JPH055211Y2 - - Google Patents

Info

Publication number
JPH055211Y2
JPH055211Y2 JP6206787U JP6206787U JPH055211Y2 JP H055211 Y2 JPH055211 Y2 JP H055211Y2 JP 6206787 U JP6206787 U JP 6206787U JP 6206787 U JP6206787 U JP 6206787U JP H055211 Y2 JPH055211 Y2 JP H055211Y2
Authority
JP
Japan
Prior art keywords
ultrasonic
cylinder liner
cylinder
cast iron
lubrication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6206787U
Other languages
Japanese (ja)
Other versions
JPS63170507U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6206787U priority Critical patent/JPH055211Y2/ja
Publication of JPS63170507U publication Critical patent/JPS63170507U/ja
Application granted granted Critical
Publication of JPH055211Y2 publication Critical patent/JPH055211Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、各種内燃機関のシリンダの潤滑状態
を評価するピストン機関のシリンダ潤滑評価装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a piston engine cylinder lubrication evaluation device for evaluating the lubrication state of cylinders of various internal combustion engines.

[従来の技術] 例えば、デイーゼル機関においては、シリンダ
ライナに埋め込んだ熱電対によつて温度を計測
し、ライナ温度変化から摺動面の潤滑状態を判断
し、運転条件の制御、潤滑油供給量の制御を行な
うことによつて重大な事故、故障の発生を防止し
ていた。
[Prior art] For example, in a diesel engine, the temperature is measured using a thermocouple embedded in the cylinder liner, and the lubrication state of the sliding surfaces is determined from changes in the liner temperature, and the operating conditions are controlled and the amount of lubricant supplied. This control prevents serious accidents and breakdowns.

ところが、ライナ温度は一般に応答性が悪く、
エンジン負荷に変化等でも変化するため、シリン
ダライナの内面とピストンリングとの潤滑状態の
良否あるいは磨耗の大小の判断に関して不適であ
り現在では第3図および第4図に示すような超音
波送受波子を用いてなるシリンダ潤滑評価装置が
適用されている。
However, the response of liner temperature is generally poor;
Because it changes due to changes in engine load, etc., it is not suitable for determining the quality of the lubrication between the inner surface of the cylinder liner and the piston ring, or the amount of wear. A cylinder lubrication evaluation device using

第3図はシリンダ潤滑評価装置のシステム構成
を説明するための図であり、図中11ピストン本
体、12はピストンリング、13はシリンダライ
ナ、14はシリンダカバー、15は排気弁、16
は燃料弁である。すなわち、シリンダライナ13
の外周面に超音波送波子17を取付け、パルス発
生タイミング制御用の同期装置18によつてクラ
ンク角度信号を基に適切なタイミングに制御して
超音波パルス発生送信回路19から超音波をシリ
ンダライナ13の内面(摺動面)に向けて超音波
送波子17より送波する。一方、20は超音波受
波子を示し、この超音波受波子20によつて受取
られた信号は超音波受信回路21で増幅され、表
示部22に超音波信号波形を表示する。この超音
波の摺動面での反射および透過さらにはピストン
リング背面での反射を模式的に示したのが第4図
である。ここで、超音波送波子17から同期装置
18でピストンリング通過時にタイミングを合せ
て、超音波をパルス状に打込むと、超音波はシリ
ンダライナ13を通り、丁度通過しつつあるピス
トンリング摺動面に至る。
FIG. 3 is a diagram for explaining the system configuration of the cylinder lubrication evaluation device. In the figure, 11 is a piston body, 12 is a piston ring, 13 is a cylinder liner, 14 is a cylinder cover, 15 is an exhaust valve, and 16 is a cylinder liner.
is the fuel valve. That is, the cylinder liner 13
An ultrasonic wave transmitter 17 is attached to the outer peripheral surface of the cylinder liner, and a synchronizer 18 for pulse generation timing control controls the timing appropriately based on the crank angle signal to send ultrasonic waves from an ultrasonic pulse generation/transmission circuit 19 to the cylinder liner. Waves are transmitted from the ultrasonic wave transmitter 17 toward the inner surface (sliding surface) of the waveguide 13. On the other hand, 20 indicates an ultrasonic wave receiver, and a signal received by the ultrasonic wave receiver 20 is amplified by an ultrasonic receiver circuit 21, and an ultrasonic signal waveform is displayed on a display section 22. FIG. 4 schematically shows the reflection and transmission of this ultrasonic wave on the sliding surface, as well as the reflection on the back surface of the piston ring. Here, when the synchronizer 18 from the ultrasonic wave transmitter 17 synchronizes the timing with the passing of the piston ring and injects the ultrasonic wave in a pulse form, the ultrasonic wave passes through the cylinder liner 13 and hits the sliding piston ring that is just passing through. reaching the surface.

この際、シリンダライナ13とピストンリング
12との間に油膜23があれば、超音波はその一
部がシリンダライナ13の摺動面から反射すると
共に、一部は油膜23を通り、ピストンリング摺
動面および背面で反射して、再び油膜23を通り
超音波受波子20へかえつてくる。一方、シリン
ダライナ13とピストンリング12との間に油膜
23がなければ、超音波はシリンダライナ13の
摺動面から反射するのみで、ピストンリング12
に伝播せず、このため超音波受波子20は反射波
としてシリンダライナ摺動面からの反射波のみを
受取る。
At this time, if there is an oil film 23 between the cylinder liner 13 and the piston ring 12, part of the ultrasonic wave will be reflected from the sliding surface of the cylinder liner 13, and another part will pass through the oil film 23 and pass through the piston ring sliding surface. It is reflected from the moving surface and the back surface, passes through the oil film 23 again, and returns to the ultrasonic wave receiver 20. On the other hand, if there is no oil film 23 between the cylinder liner 13 and the piston ring 12, the ultrasonic waves are only reflected from the sliding surface of the cylinder liner 13 and the piston ring 12
Therefore, the ultrasonic wave receiver 20 receives only the reflected wave from the cylinder liner sliding surface as a reflected wave.

したがつて、この方法によれば、超音波の反射
波のパターンやその反射波の高さ等で、潤滑油膜
があるか否か、さらには潤滑油量の低減、適正化
等の評価が可能である。
Therefore, according to this method, it is possible to evaluate whether there is a lubricating oil film or not, and to reduce or optimize the amount of lubricating oil, based on the pattern of reflected ultrasonic waves and the height of the reflected waves. It is.

[考案が解決しようとする問題点] 上記のように、超音波の送・受信による方法
で、シリンダライナ13の内面とピストンリング
12との潤滑状態を評価することは可能である
が、超音波送受波子17,20をシリンダライナ
13の外周面に取付けた場合には次のような問題
がある。
[Problems to be solved by the invention] As described above, it is possible to evaluate the lubrication state between the inner surface of the cylinder liner 13 and the piston ring 12 by transmitting and receiving ultrasonic waves. When the transmitting/receiving elements 17 and 20 are attached to the outer peripheral surface of the cylinder liner 13, the following problems occur.

すなわち、一般にシリンダライナ材としては耐
摩性、潤滑性の点から鋳鉄が用いられることが多
く、大型エンジンの場合にはその肉厚が数十mm〜
数百十mmにもなる。この鋳鉄の結晶組織には微細
な反射源が多数内在しており、超音波の透過性が
非常に悪く、これは鋳鉄の肉厚が増大するほど顕
著になる。このため、超音波の検出精度が著しく
損なわれる。この状況を通常の無欠陥鉄鋼材(例
えば、SS材やSC材)と鋳鉄とで比較したものを
第5図および第6図を参照して説明する。
In other words, cast iron is generally used as the cylinder liner material due to its wear resistance and lubricity, and in the case of large engines, the thickness of the cylinder liner is several tens of mm or more.
It can reach several hundred millimeters. The crystalline structure of cast iron contains many minute reflection sources, and has very poor ultrasonic transmission, which becomes more pronounced as the thickness of cast iron increases. For this reason, the detection accuracy of ultrasonic waves is significantly impaired. A comparison of this situation between normal defect-free steel materials (for example, SS materials and SC materials) and cast iron will be explained with reference to FIGS. 5 and 6.

すなわち、第5図においてはシリンダライナ1
3を鉄鋼材(例えば、S45C)を用いて形成して
おり、この場合は超音波送波子17の送波S1に
対してシリンダライナ摺動面から反射波S2およ
びピストンリング背面から反射波S3が超音波受
波子20に返つてくる。一方、第6図においては
シリンダライナ13を鋳鉄(例えば、F25)を用
いて形成しており、この場合は超音波送波子17
の送波S1に対してシリンダライナ摺動面から反
射波等が超音波受波子20に全く返つてこない。
That is, in FIG. 5, the cylinder liner 1
3 is made of steel material (for example, S45C), and in this case, in response to the transmitted wave S1 of the ultrasonic wave transmitter 17, reflected waves S2 from the sliding surface of the cylinder liner and reflected waves S3 from the back surface of the piston ring are generated. It returns to the ultrasonic wave receiver 20. On the other hand, in FIG. 6, the cylinder liner 13 is formed using cast iron (for example, F25), and in this case, the ultrasonic wave transmitter 17
With respect to the transmitted wave S1, no reflected waves or the like are returned to the ultrasonic wave receiver 20 from the cylinder liner sliding surface.

このように、肉厚の厚い鋳鉄のシリンダライナ
13の外周面に超音波送受波子17,20を取付
けた場合には、シリンダライナ13の内面とピス
トンリング12との潤滑状態の評価が困難にな
る。
In this way, when the ultrasonic transducers 17 and 20 are attached to the outer peripheral surface of the thick cast iron cylinder liner 13, it becomes difficult to evaluate the lubrication state between the inner surface of the cylinder liner 13 and the piston ring 12. .

本考案は上記のような点に鑑みなされたもの
で、超音波検出精度を向上させて信頼性の高い潤
滑状態の評価を可能とするピストン機関のシリン
ダ潤滑評価装置を提供することを目的とする。
The present invention was developed in view of the above points, and the purpose is to provide a cylinder lubrication evaluation device for a piston engine that improves ultrasonic detection accuracy and enables highly reliable evaluation of the lubrication state. .

[問題点を解決するための手段] すなわち、本考案に係わるピストン機関のシリ
ンダ潤滑評価装置は、超音波検出精度を改善する
ためシリンダライナ摺動面側は耐摩性、潤滑性の
点から鋳鉄とするが、鋳鉄部分の肉厚が薄くなる
(例えば、約40mm以下)ように超音波送受波子取
付部分に切り欠き部を形成し、この切り欠き部つ
まり超音波送受波子の取付面と鋳鉄との間に、超
音波透過性の良好な金属材料(例えば、SC材や
SS材のような鉄鋼材)もしくは流体(例えば、
グリセリン、水ガラス、作動油等)の層を設けて
なることを特徴とする。
[Means for solving the problem] In other words, in the cylinder lubrication evaluation device for a piston engine according to the present invention, in order to improve ultrasonic detection accuracy, the sliding surface side of the cylinder liner is made of cast iron from the viewpoint of wear resistance and lubricity. However, a notch is formed in the ultrasonic transducer mounting part so that the wall thickness of the cast iron part is thin (for example, approximately 40 mm or less), and this notch, that is, the connection between the ultrasonic transducer mounting surface and the cast iron. In between, a metal material with good ultrasonic transparency (for example, SC material or
Steel materials such as SS materials) or fluids (e.g.
It is characterized by having a layer of glycerin, water glass, hydraulic oil, etc.).

[作用] 上記のような構成にあつては、鋳鉄部分の肉厚
が薄いので、結晶組織に内在する微細な反射源に
よる超音波透過性の悪化が少なく、伝播特性が著
しく向上する。また、鋳鉄と超音波送受波子との
間には、超音波透過性の良好な層を設けてあるの
でシリンダライナ摺動面と超音波送受波子との距
離が長くなつても伝播特性が損なわれることはな
い。
[Function] In the above configuration, since the cast iron portion has a thin wall thickness, the ultrasonic transmittance is less deteriorated by minute reflection sources inherent in the crystal structure, and the propagation characteristics are significantly improved. Additionally, a layer with good ultrasonic transparency is provided between the cast iron and the ultrasonic transducer, so even if the distance between the cylinder liner sliding surface and the ultrasonic transducer increases, the propagation characteristics will not be impaired. Never.

以上により、超音波の検出精度が向上するので
摺動面の潤滑状態の評価が可能となる。なお、シ
リンダライナの摺動面は鋳鉄であるので、耐摩
性、潤滑性はこれまでのものと同様に確保され
る。
As described above, since the detection accuracy of ultrasonic waves is improved, it becomes possible to evaluate the lubrication state of the sliding surface. Furthermore, since the sliding surface of the cylinder liner is made of cast iron, wear resistance and lubricity are ensured as in the past.

[実施例] 以下図面を参照して本考案の一実施例に係わる
ピストン機関のシリンダ潤滑評価装置を説明す
る。なお、実施例におけるシリンダ潤滑評価装置
にあつては、その基本的構成は従来と同一であり
その説明は省略するものとし、ここでは超音波伝
播経路部分の超音波透過性の改善部分に付いての
み説明する。
[Embodiment] A cylinder lubrication evaluation device for a piston engine according to an embodiment of the present invention will be described below with reference to the drawings. The basic configuration of the cylinder lubrication evaluation device in the example is the same as the conventional one, and its explanation will be omitted. I will only explain.

すなわち、第1図は一実施例に係わるシリンダ
ライナ付近の側段面図であり、図中12,13,
17,20および23は、従来と同様にピストン
リング、シリンダライナ超音波送波子、超音波受
波子および油膜である。
That is, FIG. 1 is a side view of the vicinity of the cylinder liner according to one embodiment, and in the figure, 12, 13,
17, 20, and 23 are a piston ring, a cylinder liner ultrasonic wave transmitter, an ultrasonic wave receiver, and an oil film as in the conventional case.

シリンダライナ13は、耐摩性、潤滑性の点か
ら鋳鉄を用いて形成されている。このシリンダラ
イナ13の超音波送受波子取付け側つまり超音波
送波子17、超音波受波子20の取付け部分に
は、鋳鉄の肉厚が薄くなるようにして切り欠き部
31が形成されている。そして、この切り欠き部
31には例えばS45C等の鉄鋼材からなる超音波
透過性の高い特性を有した挿入部材32がそのフ
ランジ32aをシリンダライナ13の外周面にボ
ルト33a,33bにて固定されるようにして挿
入されている。
The cylinder liner 13 is made of cast iron in terms of wear resistance and lubricity. A notch 31 is formed on the side of the cylinder liner 13 where the ultrasonic transmitter/receiver is attached, that is, where the ultrasonic wave transmitter 17 and the ultrasonic receiver 20 are attached, so that the thickness of the cast iron is reduced. In this notch 31, an insertion member 32 made of a steel material such as S45C and having high ultrasonic transparency is fixed at its flange 32a to the outer peripheral surface of the cylinder liner 13 with bolts 33a and 33b. It is inserted as shown.

この場合、切り欠き部31と挿入部材32との
間に隙間が生じていれば、例えば、グリセリン、
水ガラス、作動油等のような超音波伝播性の良好
な流体の層34をφリング35でシールするよう
にして設けられる。
In this case, if there is a gap between the notch 31 and the insertion member 32, for example, glycerin,
A φ ring 35 is provided to seal a layer 34 of a fluid with good ultrasonic propagation properties, such as water glass or hydraulic oil.

このような構成にあつては、シリンダライナ1
3の超音波送受波子取付け部における鋳鉄部分の
肉厚が薄いので、結晶組織に内在する微少な反射
源による超音波透過性の悪化が少なく、伝播特性
が著しく向上する。また、鋳鉄と超音波送受波子
との間、つまり切り欠き部31内には、超音波透
過性の高い特性を有する挿入部材32が挿入され
ているため、この挿入部材32を介在してシリン
ダライナ13の外周面に取付けられる超音波送受
波子17,20とシリンダライナ摺動面との間隔
が長くなつた場合でも、伝播特性を損われること
はない。したがつて、超音波検査特性が向上し、
信頼性の高い潤滑状態の評価が可能となる。
In such a configuration, the cylinder liner 1
Since the thickness of the cast iron portion in the ultrasonic transmitter/receiver mounting portion of No. 3 is thin, there is little deterioration of ultrasonic transmittance due to minute reflection sources inherent in the crystal structure, and the propagation characteristics are significantly improved. Furthermore, since an insertion member 32 having high ultrasonic transparency is inserted between the cast iron and the ultrasonic transducer, that is, in the notch 31, the cylinder liner is inserted through this insertion member 32. Even if the distance between the ultrasonic transducers 17 and 20 attached to the outer peripheral surface of the cylinder liner 13 and the sliding surface of the cylinder liner becomes longer, the propagation characteristics will not be impaired. Therefore, the ultrasonic testing properties are improved,
It becomes possible to evaluate the lubrication state with high reliability.

なお、第1図に示す実施例では、切り欠き部3
1に超音波透過性の高い特性を有した挿入部材3
2を挿入するように構成したが、例えば第2図に
示すように切り欠き部31にグリセリン、水ガラ
ス、作動油等のような超音波透過性の高い特性を
有する流体の層34を挿入し、フランジ32aお
よびφリング35で密封するように構成しても良
く、このように構成した場合でも上記実施例と同
様の効果が得られるものである。
In addition, in the embodiment shown in FIG.
1, an insertion member 3 having a property of high ultrasonic transparency;
For example, as shown in FIG. 2, a layer 34 of a fluid having high ultrasonic permeability, such as glycerin, water glass, hydraulic oil, etc., may be inserted into the notch 31. , the flange 32a and the φ ring 35 may be used for sealing, and even in this case, the same effects as in the above embodiment can be obtained.

[考案の効果] 以上のように本考案によれば、シリンダライナ
の超音波送受波子の取付け側に切り欠き部を形成
し、この切り欠き部に超音波透過性の高い特性を
有した挿入部材あるいは流体層を挿入し、この挿
入部材あるいは流体層を介在した上記超音波送受
波子を取付けたため、超音波検査精度が向上し、
信頼性の高い潤滑状態の評価が可能となる。
[Effects of the invention] As described above, according to the invention, a notch is formed on the side where the ultrasonic transducer is attached to the cylinder liner, and the insertion member has a characteristic of high ultrasonic transparency in this notch. Alternatively, by inserting a fluid layer and attaching this insertion member or the above-mentioned ultrasonic transducer with the fluid layer interposed, the ultrasonic inspection accuracy is improved.
It becomes possible to evaluate the lubrication state with high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例に係わるシリンダラ
イナ付近の側断面図、第2図は本考案の他の実施
例に係わるシリンダライナ付近の側断面図、第3
図は従来のシリンダ潤滑評価装置のシステム構成
を説明するための図、第4図は従来における超音
波の反射、通過の状況を模式的に示す図、第5図
および第6図はシリンダライナが鉄鋼材と鋳鉄材
の場合の超音波の透過性の差違を説明するための
図である。 12……ピストンリング、13……シリンダラ
イナ、17……超音波送波子、20……超音波受
波子、23……油膜、31……切り欠き部、32
……挿入部材、32a……フランジ、33a,3
3b……ボルト、34……流体の層、35……φ
リング。
FIG. 1 is a side sectional view of the vicinity of a cylinder liner according to an embodiment of the present invention, FIG. 2 is a side sectional view of the vicinity of a cylinder liner according to another embodiment of the present invention, and FIG.
The figure is a diagram for explaining the system configuration of a conventional cylinder lubrication evaluation device, Figure 4 is a diagram schematically showing the reflection and passage of ultrasonic waves in the conventional system, and Figures 5 and 6 are diagrams showing the cylinder liner. FIG. 3 is a diagram for explaining the difference in ultrasonic transmittance between steel materials and cast iron materials. 12... Piston ring, 13... Cylinder liner, 17... Ultrasonic wave transmitter, 20... Ultrasonic wave receiver, 23... Oil film, 31... Notch, 32
...insertion member, 32a...flange, 33a, 3
3b...Bolt, 34...Fluid layer, 35...φ
ring.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 超音波送受波子をシリンダライナの外周面に取
付け、ピストンリングとシリンダライナ内面との
潤滑状態を評価するピストン機関のシリンダ潤滑
評価装置において、上記シリンダライナの上記超
音波送受波子の取付け側に形成される切り欠き部
と、超音波透過性の高い特性を有し上記切り欠き
部に挿入される挿入部材あるいは流体層を具備
し、この挿入部材あるいは流体層を介在して上記
超音波送受波子を取付けてなることを特徴とする
ピストン機関のシリンダ潤滑評価装置。
In a cylinder lubrication evaluation device for a piston engine that attaches an ultrasonic transducer to the outer peripheral surface of a cylinder liner and evaluates the lubrication state between a piston ring and the inner surface of the cylinder liner, an ultrasonic transducer is formed on the side of the cylinder liner on which the ultrasonic transducer is attached. and an insertion member or fluid layer inserted into the cutout having a characteristic of high ultrasonic transparency, and the ultrasonic transducer is attached via the insertion member or fluid layer. A piston engine cylinder lubrication evaluation device characterized by:
JP6206787U 1987-04-25 1987-04-25 Expired - Lifetime JPH055211Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6206787U JPH055211Y2 (en) 1987-04-25 1987-04-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6206787U JPH055211Y2 (en) 1987-04-25 1987-04-25

Publications (2)

Publication Number Publication Date
JPS63170507U JPS63170507U (en) 1988-11-07
JPH055211Y2 true JPH055211Y2 (en) 1993-02-10

Family

ID=30895987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6206787U Expired - Lifetime JPH055211Y2 (en) 1987-04-25 1987-04-25

Country Status (1)

Country Link
JP (1) JPH055211Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182627B2 (en) * 2008-06-24 2013-04-17 株式会社Ihi Piston ring sliding state monitoring device and method

Also Published As

Publication number Publication date
JPS63170507U (en) 1988-11-07

Similar Documents

Publication Publication Date Title
Dou et al. Review of ultrasonic-based technology for oil film thickness measurement in lubrication
US7469576B2 (en) Method and apparatus for determining TDC for each cylinder of a multi-cylinder internal combustion engine
GB2441145A (en) Laser ignition system for an internal combustion engine
JPH055211Y2 (en)
PL336865A1 (en) Method of and system for determining condition of engine components mutually engaging each other within a combustion engine cylinder and diesel engine, in particular large-size one, incorporating such system
Loenne et al. The GOETZE cylinder distortion measurement system and the possibilities of reducing cylinder distortions
Steel et al. Recent developments in monitoring of engines using acoustic emission
Taglialatela-Scafati et al. Use of vibration signal for diagnosis and control of a four-cylinder diesel engine
Uras et al. Effect of some lubricant and engine variables on instantaneous piston and ring assembly friction
EP0056905B1 (en) Method of and apparatus for detecting a piston ring in a piston engine
JPS63159730A (en) Cylinder lubricity evaluating device for piston engine
KR100872471B1 (en) A piston ring
JPH0617853B2 (en) Cylinder lubrication evaluation device for piston engine
Sethu et al. An investigation in measuring crank angle resolved in-cylinder engine friction using instantaneous IMEP method
Rooke et al. Comparison of Ring-Liner Oil Film Thickness Resulting from Dierent Injector Designs in a Diesel Marine Engine Using an Ultrasound Measurement Method
EP0055120A1 (en) Improvements in or relating to methods of and apparatuses for indicating a predetermined position of a piston or crankshaft of a piston engine
Ha et al. Development of piston friction force measurement system
US7654132B2 (en) Method and apparatus for indirectly ascertaining the cylinder pressure in piston engines
JPH0814099A (en) Cylinder liner wear amount measuring device
Harper et al. Evaluation of an ultrasonic method for measurement of oil film thickness in a hydraulic motor piston ring
Ryan et al. Engine experiments on the effects of design and operational parameters on piston secondary motion and piston slap
Nakashima et al. Measurement of structural attenuation of a diesel engine and its applications for reduction of noise and vibration
Koch et al. Thermodynamic Influences of the Top Land Volume on the Late Combustion Phase-A New Research Approach
Hoshikawa et al. A study of friction reduction by ‘soft skirt’piston
Cerrato et al. A single cylinder engine for crankshaft bearings and piston friction losses measurement