JPH055227B2 - - Google Patents

Info

Publication number
JPH055227B2
JPH055227B2 JP58044193A JP4419383A JPH055227B2 JP H055227 B2 JPH055227 B2 JP H055227B2 JP 58044193 A JP58044193 A JP 58044193A JP 4419383 A JP4419383 A JP 4419383A JP H055227 B2 JPH055227 B2 JP H055227B2
Authority
JP
Japan
Prior art keywords
signal
output
pulse
circuit
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58044193A
Other languages
Japanese (ja)
Other versions
JPS59171371A (en
Inventor
Toshuki Akyama
Moriji Izumida
Naoki Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58044193A priority Critical patent/JPS59171371A/en
Publication of JPS59171371A publication Critical patent/JPS59171371A/en
Publication of JPH055227B2 publication Critical patent/JPH055227B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Picture Signal Circuits (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は低周波の雑音を低減する固体撮像装置
の駆動方法と信号読み出し方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for driving a solid-state imaging device and a method for reading out signals that reduce low-frequency noise.

〔従来技術〕[Prior art]

第1図は従来のCCD型固体撮像装置の原理図
である。マトリツクス状に配列された光ダイオー
ド2からなる感光部9と、光ダイオードに蓄積さ
れた光信号を読み出すための縦方向のCD11〜
1Nおよび水平方向のCCD3と、転送された信
号を増幅して出力する出力AMP4から成つてい
る。
FIG. 1 is a diagram showing the principle of a conventional CCD type solid-state imaging device. A photosensitive section 9 consisting of photodiodes 2 arranged in a matrix, and a vertical CD 11 for reading out optical signals accumulated in the photodiodes.
It consists of a 1N and horizontal CCD 3 and an output AMP 4 that amplifies and outputs the transferred signal.

第2図は出力AMP4の回路例である。30は
水平方向のCCD3で転送した信号電荷料QSを電
圧量に変換する小さい静電容量Q0、31は容量
C0間に信号電荷量QSに比例して生じる信号電圧
V0=QS/C0を低インピーダンスで出力するソー
ス・フオロア用MOS型FET、32は容量C0内の
信号電荷量QSを外部に取り除くためのリセツト
用MOS型FETである。
FIG. 2 is a circuit example of the output AMP4. 30 is a small capacitance Q 0 that converts the signal charge Q S transferred by the horizontal CCD 3 into a voltage amount, and 31 is a capacitor
Signal voltage generated between C 0 and proportional to signal charge Q S
A source-follower MOS type FET outputs V 0 =Q S /C 0 with low impedance, and 32 is a reset MOS type FET for removing the signal charge amount Q S in the capacitor C 0 to the outside.

この第1図、第2図の構造の素子において、信
号は次の様にして読み出される。すなわちまず1
フレーム期間で光ダイオード2に蓄積した信号電
荷を、垂直帰線期間の間に縦方向のCCD11〜
1N内に移す。縦方向のCCDは水平帰線期間ご
とに1ラインづつ転送し、信号電荷を水平方向の
CCD3に順次移す。水平帰線期間に水平方向の
CCDに移した信号電荷は、それに続く1水平期
間の間に水平方向のCCDにクロツクパルスを加
えることによつて順次容量C0内に転送する。l
番目のクロツクパルスで容量C0に移した信号電
荷Q(l) Sは、容量C0間に電圧V(l) 0を生じ、ソース・フ
オロア出力端33から電圧振幅V(l) 0の信号パルス
第3図4lを出力する。この後信号電荷Q(l) Sをリ
セツト用MOS型FETを通して外部に取り除く。
また次のl+1番目のクロツクパルスで再び次の
信号電荷Q(l+1) Sを容量C0に移し、電圧振幅V(l+1) 0
信号パルス第3図4(l+1)を出力する。以下
同様の操作を繰り返すことによつて、順次信号を
信号電荷Q(l) Sに比例した電圧振幅V(l) 0を持つ信号パ
ルス列第3図cとして出力する。
In the device having the structure shown in FIGS. 1 and 2, signals are read out in the following manner. In other words, first 1
The signal charges accumulated in the photodiode 2 during the frame period are transferred to the vertical CCDs 11 to 11 during the vertical retrace period.
Move within 1N. The vertical CCD transfers one line per horizontal retrace period, and the signal charge is transferred to the horizontal direction.
Transfer to CCD3 sequentially. horizontal retrace period
The signal charge transferred to the CCD is sequentially transferred into the capacitor C0 by applying a clock pulse to the horizontal CCD during one subsequent horizontal period. l
The signal charge Q (l) S transferred to the capacitor C 0 by the second clock pulse generates a voltage V (l) 0 across the capacitor C 0 , and a signal pulse with voltage amplitude V (l) 0 is generated from the source follower output terminal 33. 3. Output 4l. After this, the signal charge Q (l) S is removed to the outside through the reset MOS FET.
Also, at the next l+1-th clock pulse, the next signal charge Q (l+1) S is transferred to the capacitor C 0 again, and a signal pulse (l+1) of FIG. 3 with voltage amplitude V (l+1) 0 is output. Thereafter, by repeating the same operation, signals are sequentially output as a signal pulse train (c) in FIG. 3 having a voltage amplitude V (l) 0 proportional to the signal charge Q (l) S.

第4図は第3図cの出力信号パルス列の周波数
分布の説明図である。すなわち出力信号パルス列
の振幅を変調する信号電荷の列…Q(l) S(tl-1)、Q(l) S
(tl)、Q(l+1) S(tl+1)、…周波数分布が第4図aに

す分布を持つとき、第3図cの出力信号パルス列
の周波数分布は第4図bの様になる。図において
50はベースバンド成分で、パルス振幅変調する
ことによる周波数特性sinπfτ/πf(ただしτ=パ
ルス幅)を第4図aの変調信号に掛けた周波数分
布を示している。また51は基本波成分で、リセ
ツトパルスと同じ周波数frの搬送波とその側波帯
から成つている。以下5mは第3図cの第m次高
調波成分で、周波数m×frの搬送波とその側帯波
から成つている。
FIG. 4 is an explanatory diagram of the frequency distribution of the output signal pulse train of FIG. 3c. In other words, a train of signal charges that modulates the amplitude of the output signal pulse train...Q (l) S (t l-1 ), Q (l) S
(t l ), Q (l+1) S (t l+1 ),...When the frequency distribution has the distribution shown in Figure 4 a, the frequency distribution of the output signal pulse train in Figure 3 c is as shown in Figure 4 b. It will look like this. In the figure, reference numeral 50 denotes a baseband component, which represents a frequency distribution obtained by multiplying the modulated signal in FIG. 4a by the frequency characteristic sinπfτ/πf (where τ=pulse width) resulting from pulse amplitude modulation. Further, 51 is a fundamental wave component, which consists of a carrier wave having the same frequency fr as the reset pulse and its sidebands. Below, 5m is the m-th harmonic component of Fig. 3c, which consists of a carrier wave of frequency m×f r and its sideband waves.

第5図は第3図cの出力信号パルス列から映像
信号(変調信号成分)を取り出す回路の回路構成
例を示したものである。固体撮像装置7の出力信
号パルス列第3図cは、初めLPF61を通す。
これにより出力信号パルス列のベースバンド成分
第4図b50のみ取り出し、信号処理回路62に
よつてSYNC他のテレビ信号の同期信号を挿入し
てテレビ信号として出力する。図において63は
固体撮像装置の駆動回路である。なお上記の方法
で取り出す出力信号パルス列のベースバンド成分
50のレベルは、出力信号パルスの幅τ(容量C0
内に信号電荷を保持する時間)に比例して増大す
る。従つて第5図の信号読み出し方法では、パル
スの幅τはできるだけ広くし、ほぼリセツトパル
ス同期Tに等しくなるように調節するのが望まし
い。
FIG. 5 shows an example of the circuit configuration of a circuit for extracting a video signal (modulated signal component) from the output signal pulse train of FIG. 3c. The output signal pulse train c of the solid-state imaging device 7 in FIG. 3 is first passed through the LPF 61.
As a result, only the baseband component (b50 in FIG. 4) of the output signal pulse train is extracted, and the signal processing circuit 62 inserts SYNC and other synchronizing signals of the television signal, and outputs it as a television signal. In the figure, 63 is a drive circuit for the solid-state imaging device. Note that the level of the baseband component 50 of the output signal pulse train extracted by the above method is determined by the width τ of the output signal pulse (capacitance C 0
It increases in proportion to the amount of time the signal charge is held within the current. Therefore, in the signal readout method shown in FIG. 5, it is desirable to make the pulse width .tau. as wide as possible and adjust it so that it is approximately equal to the reset pulse synchronization T.

ところで固体撮像装置では、出力AMP第1図
4の初段のトランジスタ31は一般にMOS型
FETで構成する。第2図のごとく容量C0間電圧
を初段トランジスタのゲート端子に加えるタイプ
のAMPのランダム雑音は、主に熱雑音と1/f雑音
とから構成される。第6図は第4図の出力信号パ
ルス列の周波数分布に上記雑音成分を重ねて示し
たもので、60は1/f雑音を、64は熱雑音を示
している。第6図からも明らかなように、熱雑音
の周波数分布が平坦なのに対し、1/f雑音は低周
波成分ほど大きく、画面上で横方向に線状に雑音
が現われるため画室を著しく劣化させている。特
にMOS型FETではこの1/f雑音が大きく、その影
響が著しい。
By the way, in solid-state imaging devices, the first stage transistor 31 of the output AMP 1 in FIG. 4 is generally a MOS type transistor.
Consists of FETs. The random noise of the type of AMP that applies the voltage across the capacitor C 0 to the gate terminal of the first stage transistor as shown in Figure 2 is mainly composed of thermal noise and 1/f noise. FIG. 6 shows the above-mentioned noise components superimposed on the frequency distribution of the output signal pulse train shown in FIG. 4, where 60 indicates 1/f noise and 64 indicates thermal noise. As is clear from Figure 6, while the frequency distribution of thermal noise is flat, 1/f noise is larger as the frequency component becomes lower, and as the noise appears in a horizontal line on the screen, it significantly deteriorates the picture chamber. There is. This 1/f noise is particularly large in MOS FETs, and its influence is significant.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述第1図の固体撮像装置に
おいて、1/f雑音等による低周波雑音成分の低減
された映像信号を得る固体撮像装置の駆動方法及
び信号の読み出し方法を提供することにある。
An object of the present invention is to provide a method for driving a solid-state imaging device and a method for reading out a signal in the solid-state imaging device shown in FIG. be.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、第1に固体
撮像装置出力信号パルス列のパルス幅τ(容量C0
内に信号電荷QSを保持する時間)をリセツトパ
ルス周期Tの役半分τ≒T/2に設定すること、
第2に上記設定時の出力パルス列の基本波成分か
ら同期検波によつて映像信号を取り出すこと、第
3に同期検波に用いる局部信号は、リセツトパル
スの基本波の位相を調節して出力信号パルス列基
本波成分の搬送波と同一位相にしたものを用いる
ことに特徴がある。
To achieve the above object, the present invention first provides a pulse width τ (capacitance C 0
setting the time period for which the signal charge Q S is held within the period T to be half of the reset pulse period T ≈T/2;
Second, the video signal is extracted by synchronous detection from the fundamental wave component of the output pulse train under the above settings. Third, the local signal used for the synchronous detection is generated by adjusting the phase of the fundamental wave of the reset pulse to generate the output signal pulse train. The feature is that a carrier wave having the same phase as the fundamental wave component is used.

一般に第3図c出力信号パルス列の振幅V(l) 0が Q(l) S=kcos(Ptl) (1) ただし tl=n×T の信号電荷量によつて変化している時、第3図c
の出力信号パルス列は V0(t)=1/T〔const+2/PsinPτ/2×kcosPt+2
m=1 {2/mωRsinmωR/2×cosmωRt +2/mωR−Psin(mωR−P)τ/2×k/2cos(
R−P)t+2/mωR+Psin(mωR+P)τ/2×
k/2cos(mωR
+P)t}〕 (2) ただし ωR=2πfR=2π/T と表わせる。上式において第1項は直流レベル、
第2項はベースバンド成分(第4図50)、第3
項は基本波成分及びその高調波成分(第4図5
1,52,…)を表わす。
In general, when the amplitude V (l) 0 of the output signal pulse train in Fig. 3c changes depending on the amount of signal charge Q (l) S = kcos (Pt l ) (1) where t l = n × T, Figure 3c
The output signal pulse train is V 0 (t)=1/T [const+2/PsinPτ/2×kcosPt+2
m=1 {2/mω R sinmω R /2×cosmω R t +2/mω R −Psin(mω R −P)τ/2×k/2cos(
R −P)t+2/mω R +Psin(mω R +P)τ/2×
k/2cos(mω R
+P)t}] (2) However, it can be expressed as ω R =2πf R =2π/T. In the above equation, the first term is the DC level,
The second term is the baseband component (Fig. 4, 50), and the third term is the baseband component (Fig. 4, 50).
The terms are the fundamental wave component and its harmonic components (Fig.
1, 52,...).

従来の信号読み出し方法第5図は、(2)式第2項
をLPFを使つて取り出すもので、この方法では
前述した項に(2)式の混入した1/f雑音等大きさ
低周波雑音もそのまま読み出した信号内に混入す
る。
The conventional signal readout method shown in Figure 5 uses an LPF to extract the second term of equation (2).In this method, the above-mentioned term contains low frequency noise such as 1/f noise mixed in equation (2). is mixed into the read signal as is.

本発明ではこれら1/f雑音等低周波雑音の混
入を防止するため、これらの雑音レベルが小さい
高い周波数領域、特に(2)式第3項m=1の項に当
たる基本波成分をBPFで取り出し、リセツトパ
ルス基本波の位相を調節して作つた局部信号 cosωRt (3) を乗積する同期検波により映像信号を取り出す。
In the present invention, in order to prevent the mixing of low frequency noise such as 1/f noise, the high frequency region where the noise level is small, especially the fundamental wave component corresponding to the term m = 1 in the third term of equation (2), is extracted by BPF. , a video signal is extracted by synchronous detection multiplied by a local signal cosω R t (3) created by adjusting the phase of the reset pulse fundamental wave.

すなわち(3)式の局部信号を(2)式m=1の基本波
成分に乗積した信号 f(t)∝(sinτ/2(ωR−P)/ωR−P+sinτ/2
(ωR+P)/ωR+P) ×ksosPt +(周波数3/4πωR以上の項) (4) のベースバンド成分((4)式第1項)をLPFで取
り出し、周波数特数の補正をほどこすことによ
り、1/f雑音等低周波雑音の少ない映像信号 kcosPt (5) を得ることができる。
In other words, the signal f(t)∝(sinτ/2(ω R −P)/ω R −P+sinτ/2
R +P) / ω R +P) ×ksosPt + (term above frequency 3/4πω R ) The baseband component of (4) (first term of equation (4)) is extracted by LPF and the frequency characteristic is corrected. By applying this, it is possible to obtain a video signal kcosPt (5) with less low frequency noise such as 1/f noise.

この時(4)式第1項から明らかなように検波信号
の大きさは第3図cの出力信号パルスの幅τによ
つて変化する。特に低周波雑音に対するSNを決
めるP〜0における検波信号の大きさは、 |sinωR/2τ/ωR| に比例して変化する。従つて |sinωR/2τ/ωR| が最大値を取る時、すなわち出力信号のホールド
時間を τ≒T/2 (6) に設定することにより、最もSNのよい映像信号
を得るとができる。
At this time, as is clear from the first term of equation (4), the magnitude of the detected signal changes depending on the width τ of the output signal pulse shown in FIG. 3c. In particular, the magnitude of the detection signal at P~0, which determines the SN with respect to low frequency noise, changes in proportion to |sinω R /2τ/ω R |. Therefore, when |sinω R /2τ/ω R | takes the maximum value, that is, by setting the hold time of the output signal to τ≒T/2 (6), a video signal with the best SN can be obtained. .

以上述べたように本発明による固体撮像装置の
駆動方法及び信号の読み出し方法においては、
1/f雑音等低周波雑音の少ない、SNの高い安
定し映像信号を得ることができる。
As described above, in the method for driving a solid-state imaging device and the method for reading signals according to the present invention,
A stable video signal with high SN and low frequency noise such as 1/f noise can be obtained.

以上基本成分から信号を取り出す場合について
述べたが、一般にm次高調波成分から同様にして
信号を読み出すことができる。ただしこの時、第
3図cの出力信号パルスの幅τを τ≒2n+1/2m×T (7) ただし n=0、1、…、m−1 に設定することにより、高SNの信号を読み出す
ことができる。
Although the case where the signal is extracted from the fundamental component has been described above, it is generally possible to read the signal from the m-th harmonic component in a similar manner. However, at this time, by setting the width τ of the output signal pulse in Figure 3c to τ≒2n+1/2m×T (7) where n=0, 1,..., m-1, a high SN signal can be read out. be able to.

〔発明の実施例〕[Embodiments of the invention]

第7図、第8図は本発明の方法を実現する信号
の読み出し方法とその駆動方法の一実施例であ
る。第7図において、固体撮像装置7はクロク周
波数7.16MHzで駆動する。また第8図に示すよう
にリセツトパルスφRの幅はリセツトパルス周期
T=140nsecの半分70msec以下にするとともに信
号転送パルスφH2の立ち上がり位置がリセツトパ
ルスの立ち上がり位置のほぼ中心になるように
し、出力信号パルスの幅τ(容量C0に信号電荷を
保持する時間)がリセツトパルス周期Tの約半分
になるように設定する。出力信号パルス列は体育
3.58MHz〜10.74MHzのBPF71を通し基本波成
分を取り出し、同期検波回路72によつて検波し
た後、信号処理回路62によつて周波数特性の補
正とテレビ信号の同期信号を挿入してテレビ信号
として出力する。一方同期検波回路72で使用す
る局部信号は、リセツトパルスφRおよびこれに
同期した信号転送パルスφH2を使い、多安定マル
チバイブレータ73によつて出力信号パルス列と
同位相のパルス第7図dを作り、BPF74によ
つてその基本波を取り出した後、検波回路72内
で位相の微調節を行なつたものを使用する。
FIGS. 7 and 8 show an embodiment of a signal readout method and a driving method for realizing the method of the present invention. In FIG. 7, the solid-state imaging device 7 is driven at a clock frequency of 7.16MHz. In addition, as shown in FIG. 8, the width of the reset pulse φ R is set to less than 70 msec, which is half of the reset pulse period T = 140 nsec, and the rising position of the signal transfer pulse φ H2 is set approximately at the center of the rising position of the reset pulse. The width τ of the output signal pulse (the time for holding the signal charge in the capacitor C0 ) is set to be approximately half the reset pulse period T. The output signal pulse train is P.E.
After extracting the fundamental wave component through the BPF 71 of 3.58MHz to 10.74MHz and detecting it by the synchronous detection circuit 72, the signal processing circuit 62 corrects the frequency characteristics and inserts a synchronization signal of the TV signal to generate the TV signal. Output. On the other hand, the local signal used in the synchronous detection circuit 72 uses a reset pulse φ R and a signal transfer pulse φ H2 synchronized with this, and a pulse (d in FIG. 7) having the same phase as the output signal pulse train is generated by the multistable multivibrator 73. After the fundamental wave is extracted by the BPF 74, the phase is finely adjusted in the detection circuit 72, and then used.

映像信号は出力信号に混入している1/f雑音
等低周波雑音の少ない基本波成分の帯域から取り
出すとともに、基本波成分のレベルが最大になる
ように出力信号パルスの幅τをリセツトパルス周
期Tの約半分τ≒T/2に設定してあるため、低
周波雑音の少ない、高SN比の映像信号を得るこ
とができる。また基本波成分からの映像信号の検
波は出力信号パルス列に完全に同期したリセツト
パルスから作る局部信号を用いて同期検波するた
め、安定した映像信号の検波を行なうことができ
る。
The video signal is extracted from the fundamental wave component band where there is little low frequency noise such as 1/f noise mixed in the output signal, and the width τ of the output signal pulse is reset so that the level of the fundamental wave component is maximized. Since it is set to about half of T, τ≈T/2, it is possible to obtain a video signal with little low frequency noise and a high SN ratio. Furthermore, since the detection of the video signal from the fundamental wave component is performed using a local signal generated from a reset pulse completely synchronized with the output signal pulse train, synchronous detection is performed, so that stable video signal detection can be performed.

以上第2図の出力AMP回路例によつて説明し
たが、第9図の出力AMP回路等、一般にAMP入
力端容量C0間に現われる信号電圧を電力あるい
は電圧増幅するタイプの出力AMP回路を有する
CCD型固体撮像装置あるいは第10図の様な
MOS型とCCD型を結合したタイプの固体撮像装
置やCCD型ラインセンサ、CCD型遅延線等の信
号読み出しにも使用することができる。
The above has been explained using the example of the output AMP circuit shown in Fig. 2, but the output AMP circuit, such as the output AMP circuit shown in Fig. 9, generally has a type of output AMP circuit that amplifies the power or voltage of the signal voltage appearing between the AMP input terminal capacitance C0 .
A CCD type solid-state image sensor or a device like the one shown in Figure 10.
It can also be used to read signals from solid-state imaging devices that combine MOS and CCD types, CCD line sensors, CCD delay lines, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、CCD型等出力AMP入力端容
量C0間に現われる信号電圧を電力あるいは電圧
増幅するタイプの出力AMPを有する固体撮像装
置において、1/f雑音等の低周波雑音の少ない
信号を得ることができる。
According to the present invention, in a solid-state imaging device having a type of output AMP that amplifies the power or voltage of a signal voltage appearing between the input end capacitance C0 of a CCD type equal output AMP, a signal with less low frequency noise such as 1/f noise can be used. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のCCD型固体撮像装置の原理図、
第2図は出力AMPの回路例、第3図は出力信号
波形、第4図、第6図は第3図出力信号の周波数
分布、第5図は従来の信号読み出し及び信号処理
回路の構成、第7図は本発明による信号読み出し
回路及び信号処理回路例、第8図は本発明による
固体撮像装置及び信号処理回路の駆動方法、第9
図は第2図以外の出力AMP回路例、第10図は
本発明を適用できるCCD型以外の固体撮像装置
の原理図である。
Figure 1 shows the principle of a conventional CCD solid-state imaging device.
Figure 2 shows an example of the output AMP circuit, Figure 3 shows the output signal waveform, Figures 4 and 6 show the frequency distribution of the output signal in Figure 3, and Figure 5 shows the configuration of a conventional signal readout and signal processing circuit. FIG. 7 shows an example of a signal readout circuit and a signal processing circuit according to the present invention, FIG. 8 shows a method for driving a solid-state imaging device and a signal processing circuit according to the present invention, and FIG.
The figure shows an example of an output AMP circuit other than that shown in FIG. 2, and FIG. 10 is a principle diagram of a solid-state imaging device other than a CCD type to which the present invention can be applied.

Claims (1)

【特許請求の範囲】 1 所定周期Tの信号転送パルスに応じてパルス
的に送られて来る信号電荷QSを、AMP入力端静
電容量C0内に蓄積し、該容量C0間に現われる信
号電圧を電力増幅あるいは電圧増幅して出力する
出力AMP回路と、該出力AMP回路からの出力信
号パルス列の基本波成分を含むm次高調波成分か
ら信号成分を抽出し検波する検出回路と、上記出
力AMP回路と上記検出回路とを駆動するための
駆動回路とを有する固体装置の信号読み出し方法
において、上記駆動回路が、上記出力AMP回路
から出力する出力信号パルスの幅τを、 τ≒2n+1/2m×T (ただし、m=1、2、…、n=m−1、T=リ
セツトパルス周期)を満たすように駆動し、上記
リセツトパルスと上記信号転送パルスとから生成
される出力信号と同位相、同一パルス幅τを有す
るパルスに応じて、上記検出回路を駆動すること
を特徴とする固体装置の信号読み出し方法。
[Claims] 1. A signal charge Q S sent in a pulsed manner in response to a signal transfer pulse with a predetermined period T is accumulated in the AMP input end capacitance C 0 and appears between the capacitance C 0 an output AMP circuit that power amplifies or voltage amplifies a signal voltage and outputs it; a detection circuit that extracts and detects a signal component from m-th harmonic components including a fundamental wave component of an output signal pulse train from the output AMP circuit; In a signal readout method for a solid-state device having a drive circuit for driving an output AMP circuit and the detection circuit, the drive circuit sets the width τ of the output signal pulse output from the output AMP circuit to τ≒2n+1/ 2m×T (where m = 1, 2, ..., n = m-1, T = reset pulse period), and the output signal is the same as the output signal generated from the above reset pulse and the above signal transfer pulse. A signal readout method for a solid-state device, characterized in that the detection circuit is driven according to pulses having the same phase and pulse width τ.
JP58044193A 1983-03-18 1983-03-18 Method for reading signal of solid-state device Granted JPS59171371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044193A JPS59171371A (en) 1983-03-18 1983-03-18 Method for reading signal of solid-state device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044193A JPS59171371A (en) 1983-03-18 1983-03-18 Method for reading signal of solid-state device

Publications (2)

Publication Number Publication Date
JPS59171371A JPS59171371A (en) 1984-09-27
JPH055227B2 true JPH055227B2 (en) 1993-01-21

Family

ID=12684730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044193A Granted JPS59171371A (en) 1983-03-18 1983-03-18 Method for reading signal of solid-state device

Country Status (1)

Country Link
JP (1) JPS59171371A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63142976A (en) * 1986-12-05 1988-06-15 Sharp Corp Noise eliminating circuit for video signal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524113A (en) * 1975-06-28 1977-01-13 Nippon Hoso Kyokai <Nhk> Solid pickup equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524113A (en) * 1975-06-28 1977-01-13 Nippon Hoso Kyokai <Nhk> Solid pickup equipment

Also Published As

Publication number Publication date
JPS59171371A (en) 1984-09-27

Similar Documents

Publication Publication Date Title
JP2798670B2 (en) Apparatus for recovering an information signal component from an output signal generated by a charge transfer device including a reset noise component that differs for each sample
JP2535344B2 (en) Signal recovery device
EP0140292A1 (en) Image-sensing system with noise eliminator
JPS63177666A (en) Electronic still camera
JPH055227B2 (en)
US5398060A (en) Multiplexed noise suppression signal recovery for multiphase readout of charge device arrays
JPH055226B2 (en)
JPH0746844B2 (en) Signal readout device for solid-state imaging device
JPH01208975A (en) Signal processor for charge coupled device
KR900002385B1 (en) Ccd floating element output stages providing low reset noise with signal sampling
US4412190A (en) Apparatus for processing CCD output signals
JP2652793B2 (en) Imaging device
JPH04246976A (en) Camera device
JPH08237557A (en) Correlator circuit
JP3824686B2 (en) Correlated double sampling circuit
JP3346802B2 (en) Video camera light receiving device
JPS607429B2 (en) Driving method of solid-state image sensor
JP2522394B2 (en) Charge coupled device signal processing circuit
JP2502757B2 (en) Composite PAL video translator
JP2805984B2 (en) Charge coupled device signal processing device
JP2947663B2 (en) CCD camera system
JPS5887974A (en) Video signal pickup system
JPH059987B2 (en)
JP2659650B2 (en) Pulse generator
JPH0478224B2 (en)