) * 1988-10-29 1994-03-02 北越工業株式会社 Screw compressor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162222A (en) * 1978-06-14 1979-12-22 Hitachi Ltd Device for controlling capacity of screw compressor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54162222A (en) * 1978-06-14 1979-12-22 Hitachi Ltd Device for controlling capacity of screw compressor

Also Published As

Publication number Publication date
JPS5949391A (en) 1984-03-21

Similar Documents

Publication Publication Date Title
JPH0744775Y2 (en) Compressor capacity control device
CN100545457C (en) Cooling recirculation system
JPS6193294A (en) Capacity controlling device of screw compressor
JPH04276196A (en) Screw compressor
US20080304990A1 (en) Screw Compressor
JPH0552439B2 (en)
JPS60228788A (en) Scroll type hydraulic machine
JPS60164693A (en) Capacity controller for screw compressor
JPS6149189A (en) Variable displacement type rotary compressor
JP2777713B2 (en) Capacity control device for hermetic screw compressor
JPH06100188B2 (en) Oil-free screw vacuum pump
JPS5879689A (en) Variable displacement type compressor
JPH0456158B2 (en)
US4993923A (en) Rotary compressor with capacity regulation valve
JPS6415484A (en) Rotor stabilizing device for screw compressor
JPS6332948Y2 (en)
JPS6040874Y2 (en) Swash plate compressor
JPH0118864Y2 (en)
JPS5939195Y2 (en) Rotary compressor capacity control device
JPH0144916B2 (en)
JPS60249684A (en) Scroll type hydraulic machine
JP2517867Y2 (en) Vane back pressure control device in gas compressor
JPS6215514Y2 (en)
JPS60153490A (en) Rotary compressor with capacity controller
JPS5874892A (en) Variable capacity type vane compressor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term