JPH0552195B2 - - Google Patents

Info

Publication number
JPH0552195B2
JPH0552195B2 JP60193867A JP19386785A JPH0552195B2 JP H0552195 B2 JPH0552195 B2 JP H0552195B2 JP 60193867 A JP60193867 A JP 60193867A JP 19386785 A JP19386785 A JP 19386785A JP H0552195 B2 JPH0552195 B2 JP H0552195B2
Authority
JP
Japan
Prior art keywords
amino acid
produced
group
microorganisms
amino acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60193867A
Other languages
Japanese (ja)
Other versions
JPS6255097A (en
Inventor
Keiichi Sakashita
Tetsuji Nakamura
Ichiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Nitto Chemical Industry Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Nitto Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd, Nitto Chemical Industry Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP60193867A priority Critical patent/JPS6255097A/en
Priority to GB8619969A priority patent/GB2182036B/en
Priority to DE3629242A priority patent/DE3629242C2/en
Priority to FR868612429A priority patent/FR2586702B1/en
Publication of JPS6255097A publication Critical patent/JPS6255097A/en
Priority to US07/525,302 priority patent/US5215897A/en
Publication of JPH0552195B2 publication Critical patent/JPH0552195B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/80Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はL−アミノ酸の製造法に関する。より
詳しくは特定の微生物が産生する酵素の作用によ
り、DL−またはL−アミノ酸アミドからL−ア
ミノ酸を製造する方法に関する。 L−アミノ酸は、食品添加物、飼料添加物、医
薬品および各種工業薬品の中間体として重要な化
合物である。 従来の技術 L−アミノ酸は、一般に直接発酵法または、有
機合成化学的に製造されたDL−アミノ酸を光学
分割する方法により製造されているが、最近では
化学合成により安価に得られる前駆物質を酵素に
より転換させる、いわゆるケミコエンザイマチツ
ク(Chemico−Enzymatic)な方法による製法も
数多く提案、実用化されている。 例えば、DL−アミノ酸のN−アシル誘導体に
微生物の産生するアシラーゼを作用させる方法
(特公昭41−22380号公報)、DL−アミノ酸のヒダ
ントイン誘導体に微生物の産生するヒダントイナ
ーゼを作用させる方法(特公昭54−2274号公報)、
フマル酸に微生物の産生するアスパルターゼを作
用させる方法(特公昭57−18867号および、特開
昭59−14089号各公報)および桂皮酸に微生物の
産生するフエニルアラニンアンモニアリアーゼを
作用させる方法(Appl.Environ、Microbiol、42
773(1981))などはL−アミノ酸のケミコエン
ザイマチツクな製法の代表例である。 しかしながら、これらの方法は、反応系が複雑
であつたり、反応条件が苛酷であつたり、また原
料が高価であるなどの問題点があり、工業的製法
として、なお改善の余地が残されている。 また、最近、微生物が産生する酵素により各種
DL−またはL−アミノ酸アミドから対応するL
−アミノ酸を生成させる反応について、バチルス
属、バクテリジウム属、ミクロコツカス属および
ブレビバクテリジウム属の微生物が産生する酵素
L−アミダーゼを用いる方法(公表昭56−500319
号公報)、種々の酵母、細菌類が産生するL−ア
ミダーゼを用いる方法(特開昭57−13000号、同
59−159789号および同60−36446号各公報)など
を提案されている。 しかしながら、これらの方法はいずれもL−ア
ミダーゼ活性が弱く、多量の菌体を用いてL−ア
ミノ酸の生成反応を行つた実験例であつたり、た
だ単にいろいろの種属の公知菌株が種々のDL−
またはL−アミノ酸アミドを加水分解して対応す
るL−アミノ酸を生成するということを見出し
た、などの知見にすぎず、微生物が産生する酵素
の作用によるDL−またはL−アミノ酸アミドか
らのL−アミノ酸の工業的製造法という観点から
みた場合、これら微生物を用いたのでは到底経済
的に有利な製造法とはなり得ない。 発明の概要 かかる状況から、本発明者らは、特に化学合成
で容易かつ安価に製造できるDL−アミノ酸アミ
ドを原料とし、これから対応するL−アミノ酸を
効率良く生成することのできる高いL−アミダー
ゼ活性をもつ酵素を産生する微生物を得るべく、
各地の土壌、汚泥等より菌のスクリーニングを行
つた結果、エンテロバクター・クロアツセイN−
7901の微生物の産生する酵素が極めて高いL−ア
ミダーゼ活性を有し、本発明の目的達成に極めて
有効であることを見出し、本発明を完成するに到
つた。 すなわち、本発明は、エンテロバクター・クロ
アツセイ(Enterobacter Cloacae)N−7901〔微
工研条寄第873号〕の微生物が産生するL−アミ
ノ酸アミド加水分解活性を有する酵素の作用によ
り、 一般式 〔式中、Rはアルキル基(炭素数1〜4)、フ
エニル基、アラルキル基または置換基を有するこ
れらの基を表す。〕 で示されるDL−またはL−アミノ酸アミドから
対応するL−アミノ酸を生成せしめること、を特
徴とするL−アミノ酸の製造法を要旨とするもの
である。 発明の具体的説明 本発明において使用される微生物は、前記のよ
うに本発明者らにより新たに分離、見出されたも
のであり、微工研条寄第873号(エンテロバクタ
ー・クロアツセイN−7901)として工業技術院微
生物工業研究所(微工研)に寄託されている。 これら微生物の菌学的性質は以下の通りであ
る。 N−7901菌株 (1) 形態 桿 菌 0.8〜1.2×1.0〜1.5μm 鞭 毛 周毛1本以上 運動性 + グラム染色性 陰 性 (2) 生理学的性質 硝酸塩の還元 + 脱窒反応 − MRテスト − VPテスト + インドールの生成 − 硫化水素の生成 − クエン酸塩の利用 + 色素の生成 − ウレアーゼ − オキシダーゼ − カタラーゼ + 生育の範囲 PH4〜10 至適温度 35〜37℃ 酸素に対する態度 通性 嫌気性 O−Fテスト F 糖類から酸 およびガスの生成 酸の生成 ガスの生成 アドニトール − − アラビノース + + キシロース + + グルコース + + マンノース + + フラクトース + + ガラクトース + + マルトース + + シユークロース + + ラクトース + + ラフイノース + ラムノース + グリセリン + + ソルビトール + + マンニトール + + イノシトール − − ズルシトール − − (3) その他 デンプンの分解 − ゼラチンの分解 − 尿素の分解 弱 マロン酸塩の利 用 + リジンの脱炭酸 反応 − オルニチンの脱 炭酸反応 + フエニルアラニン の脱アミノ反応 − アルギニンジヒ ドロラーゼ + β−ガラクトシ ダーゼ + シアン化カリウ ムの耐性 + 以上の菌学的性質をバージエーズ・マニユア
ル・オブ・デタミネイテイブ・バクテリオロジー
第8版(Bergy′s Manual of Determinative
Bacteriology 8th.ed.)に従つて検索すると、N
−7901菌株はエンテロバクター・クロアツセイに
属する細菌と同定された。 上記微生物を培養して本発明の酵素を生成せし
めるには、炭素源、窒素源、無機塩および有機栄
養源を含有する通常の培地を用い好気的に該微生
物の培養を行えばよい。 炭素源としてはグルコース、フラクトース、シ
ユークロース、マルトース等の糖類、酢酸、クエ
ン酸等の有機酸その他が適宜使用でき、その使用
量は通常培地中に0.1〜10%(重量%、以下同じ)
である。窒素源としてはペプトン、肉エキス、酵
母エキス、コーンステイープリカー、蛋白質加水
分解物、アミノ酸等の一般天然窒素源の他に各種
の無機酸または有機酸のアンモニウム塩等が使用
できる。無機塩類としてはKH2PO4,K2HPO4
Na2HPO4,NaCl,CaCl2,MgSO4・7H2Oおよ
びFe,Mn,Zn,Co等の重金属イオンが必要に
応じて適宜使用される。なお、この際、高い酵素
活性を誘導させるため炭素数2〜5の脂肪属アミ
ド(例えば、アセトアミド、プロピオンアミド、
ブチルアミド、サクシノアミド等)を少量添加す
ることが効果的であり、その添加量は使用する微
生物によつて若干異なるが通常培地中0.01%以
上、とりわけ0.1〜0.5%程度とするのが好まし
い。 培養はPH5〜10、温度20〜40℃の範囲で1〜5
日間好気的に行う。 本発明は、微生物が産生する酵素の作用を利用
するものであるが、その酵素作用は上記のように
培養して得た微生物の培養液、分離生菌体、また
は菌体処理物(例えば菌体破砕物、菌体抽出物
等)、さらには常法に従つて菌体または菌体処理
物をポリアクリルアミド、カラギーナン等で固定
化した菌体等いずれの使用によつても得ることが
可能で、これらの使用形態は全て本発明に適用し
得る。 加水分解反応は、通常、前記一般式で示される
DL−またはL−アミノ酸アミド濃度0.5〜50%
(反応基質溶液はスラリー状であつてもよい)、微
生物等の使用量は乾燥菌体として反応液当たり
0.01〜10%、反応温度20〜60℃、PH6〜11、反応
時間5分〜100時間の範囲で行う。 かくして、反応液中に生成、蓄積したL−アミ
ノ酸は、イオン交換法、その他公知の方法を組合
せて分離、精製し取得することができる。 本発明に使用されるDL−またはL−アミノ酸
アミドは、前記一般式中、Rがアルキル基(炭素
数1〜4)、フエニル基、アラルキル基または置
換基を有するこれらの基で表される化合物であ
り、置換基としてはメルカプト基、ヒドロキシル
基、アミノ基、カルボキシル基、フエニル基、イ
ンドリル基、ピリジル基、イミダゾリン基等であ
る。 本発明のL−アミノ酸の製造の具体例として
は、例えば、L−フエニルアラニン、L−トリプ
トフアン、L−ロイシン、L−メチオニン、L−
セリン等を挙げることができる。 以下、実施例によつて本発明を具体的に説明す
るが、本発明はこれらの例のみに限定されるもの
ではない。なお、各実施例中、L−アミノ酸の確
認、定量は薄層クロマトグラフイーによるニンヒ
ドリン発色位置および高速液体クロマトグラフイ
ーにより行つた。 実施例 1 下記の組成の培地を使用し、30℃で48時間N−
7901菌の振盪培養を行つた。 シユークロース 1% 肉エキス 0.5% 無機塩類MgSO4・7H2O 0.01% FeSO4・7H2O 0.001% MnSO4・4H2O 0.001% CaCl2・2H2O 0.001% ZnSO4・7H2O 0.0001% プロピオンアミド 0.5% PH5 この培養液100mlを遠心分離し、得られた生菌
体を50mlのTris−HCl緩衝液(PH9)に懸濁し
た。次いで、この懸濁液1mlを第1表に示した各
種アミドの0.5%水溶液〔Tris−HCl緩衝液
(PH9)使用〕4mlに加え、30℃で10〜15分反応
させた。除菌後反応液中の生成アミノ酸量、L−
アミノ酸/生成アミノ酸を測定し、第1表に示す
結果を得た。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing L-amino acids. More specifically, the present invention relates to a method for producing L-amino acids from DL- or L-amino acid amides by the action of enzymes produced by specific microorganisms. L-amino acids are important compounds as food additives, feed additives, pharmaceuticals, and intermediates for various industrial chemicals. PRIOR TECHNOLOGY L-amino acids are generally produced by direct fermentation or optical resolution of DL-amino acids produced by organic synthesis, but recently, precursors that can be obtained inexpensively by chemical synthesis have been produced using enzymes. Many production methods using so-called chemico-enzymatic methods have been proposed and put into practical use. For example, a method in which an acylase produced by a microorganism is applied to an N-acyl derivative of a DL-amino acid (Japanese Patent Publication No. 41-22380), a method in which a hydantoinase produced by a microorganism is applied to a hydantoin derivative of a DL-amino acid (Japanese Patent Publication No. 41-22380), -2274 publication),
A method in which fumaric acid is reacted with aspartase produced by a microorganism (Japanese Patent Publication No. 18867/1986 and JP Patent Publication No. 59/14089) and a method in which cinnamic acid is reacted with phenylalanine ammonia lyase produced by a microorganism ( Appl.Environ, Microbiol, 42
773 (1981)) are representative examples of chemical enzymatic production methods for L-amino acids. However, these methods have problems such as complicated reaction systems, harsh reaction conditions, and expensive raw materials, and there is still room for improvement as an industrial production method. . In addition, recently, enzymes produced by microorganisms have been used to
DL- or L-amino acid amide to the corresponding L
- A method using L-amidase, an enzyme produced by microorganisms of the genus Bacillus, Bacteridium, Micrococcus and Brevibacterium, for reactions that produce amino acids (Published in 1983-500319)
method using L-amidase produced by various yeasts and bacteria (Japanese Unexamined Patent Publication No. 13000/1983),
59-159789 and 60-36446). However, all of these methods have weak L-amidase activity, and are examples of experiments in which L-amino acid production reactions were carried out using a large amount of bacterial cells, or simply the use of known bacterial strains of various species to produce various DLs. −
or the discovery that L-amino acid amide can be hydrolyzed to produce the corresponding L-amino acid, but it is merely a finding that L- from DL- or L-amino acid amide is produced by the action of enzymes produced by microorganisms. From the viewpoint of an industrial production method for amino acids, the use of these microorganisms cannot be an economically advantageous production method. SUMMARY OF THE INVENTION Under these circumstances, the present inventors developed an L-amidase with high L-amidase activity that can efficiently produce the corresponding L-amino acid from DL-amino acid amide, which can be easily and inexpensively produced through chemical synthesis, as a raw material. In order to obtain microorganisms that produce enzymes with
As a result of screening for bacteria in soil, sludge, etc. from various places, Enterobacter cloatusei N-
The present inventors have discovered that the enzyme produced by the microorganism No. 7901 has extremely high L-amidase activity and is extremely effective in achieving the objects of the present invention, and has completed the present invention. That is, the present invention provides the ability to convert the general formula [In the formula, R represents an alkyl group (having 1 to 4 carbon atoms), a phenyl group, an aralkyl group, or a substituent-containing group. ] The gist of the present invention is a method for producing an L-amino acid, which is characterized by producing a corresponding L-amino acid from a DL- or L-amino acid amide represented by the following. Detailed Description of the Invention The microorganism used in the present invention was newly isolated and discovered by the present inventors as described above, and was introduced in FIKEN Article No. 873 (Enterobacter cloatusei N- 7901) and has been deposited with the Institute of Microbiology (Feikoken), Agency of Industrial Science and Technology. The mycological properties of these microorganisms are as follows. N-7901 strain (1) Morphology Bacillus 0.8-1.2 x 1.0-1.5 μm Flagella 1 or more pericyla Motility + Gram staining negative (2) Physiological properties Nitrate reduction + denitrification reaction − MR test − VP test + Production of indole - Production of hydrogen sulfide - Utilization of citrate + Production of pigment - Urease - Oxidase - Catalase + Growth range PH4-10 Optimum temperature 35-37℃ Attitude towards oxygen Facultative Anaerobic O- F test F Production of acid and gas from sugars Production of acid Production of gas Adonitol - - Arabinose + + Xylose + + Glucose + + Mannose + + Fructose + + Galactose + + Maltose + + Seuucrose + + Lactose + + Raffinose + Rhamnose + Glycerin + + Sorbitol + + Mannitol + + Inositol - - Dulcitol - - (3) Others Decomposition of starch - Decomposition of gelatin - Decomposition of urea Weak Utilization of malonate + Decarboxylation of lysine - Decarboxylation of ornithine + Deamination reaction of phenylalanine - Arginine dihydrolase + β-galactosidase + Potassium cyanide resistance + The above mycological properties are summarized in Bergy's Manual of Determinative Bacteriology, 8th edition. of Determinative
Bacteriology 8th.ed.), N
-7901 strain was identified as a bacterium belonging to Enterobacter cloatusei. In order to produce the enzyme of the present invention by culturing the above-mentioned microorganism, the microorganism may be cultured aerobically using a conventional medium containing a carbon source, a nitrogen source, an inorganic salt, and an organic nutrient source. As a carbon source, sugars such as glucose, fructose, sucrose, and maltose, organic acids such as acetic acid and citric acid, and others can be used as appropriate, and the amount used is usually 0.1 to 10% (wt%, the same hereinafter) in the medium.
It is. As the nitrogen source, in addition to general natural nitrogen sources such as peptone, meat extract, yeast extract, cornstarch liquor, protein hydrolyzate, and amino acids, ammonium salts of various inorganic or organic acids can be used. Inorganic salts include KH 2 PO 4 , K 2 HPO 4 ,
Na 2 HPO 4 , NaCl, CaCl 2 , MgSO 4 .7H 2 O, and heavy metal ions such as Fe, Mn, Zn, Co, etc. are used as appropriate. At this time, in order to induce high enzyme activity, fatty amides having 2 to 5 carbon atoms (e.g., acetamide, propionamide,
It is effective to add a small amount of (butyramide, succinoamide, etc.), and the amount added varies slightly depending on the microorganism used, but it is usually 0.01% or more in the medium, and preferably about 0.1 to 0.5%. Culture at pH 5-10 and temperature 20-40℃.
Perform aerobically for days. The present invention utilizes the action of enzymes produced by microorganisms, and the enzymatic action is achieved by using the microorganism culture solution, isolated live microorganisms, or processed microorganisms (e.g. microorganisms) obtained by culturing as described above. It can be obtained by using any of the following methods: crushed microbial cells, microbial cell extracts, etc.), and microbial cells obtained by immobilizing microbial cells or processed microbial cells with polyacrylamide, carrageenan, etc. according to conventional methods. , all of these usage forms can be applied to the present invention. The hydrolysis reaction is usually represented by the above general formula.
DL- or L-amino acid amide concentration 0.5-50%
(The reaction substrate solution may be in the form of a slurry.) The amount of microorganisms used is as dry bacterial cells per reaction solution.
The reaction temperature is 20 to 60°C, the pH is 6 to 11, and the reaction time is 5 minutes to 100 hours. The L-amino acid produced and accumulated in the reaction solution can be separated and purified using a combination of the ion exchange method and other known methods. The DL- or L-amino acid amide used in the present invention is a compound in which R is an alkyl group (having 1 to 4 carbon atoms), a phenyl group, an aralkyl group, or a substituent-containing group in the above general formula. Examples of substituents include a mercapto group, a hydroxyl group, an amino group, a carboxyl group, a phenyl group, an indolyl group, a pyridyl group, and an imidazoline group. Specific examples of the production of L-amino acids of the present invention include L-phenylalanine, L-tryptophan, L-leucine, L-methionine, L-
Serine etc. can be mentioned. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited only to these Examples. In each example, L-amino acid was confirmed and quantified using ninhydrin color development using thin layer chromatography and high performance liquid chromatography. Example 1 Using a medium with the following composition, N-
7901 bacteria was cultured by shaking. Seuclose 1% Meat extract 0.5% Inorganic salts MgSO 4・7H 2 O 0.01% FeSO 4・7H 2 O 0.001% MnSO 4・4H 2 O 0.001% CaCl 2・2H 2 O 0.001% ZnSO 4・7H 2 O 0.0001% Propion Amide 0.5% PH5 100 ml of this culture solution was centrifuged, and the resulting viable cells were suspended in 50 ml of Tris-HCl buffer (PH9). Next, 1 ml of this suspension was added to 4 ml of a 0.5% aqueous solution of the various amides shown in Table 1 [using Tris-HCl buffer (PH9)], and the mixture was reacted at 30°C for 10 to 15 minutes. Amount of amino acids produced in the reaction solution after sterilization, L-
Amino acids/produced amino acids were measured and the results shown in Table 1 were obtained.

【表】 実施例 2 実施例1と同様にして得たN−7901菌の懸濁液
1mlをL−フエニルアラニンアミド1.25%溶液4
mlに加えて、40℃で15分反応させたところ、フエ
ニルアラニンの収率は75%で、生成したフエニル
アラニンは全てL−体だけであつた。
[Table] Example 2 1 ml of the suspension of N-7901 bacteria obtained in the same manner as in Example 1 was added to L-phenylalaninamide 1.25% solution 4.
ml and reacted at 40°C for 15 minutes, the yield of phenylalanine was 75%, and all of the phenylalanine produced was only the L-form.

Claims (1)

【特許請求の範囲】 1 エンテロバクター・クロアツセイ
(Enterobacter Cloacae)N−7901〔微工研条寄
第873号〕の微生物が産生するL−アミノ酸アミ
ド加水分解活性を有する酵素の作用により、 一般式 〔式中、Rはアルキル基(炭素数1〜4)、フ
エニル基、アラルキル基または置換基を有するこ
れらの基を表す。〕 で示されるDL−またはL−アミノ酸アミドから
対応するL−アミノ酸を生成せしめること、を特
徴とするL−アミノ酸の製造法。 2 上記一般式で示されるDL−またはL−アミ
ノ酸アミドがフエニルアラニンアミドまたはトリ
プトフアンアミドである特許請求の範囲第1項記
載の製造法。
[Scope of Claims] 1. By the action of an enzyme having L-amino acid amide hydrolysis activity produced by the microorganism Enterobacter Cloacae N-7901 [Feikoken Jokyo No. 873], the general formula [In the formula, R represents an alkyl group (having 1 to 4 carbon atoms), a phenyl group, an aralkyl group, or a substituent-containing group. ] A method for producing an L-amino acid, which comprises producing a corresponding L-amino acid from a DL- or L-amino acid amide represented by: 2. The manufacturing method according to claim 1, wherein the DL- or L-amino acid amide represented by the above general formula is phenylalanine amide or tryptophan amide.
JP60193867A 1985-09-04 1985-09-04 Production of l-amino acid Granted JPS6255097A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60193867A JPS6255097A (en) 1985-09-04 1985-09-04 Production of l-amino acid
GB8619969A GB2182036B (en) 1985-09-04 1986-08-15 Process for producing l-amino acids
DE3629242A DE3629242C2 (en) 1985-09-04 1986-08-28 Process for the preparation of L-amino acids
FR868612429A FR2586702B1 (en) 1985-09-04 1986-09-04 PROCESS FOR THE PRODUCTION OF L-AMINO ACIDS
US07/525,302 US5215897A (en) 1985-09-04 1990-05-17 Process for producing L-amino acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193867A JPS6255097A (en) 1985-09-04 1985-09-04 Production of l-amino acid

Publications (2)

Publication Number Publication Date
JPS6255097A JPS6255097A (en) 1987-03-10
JPH0552195B2 true JPH0552195B2 (en) 1993-08-04

Family

ID=16315072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193867A Granted JPS6255097A (en) 1985-09-04 1985-09-04 Production of l-amino acid

Country Status (4)

Country Link
JP (1) JPS6255097A (en)
DE (1) DE3629242C2 (en)
FR (1) FR2586702B1 (en)
GB (1) GB2182036B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501531A (en) * 1987-08-17 1990-05-31 ノヴオ―ノルデイスク アー/エス Organic chemical manufacturing method
US4981799A (en) * 1987-08-21 1991-01-01 Takeda Chemical Industries, Ltd. Acylamino acid racemase, production and use thereof
CA1336414C (en) * 1988-03-24 1995-07-25 Hideki Kawasaki D-amidase and process for producing d-–-alanine and/or l-–-alanineamide
US5252470A (en) * 1988-03-24 1993-10-12 Kyowa Hakko Kogyo Co., Ltd. D-amidase and process for producing D-α-alanine and/or L-α-alanineamide
DE4014564C1 (en) * 1990-05-07 1991-07-18 Forschungszentrum Juelich Gmbh, 5170 Juelich, De
NL9100038A (en) * 1991-01-11 1992-08-03 Stamicarbon ENZYME-CATALYZED PREPARATION OF OPTICALLY ACTIVE CARBONIC ACIDS.
EP0734453A1 (en) * 1993-12-17 1996-10-02 Dsm N.V. Phenylserine amides and the preparation of phenylserines/phenylserine amides
US5985632A (en) 1994-05-09 1999-11-16 Degussa Aktiengesellschaft Peptide amidase from xanthomonas
GB9615852D0 (en) 1996-07-29 1996-09-11 Allied Colloids Ltd Production of amino acids and enzymes used therefor
US6949658B2 (en) 2000-05-18 2005-09-27 Mitsubishi Rayon Co., Ltd. Process for producing optically active α-amino acid and optically active α-amino acid amide
JP4730913B2 (en) * 2007-07-31 2011-07-20 三菱レイヨン株式会社 Optically active tert-leucine and method for producing optically active tert-leucine amide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713000A (en) * 1980-06-24 1982-01-22 Ube Ind Ltd Preparation of optical active tryptophane
JPS6036446A (en) * 1983-08-09 1985-02-25 Mitsubishi Gas Chem Co Inc Preparation of l-alpha-amino acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU74142A1 (en) * 1976-01-08 1977-07-22
GB1577087A (en) * 1977-01-07 1980-10-15 Novo Industri As Enzyme preparation having l-amino acyl amidase activity
DE3683512D1 (en) * 1985-02-25 1992-03-05 Mitsubishi Gas Chemical Co METHOD FOR THE OPTICAL ISOMERIZATION OF OPTICALLY ACTIVE AMINO ACID AND METHOD FOR THE PRODUCTION OF OPTICALLY ACTIVE AMINO ACID.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713000A (en) * 1980-06-24 1982-01-22 Ube Ind Ltd Preparation of optical active tryptophane
JPS6036446A (en) * 1983-08-09 1985-02-25 Mitsubishi Gas Chem Co Inc Preparation of l-alpha-amino acid

Also Published As

Publication number Publication date
DE3629242C2 (en) 1993-12-02
FR2586702A1 (en) 1987-03-06
FR2586702B1 (en) 1989-12-15
DE3629242A1 (en) 1987-03-12
JPS6255097A (en) 1987-03-10
GB2182036A (en) 1987-05-07
GB8619969D0 (en) 1986-09-24
GB2182036B (en) 1989-08-23

Similar Documents

Publication Publication Date Title
US4637982A (en) Process for biological preparation of amides
FI87579C (en) FRAMEWORK FOR MICRO-ORGANISMS
EP0610049B1 (en) Process for producing optically active alpha-hydroxycarboxylic acid having phenyl group
EP0610048B1 (en) Process for producing optically active alpha-hydrocarboxylic acid having phenyl group
US5179014A (en) Process for the preparation of amides using microorganisms
US4555487A (en) Method for cultivation of Pseudomonas bacteria
Tsugawa et al. Production of l-Glutamic Acid from dl-Hydantoin-5-propionic Acid by Microoganisms: Part I. Screening of l-Glutamic Acid-Producing Microorganisms and Some Optimal Conditions for Production of l-Glutamic Acid
JPH0552195B2 (en)
JP2950896B2 (en) Method for producing D-α-phenylglycine
US5587303A (en) Production process of L-amino acids with bacteria
JP3905575B2 (en) Novel microorganism, method for producing L-α-amino acid, method for culturing mutant strain and mutant of novel microorganism, method for obtaining gene encoding carbamoylase and / or hydantoinase and / or hydantoin racemase, and carbamoylase and / or hydantoinase and / or Or insertion of a gene encoding hydantoin racemase into a microorganism or cell
EP0731171B1 (en) Method of producing optically active amino acid
US5215897A (en) Process for producing L-amino acids
US5480786A (en) Process for the biotechnological preparation of l-thienylalanines in enantiomerically pure form from 2-hydroxy-3-thienylacrylic acids, and their use
JP2670838B2 (en) Method for producing L-α-amino acids
JPH04304892A (en) Biological production of glycine
JPS6129953B2 (en)
US4661456A (en) Method for cultivation of pseudomonas bacteria
JPH0440899A (en) Biological production of alpha-hydroxy-4-methylthiobutyramide
JPH04222591A (en) Production of s-(+)-mandelamide and derivative thereof
JPS61274690A (en) Production of d-alpha-amino acid
JPH0574353B2 (en)
WO2002008439A1 (en) Process for the preparation of 2-amino acids
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JP2674078B2 (en) Process for producing D-α-amino acid