JPH0552087B2 - - Google Patents

Info

Publication number
JPH0552087B2
JPH0552087B2 JP62160568A JP16056887A JPH0552087B2 JP H0552087 B2 JPH0552087 B2 JP H0552087B2 JP 62160568 A JP62160568 A JP 62160568A JP 16056887 A JP16056887 A JP 16056887A JP H0552087 B2 JPH0552087 B2 JP H0552087B2
Authority
JP
Japan
Prior art keywords
stage
gate
bias
effect transistor
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62160568A
Other languages
Japanese (ja)
Other versions
JPS644107A (en
Inventor
Koji Tomita
Takeshi Sakurai
Takao Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16056887A priority Critical patent/JPS644107A/en
Publication of JPS644107A publication Critical patent/JPS644107A/en
Publication of JPH0552087B2 publication Critical patent/JPH0552087B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、電界効果トランジスタを用いた並
列負帰還形高周波増幅器に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a parallel negative feedback type high frequency amplifier using field effect transistors.

〈従来の技術〉 電界効果トランジスタ(FET)の一つである
GaAsMESFET(メタルセミコンダクタ電界効果
トランジスタ)はSiバイポーラトランジスタや
SiMOSトランジスタに比べて低雑音性に優れか
つ高いカツトオフ周波数が得られるため、高周波
トランジスタとして実用化されており、また広く
増幅器等に用いられている。更に、この
GaAsMESFETは、GaAsで半絶縁性基板が得ら
れるという利点があるために製作時の寄生容量を
低減でき、特に高周波帯域で動作するマイクロ波
集積回路(IC)のモノシリツク化がSiに比べて容
易であるため、広帯域高周波モノシリツク増幅器
に応用されている。
<Conventional technology> One of the field effect transistors (FET)
GaAsMESFET (metal semiconductor field effect transistor) is a Si bipolar transistor or
Compared to SiMOS transistors, SiMOS transistors have superior low noise characteristics and can obtain a high cutoff frequency, so they are put into practical use as high-frequency transistors and are widely used in amplifiers and the like. Furthermore, this
GaAs MESFETs have the advantage of being able to use GaAs to form a semi-insulating substrate, which reduces parasitic capacitance during fabrication, and it is especially easier to fabricate monolithic microwave integrated circuits (ICs) that operate in high frequency bands than Si. Therefore, it is applied to wideband high-frequency monolithic amplifiers.

上記広帯域高周波モノシリツク増幅器の中でも
並列負帰還回路を付加した増幅器は広帯域性と入
出力整合性に優れているため、衛星放送、衛星通
信、自動車電話、CATV、高速情報処理機器等
の電波受信器に用いられており、所望の高い電力
利得を得るために通常多段構成となつている。
Among the broadband high-frequency monolithic amplifiers mentioned above, amplifiers with a parallel negative feedback circuit have excellent broadband performance and input/output matching, so they are suitable for radio wave receivers in satellite broadcasting, satellite communications, car phones, CATV, high-speed information processing equipment, etc. They are typically configured in multiple stages to obtain the desired high power gain.

〈発明が解決しようとする問題点〉 しかしながら、上記従来の多段構成の並列負帰
還増幅器においては、後段になる程入力レベルが
高くなるため電力利得が歪み、入力−出力特性の
直線性が損なわれるという問題がある。また、こ
のような入力−出力特性を改善する方法として後
段のFETのゲート幅を大きくすることが考えら
れるが、初段の入力レベルが低い場合でも後段に
は大きなドレイン電流が流れ、増幅器全体の消費
電力が増大するという問題がある。
<Problems to be Solved by the Invention> However, in the conventional multi-stage parallel negative feedback amplifier described above, the input level becomes higher toward the later stages, which distorts the power gain and impairs the linearity of the input-output characteristics. There is a problem. In addition, one way to improve such input-output characteristics is to increase the gate width of the FET in the subsequent stage, but even if the input level in the first stage is low, a large drain current flows in the subsequent stage, reducing the power consumption of the entire amplifier. There is a problem of increased power consumption.

そこで、この発明の目的は、入力レベルが高い
場合における入力−出力特性の直線性を改善する
と共に、入力レベルが低い場合に消費電力を小さ
くすることができる多段増幅器を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multistage amplifier that can improve the linearity of input-output characteristics when the input level is high and reduce power consumption when the input level is low.

〈問題点を解決するための手段〉 上記目的を達成するため、この発明は、同一の
半導体基板上に形成された略同一のゲート閾値電
圧を有する3個以上の電界効果トランジスタを備
え、前段の電界効果トランジスタで増幅された信
号を結合コンデンサを介して次段の電界効果トラ
ンジスタのゲートに印加し、上記各電界効果トラ
ンジスタのゲートとドレインとの間に帰還抵抗を
接続して並列負帰還増幅段を構成した多段増幅器
において、初段の電界効果トランジスタのゲート
幅に対して後続する電界効果トランジスタのゲー
ト幅を同一にするかあるいは小さくし、上記各電
界効果トランジスタのゲート端子にそれぞれ独立
にバイアス抵抗の一端を接続し、上記バイアス抵
抗の他端に、初段の入力レベルが高い場合には後
段のゲートバイアスを電力利得を高める側へシフ
トさせる一方、初段の入力レベルが低い場合には
後段のゲートバイアスを初段のゲートバイアスと
同じに保つか又は電力利得を下げる側へシフトさ
せるためのゲートバイアス電圧印加端子を設けた
ことを特徴としている。
<Means for Solving the Problems> In order to achieve the above object, the present invention includes three or more field effect transistors formed on the same semiconductor substrate and having substantially the same gate threshold voltage, and The signal amplified by the field effect transistor is applied to the gate of the next stage field effect transistor via a coupling capacitor, and a feedback resistor is connected between the gate and drain of each field effect transistor to form a parallel negative feedback amplification stage. In a multi-stage amplifier configured as follows, the gate width of the subsequent field-effect transistors is made the same or smaller than that of the first-stage field-effect transistor, and a bias resistor is independently connected to the gate terminal of each field-effect transistor. Connect one end to the other end of the bias resistor to shift the gate bias of the subsequent stage to the side that increases the power gain when the input level of the first stage is high, and to shift the gate bias of the subsequent stage to the side that increases the power gain when the input level of the first stage is low. The device is characterized in that a gate bias voltage application terminal is provided to maintain the same as the gate bias of the first stage or to shift the power gain to the side where the power gain is lowered.

〈作用〉 各FETのゲート端子にバイアス抵抗を介して
つながるゲートバイアス電圧印加端子を通して、
各FETにそれぞれ独立にゲートバイアスが印加
される。初段の入力レベルが高い場合には、後段
のFETのゲートバイアスを電力利得を高める側
(NチヤネルFETの場合は正方向)へシフトさせ
ることにより上記後段のFETの電力利得を高め、
入力−出力特性を改善する。一方、初段の入力レ
ベルが低い場合には、後段のFETのゲートバイ
アスを初段のFETのゲートバイアスと同じかま
たは電力利得を低くする側(NチヤネルFETの
場合は小さくする)へシフトさせることにより消
費電力を低下させる。
<Operation> Through the gate bias voltage application terminal connected to the gate terminal of each FET via the bias resistor,
A gate bias is applied to each FET independently. When the input level of the first stage is high, the power gain of the latter stage FET is increased by shifting the gate bias of the latter stage FET to the side that increases the power gain (in the case of an N-channel FET, in the positive direction).
Improve input-output characteristics. On the other hand, when the input level of the first stage is low, by shifting the gate bias of the subsequent FET to the same as the gate bias of the first stage FET or to the side that lowers the power gain (in the case of N-channel FETs, decrease it). Reduce power consumption.

また、後段のFETのゲート幅が前段のFETの
ゲート幅と同一か小さいから、前段の入力レベル
が低い場合後段のドレイン電流は比較的小さくな
る。
Furthermore, since the gate width of the FET in the subsequent stage is the same as or smaller than the gate width of the FET in the previous stage, when the input level in the previous stage is low, the drain current in the latter stage becomes relatively small.

〈実施例〉 以下、この発明を図示の実施例により詳細に説
明する。
<Examples> The present invention will be described in detail below with reference to illustrated examples.

第1図は同一の半導体基板上に形成された3段
増幅器の等価回路であり、1は初段の増幅段、2
は第2段目の増幅段、3は第3段目の増幅段、5
は初段の増幅段1と第2の増幅段2を結合する結
合コンデンサ、6は第2段の増幅段2と第3の増
幅段3を結合する結合コンデンサである。
Figure 1 shows an equivalent circuit of a three-stage amplifier formed on the same semiconductor substrate, where 1 is the first amplification stage, 2
is the second amplification stage, 3 is the third amplification stage, 5
6 is a coupling capacitor that couples the first amplification stage 1 and the second amplification stage 2, and 6 is a coupling capacitor that couples the second amplification stage 2 and the third amplification stage 3.

上記各増幅段1,2,3はそれぞれFET7,
8,9を有しており、このFET7,8,9のソ
ース71,81,91をアース10,10,10
に接続している。また、上記FET7,8,9の
ドレイン72,82,92をそれぞれ上記FET
7,8,9のゲート73,83,93に帰還抵抗
11,21,31および帰還容量12,22,3
2を介して接続している。上記ドレイン72,8
2,92にはそれぞれ0.2KΩのバイアス抵抗1
3,23,33を接続しており、上記ゲート7
3,83,93にはそれぞれ0.3KΩのバイアス抵
抗14,24,34を接続している。
Each of the above amplification stages 1, 2, and 3 has FET7,
The sources 71, 81, 91 of these FETs 7, 8, 9 are grounded 10, 10, 10.
is connected to. In addition, the drains 72, 82, and 92 of the FETs 7, 8, and 9 are connected to the FETs 72, 82, and 92, respectively.
Feedback resistors 11, 21, 31 and feedback capacitors 12, 22, 3 are connected to the gates 73, 83, 93 of 7, 8, 9.
It is connected via 2. The drain 72, 8
2 and 92 each have a 0.2KΩ bias resistor 1
3, 23, and 33 are connected, and the above gate 7
3, 83, and 93 are connected to bias resistors 14, 24, and 34 of 0.3 KΩ, respectively.

上記結合コンデンサ5,6および帰還容量1
2,22,32は金属/絶縁体/金属で構成され
たキヤパシタであり、上記バイアス抵抗13,2
3,33および14,24,34はSiイオンを半
絶縁性GaAsに直接イオン注入するイオン注入法
により形成された抵抗層である。また、上記
FET7,8,9のチヤネルおよび帰還抵抗11,
21,31は上記バイアス抵抗と同様イオン注入
法により形成されている。上記各FETのゲート
閾値電圧および上記各抵抗の抵抗値は、イオン注
入時のドーズ量や加速エネルギーにより制御可能
であり、上記各FETのゲート閾値電圧は−0.3V
から−0.4Vの間になるように制御されている。
また、上記FET7,8,9のゲート長は0.8μmと
短くしてカツトオフ周波数を高くし、電力利得を
高めると共に低雑音化を図つている。一方、上記
FET7,8,9のゲート幅はそれぞれ1mm,0.5
mm,0.5mmとしている。なお、上記FETのソース
およびドレインにはAu−Ge/Niを用い、ゲート
および配線にはTi/Auを用いている。
The above coupling capacitors 5, 6 and feedback capacitor 1
2, 22, 32 are capacitors composed of metal/insulator/metal, and the bias resistors 13, 2
3, 33 and 14, 24, 34 are resistance layers formed by an ion implantation method in which Si ions are directly implanted into semi-insulating GaAs. Also, above
Channels of FET7, 8, 9 and feedback resistor 11,
21 and 31 are formed by the ion implantation method similarly to the bias resistor described above. The gate threshold voltage of each of the above FETs and the resistance value of each of the above resistances can be controlled by the dose and acceleration energy during ion implantation, and the gate threshold voltage of each of the above FETs is -0.3V.
It is controlled to be between -0.4V and -0.4V.
Furthermore, the gate lengths of the FETs 7, 8, and 9 are shortened to 0.8 μm to increase the cutoff frequency, thereby increasing the power gain and reducing noise. On the other hand, the above
Gate width of FET7, 8, 9 is 1mm and 0.5 respectively
mm, 0.5mm. Note that Au-Ge/Ni is used for the source and drain of the FET, and Ti/Au is used for the gate and wiring.

上記構成からなる多段増幅器101は第2図に
示すように6ピンのTO−5パツケージ100に
マウントされており、この多段増幅器101には
各増幅段1,2,3にはドレイン電圧を印加する
ドレイン端子102、初段の増幅段1に信号を印
加する入力端子103、第3段目の増幅段3から
の出力信号を取り出す出力端子104、各増幅段
1,2,3にそれぞれ独立にバイアス電圧を印加
する初段ゲートバイアス電圧印加端子105、第
2段ゲートバイアス電圧印加端子106、第3段
ゲートバイアス電圧印加端子107を設けてい
る。
The multistage amplifier 101 having the above configuration is mounted on a 6-pin TO-5 package 100 as shown in FIG. A drain terminal 102, an input terminal 103 that applies a signal to the first amplification stage 1, an output terminal 104 that takes out the output signal from the third amplification stage 3, and a bias voltage applied to each amplification stage 1, 2, and 3 independently. A first stage gate bias voltage application terminal 105, a second stage gate bias voltage application terminal 106, and a third stage gate bias voltage application terminal 107 are provided.

上記多段増幅器101の周波数1GHzにおける
特性は、ドレイン電圧7.5V、回路電流40mAの時
に、雑音指数で2.5dB、電力利得25dB、入力定在
波比2.0、出力定在波比1.5であつた。また、周波
数1GHz、ドレイン電圧7.5V、回路電流40mAと
し各増幅段のゲート電圧Vg1,Vg2,Vg3を−
0.5Vとしたときの入力−出力特性は第3図の実
線で示すようになつた。この入力−出力特性の直
線性は出力が5dBmのときに1dB低下している。
すなわち、入力−出力特性の直線性が1dB低下す
る出力を飽和出力電力と定義すると、この場合の
飽和出力電力は5dBmとなる。上記ドレイン電圧
を7.5Vのまゝとし、各増幅段のゲート電圧Vg1
Vg2,Vg3をそれぞれ−0.5V,−0.5V,−0.1Vとし
た時の入力−出力特性は第3図の一点鎖線で示す
ようになり飽和出力電力は10dBmと向上した。
このときの回路電流は50mAであり、また、雑音
特性の劣化は認められなかつた。
The characteristics of the multistage amplifier 101 at a frequency of 1 GHz were a noise figure of 2.5 dB, a power gain of 25 dB, an input standing wave ratio of 2.0, and an output standing wave ratio of 1.5 when the drain voltage was 7.5 V and the circuit current was 40 mA. In addition, the frequency is 1 GHz, the drain voltage is 7.5 V, and the circuit current is 40 mA, and the gate voltages Vg 1 , Vg 2 , and Vg 3 of each amplifier stage are −
The input-output characteristics when set to 0.5V are as shown by the solid line in Figure 3. The linearity of this input-output characteristic drops by 1 dB when the output is 5 dBm.
That is, if the output at which the linearity of the input-output characteristic decreases by 1 dB is defined as saturated output power, then the saturated output power in this case is 5 dBm. Keeping the above drain voltage at 7.5V, the gate voltage of each amplification stage is Vg 1 ,
When Vg 2 and Vg 3 were set to −0.5V, −0.5V, and −0.1V, respectively, the input-output characteristics were as shown by the dashed line in FIG. 3, and the saturated output power was improved to 10 dBm.
The circuit current at this time was 50 mA, and no deterioration in noise characteristics was observed.

このように、各増幅段1,2,3のゲートバイ
アス抵抗をそれぞれ独立して接続して別々にゲー
トバイアスをかけているので、初段の入力レベル
が高い場合には、後段のFETのゲートバイアス
を正方向にずらすことにより、上記後段のFET
の電力利得を高め、入力−出力特性を改善するこ
とができる。また、初段のFET7のゲート幅に
対して後段のFET8,9のゲート幅を同一以下
にしているので、初段の入力レベルが低い場合に
は後段のFET8,9のゲートバイアス電圧を初
段のFET7のゲートバイアス電圧と同一以下に
することにより消費電力を低下させることができ
る。
In this way, the gate bias resistors of each amplifier stage 1, 2, and 3 are connected independently and the gate bias is applied separately, so if the input level of the first stage is high, the gate bias of the FET of the subsequent stage is By shifting the FET in the positive direction,
It is possible to increase the power gain and improve the input-output characteristics. In addition, the gate width of FETs 8 and 9 in the subsequent stage is set to be less than or equal to the gate width of FET 7 in the first stage, so when the input level of the first stage is low, the gate bias voltage of FETs 8 and 9 in the latter stage is changed to the gate width of FET 7 in the first stage. Power consumption can be reduced by making it equal to or lower than the gate bias voltage.

なお、上記実施例の多段増幅器は各増幅段のゲ
ート電圧を制御することにより自動利得制御
(AGC)を行うことができ、また、電波受信機器
の設計に応じて入出力VSWRおよび雑音指数を
劣化させることなく電力利得を調整することがで
きる。
The multi-stage amplifier of the above embodiment can perform automatic gain control (AGC) by controlling the gate voltage of each amplification stage, and can also reduce the input/output VSWR and noise figure depending on the design of the radio wave receiving equipment. power gain can be adjusted without

〈発明の効果〉 以上より明らかなように、この発明の多段増幅
器は、初段の電界効果トランジスタのゲート幅に
対して後続する電界効果トランジスタのゲート幅
を同一にするかあるいは小さくし、上記各電界効
果トランジスタのゲート端子にそれぞれ独立にバ
イアス抵抗の一端を接続し、上記バイアス抵抗の
他端に、初段の入力レベルが高い場合には後段の
ゲートバイアスを電力利得を高める側へシフトさ
せる一方、初段の入力レベルが低い場合には後段
のゲートバイアスを初段のゲートバイアスと同じ
に保つか又は電力利得を下げる側へシフトさせる
ためのゲートバイアス電圧印加端子を設けている
ので、初段の入力レベルが高い場合における入力
−出力特性の直線性を改善することができ、ま
た、初段の入力レベルが低い場合に消費電力を小
さくすることができる。
<Effects of the Invention> As is clear from the above, the multi-stage amplifier of the present invention makes the gate width of the subsequent field-effect transistors the same or smaller than that of the first-stage field-effect transistor, and One end of a bias resistor is connected to the gate terminal of each effect transistor independently, and one end of the bias resistor is connected to the other end of the bias resistor. When the input level is low, a gate bias voltage application terminal is provided to keep the gate bias of the subsequent stage the same as the gate bias of the first stage or to shift it to the side that lowers the power gain, so the input level of the first stage is high. It is possible to improve the linearity of the input-output characteristic in the case where the input level is low, and it is also possible to reduce the power consumption when the input level of the first stage is low.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の等価回路を示す
図、第2図は上記実施例の多段増幅器がTO−5
パツケージにマウントされた状態を示す図、第3
図は上記実施例における入力−出力特性を示す図
である。 1,2,3……増幅段、5,6……結合コンデ
ンサ、7,8,9……電界効果トランジスタ、1
0……アース、11,21,31……帰還抵抗、
12,22,32……帰還容量、13,23,3
3,14,24,34……バイアス抵抗、71,
81,91……ソース、72,82,92……ド
レイン、73,83,93……ゲート。
FIG. 1 is a diagram showing an equivalent circuit of an embodiment of the present invention, and FIG. 2 is a diagram showing the multistage amplifier of the above embodiment as a TO-5.
Diagram showing the state mounted in the package cage, 3rd
The figure is a diagram showing the input-output characteristics in the above embodiment. 1, 2, 3...Amplification stage, 5, 6...Coupling capacitor, 7, 8, 9...Field effect transistor, 1
0...Earth, 11,21,31...Feedback resistance,
12, 22, 32...Feedback capacitance, 13, 23, 3
3, 14, 24, 34...bias resistance, 71,
81, 91...source, 72,82,92...drain, 73,83,93...gate.

Claims (1)

【特許請求の範囲】 1 同一の半導体基板上に形成された略同一のゲ
ート閾値電圧を有する3個以上の電界効果トラン
ジスタを備え、前段の電界効果トランジスタで増
幅された信号を結合コンデンサを介して次段の電
界効果トランジスタのゲートに印加し、上記各電
界効果トランジスタのゲートとドレインとの間に
帰還抵抗を接続して並列負帰還増幅段を構成した
多段増幅器において、 初段の電界効果トランジスタのゲート幅に対し
て後続する電界効果トランジスタのゲート幅を同
一にするかあるいは小さくし、 上記各電界効果トランジスタのゲート端子にそ
れぞれ独立にバイアス抵抗の一端を接続し、 上記バイアス抵抗の他端に、初段の入力レベル
が高い場合には後段のゲートバイアスを電力利得
を高める側へシフトさせる一方、初段の入力レベ
ルが低い場合には後段のゲートバイアスを初段の
ゲートバイアスと同じに保つか又は電力利得を下
げる側へシフトさせるためのゲートバイアス電圧
印加端子を設けたことを特徴とする多段増幅器。
[Claims] 1. Three or more field effect transistors having substantially the same gate threshold voltage formed on the same semiconductor substrate, and a signal amplified by the previous field effect transistor is connected via a coupling capacitor. In a multi-stage amplifier in which the voltage is applied to the gate of the field-effect transistor in the next stage, and a feedback resistor is connected between the gate and drain of each field-effect transistor to form a parallel negative feedback amplifier stage, the gate of the field-effect transistor in the first stage is applied. The gate width of the subsequent field effect transistors is made the same or smaller than the width, one end of a bias resistor is independently connected to the gate terminal of each field effect transistor, and the other end of the bias resistor is connected to the first stage. When the input level of the first stage is high, the gate bias of the second stage is shifted to the side that increases the power gain, while when the input level of the first stage is low, the gate bias of the second stage is kept the same as the gate bias of the first stage, or the power gain is increased. A multi-stage amplifier characterized by being provided with a gate bias voltage application terminal for shifting to the lowering side.
JP16056887A 1987-06-25 1987-06-25 Multi-stage amplifier Granted JPS644107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16056887A JPS644107A (en) 1987-06-25 1987-06-25 Multi-stage amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16056887A JPS644107A (en) 1987-06-25 1987-06-25 Multi-stage amplifier

Publications (2)

Publication Number Publication Date
JPS644107A JPS644107A (en) 1989-01-09
JPH0552087B2 true JPH0552087B2 (en) 1993-08-04

Family

ID=15717788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16056887A Granted JPS644107A (en) 1987-06-25 1987-06-25 Multi-stage amplifier

Country Status (1)

Country Link
JP (1) JPS644107A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253009A (en) * 1985-09-02 1987-03-07 Hitachi Ltd Communication equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253009A (en) * 1985-09-02 1987-03-07 Hitachi Ltd Communication equipment

Also Published As

Publication number Publication date
JPS644107A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
US8427240B2 (en) Low-noise amplifier with gain enhancement
US7205817B1 (en) Analog control integrated FET based variable attenuators
US5633610A (en) Monolithic microwave integrated circuit apparatus
US7633337B2 (en) Feedback-type variable gain amplifier and method of controlling the same
US6400227B1 (en) Stepped gain controlled RF driver amplifier in CMOS
US5408198A (en) Semiconductor power amplifier integrated circuit
US6492872B1 (en) High frequency power amplifying module and wireless communication apparatus
US7205840B2 (en) Wideband CMOS gain stage
US20020008583A1 (en) Distributed amplifier with terminating circuit capable of improving gain flatness at low frequencies
JPH1126776A (en) Dual gate fet and high frequency circuit using the same
US6351188B1 (en) Variable gain amplifier circuit and gain control method
JP2002359531A (en) High-frequency variable gain amplifier
US7405626B2 (en) Distributed amplifier having a variable terminal resistance
JPH06334445A (en) Semiconductor integrated circuit
US6710662B2 (en) Power amplifier with improved linearity and reduced transistor stacks
US7400200B2 (en) Linear variable gain traveling wave amplifier
US7332963B2 (en) Low noise amplifier
US5694069A (en) Variable resistor and gain control circuit and integrated circuit having the variable resistor
KR20030044444A (en) Linear differential amplifier
JP3371151B2 (en) Monolithic microwave semiconductor integrated circuit
JPH0552087B2 (en)
CN220798223U (en) Gain-digitally controllable low noise amplifier
US6420923B1 (en) Low supply, current-controlled FET Pi attenuator
JP2000323944A (en) High frequency gain variable amplifier
JPH09294026A (en) Semiconductor circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees