JPH0552032B2 - - Google Patents

Info

Publication number
JPH0552032B2
JPH0552032B2 JP59032891A JP3289184A JPH0552032B2 JP H0552032 B2 JPH0552032 B2 JP H0552032B2 JP 59032891 A JP59032891 A JP 59032891A JP 3289184 A JP3289184 A JP 3289184A JP H0552032 B2 JPH0552032 B2 JP H0552032B2
Authority
JP
Japan
Prior art keywords
catalyst
electrode
phosphoric acid
fuel cell
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59032891A
Other languages
Japanese (ja)
Other versions
JPS60177554A (en
Inventor
Takeshi Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP59032891A priority Critical patent/JPS60177554A/en
Publication of JPS60177554A publication Critical patent/JPS60177554A/en
Publication of JPH0552032B2 publication Critical patent/JPH0552032B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0008Phosphoric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 本発明は、リン酸型燃料電池用触媒の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in catalysts for phosphoric acid fuel cells.

燃料電池の基本原理は、水の電気分解とは逆の
反応を利用して、H2とO2と電気化学的に反応さ
せて水を生成し直接起電するもので、このH2
O2の電気化学的反応に於いては触媒を必要とす
る。
The basic principle of a fuel cell is to use a reaction opposite to the electrolysis of water to electrochemically react with H 2 and O 2 to generate water and directly generate electricity.
The electrochemical reaction of O 2 requires a catalyst.

燃料電池本体は、多孔質のカーボン電極の間
に、電解質マトリツクスを挟んだもので、両側の
カーボン電極には一般にPt系合金の触媒が担持
されている。そしてこの燃料電池本体の両電極の
側にO2とH2が夫々溜められるような構造の素子
が配されている。
The fuel cell body has an electrolyte matrix sandwiched between porous carbon electrodes, and a Pt-based alloy catalyst is generally supported on both carbon electrodes. Elements configured to store O 2 and H 2 respectively are arranged on both electrode sides of the fuel cell main body.

前記電解質マトリツクスに封入される電解液の
種類により、燃料電池はアルカリ型、リン酸型、
溶融炭酸塩型、固体電解質型等があるが、特にリ
ン酸型燃料電池では、電極反応での活性化分極が
大きいので、これを低減させる為に活性な電極触
媒の使用が必須であり、触媒としてPtを欠かす
ことができない。
Depending on the type of electrolyte sealed in the electrolyte matrix, fuel cells can be of alkaline type, phosphoric acid type,
There are molten carbonate type, solid electrolyte type, etc., but especially in phosphoric acid type fuel cells, the activation polarization in the electrode reaction is large, so it is essential to use an active electrode catalyst to reduce this. As such, Pt is indispensable.

ところでPtは触媒活性が高いが、H2の吸蔵が
体積の100倍程度で放電特性が十分満足できるも
のとは云えないものである。放電特性を上げるに
はPtの触媒量を増やせば良いが、Ptは高価であ
るので、その触媒量を減らす為に種々の電極材料
についての研究がなされている。
By the way, although Pt has a high catalytic activity, it cannot be said that the discharge characteristics are sufficiently satisfactory because the amount of H 2 absorbed is about 100 times the volume. In order to improve the discharge characteristics, it is possible to increase the amount of Pt catalyst, but since Pt is expensive, research is being carried out on various electrode materials in order to reduce the amount of catalyst.

本発明は斯かる実情に鑑みて、触媒活性が高
く、しかもガス透過性が高く且つ放電特性に優れ
たリン酸型燃料電池用触媒を開発すべく鋭意攻究
の結果、大概満足できる触媒を見い出した。
In view of these circumstances, the present invention has conducted intensive research to develop a catalyst for phosphoric acid fuel cells that has high catalytic activity, high gas permeability, and excellent discharge characteristics, and as a result has found a catalyst that is generally satisfactory. Ta.

本発明のリン酸型燃料電池用触媒は、Pd中に
Ptを5〜15wt%含有するPd−Pt合金である。
The phosphoric acid fuel cell catalyst of the present invention contains Pd.
It is a Pd-Pt alloy containing 5 to 15 wt% of Pt.

本発明のリン酸燃料電池用触媒に於いて、Pd
を主成分とした理由は、触媒活性がPtよりも低
いが、H2の吸蔵が体積の800程度でガス透過性が
高く、且つ放電特性が極めて優れていて、しかも
Ptよりも安価であるからである。またPtをPdに
5〜15wt%添加して合金化した理由は、触媒活
性に優れたPtを効率良く作用させるべく分子の
状態で分散する為で、5wt%未満では触媒作用が
不十分で、15wt%を越えるとガス透過性が低く
なり、且つ放電特性が不十分となるものである。
In the catalyst for phosphoric acid fuel cells of the present invention, Pd
The reason for using Pt as the main component is that although its catalytic activity is lower than that of Pt, it can store about 800 H 2 by volume, has high gas permeability, and has extremely excellent discharge characteristics.
This is because it is cheaper than Pt. In addition, the reason why Pt is added to Pd by 5 to 15 wt% to form an alloy is to disperse Pt, which has excellent catalytic activity, in a molecular state so that it can work efficiently.If it is less than 5 wt%, the catalytic action is insufficient. When it exceeds 15 wt%, gas permeability becomes low and discharge characteristics become insufficient.

次に本発明のリン酸型燃料電池用触媒の具体的
な実施例と従来例について説明する。
Next, specific examples and conventional examples of the phosphoric acid fuel cell catalyst of the present invention will be described.

実施例 1 PbにPtを10wt%添加して合金化したPd−Pt合
金の粉末をカーボン電極(0.50mm厚)上に焼付塗
装して100μm厚の触媒層を形成した。
Example 1 Pd-Pt alloy powder, which was alloyed by adding 10 wt% of Pt to Pb, was baked onto a carbon electrode (0.50 mm thick) to form a 100 μm thick catalyst layer.

実施例 2 PdにPtを5wt%添加して合金化したPd−Pt合
金をカーボン電極(0.50mm厚)上にめつきして
10μm厚の触媒層を形成した。
Example 2 A Pd-Pt alloy made by adding 5 wt% of Pt to Pd was plated on a carbon electrode (0.50 mm thick).
A catalyst layer with a thickness of 10 μm was formed.

実施例 3 PdにPtを8wt%添加して合金化したPd−Pt合
金より成る150μmの箔をカーボン電極(0.50mm
厚)上に接合して触媒層を形成した。
Example 3 A carbon electrode (0.50 mm
(thick) to form a catalyst layer.

実施例 4 Pdにptを10wt%添加して合金化したPd−Pt合
金の塩の溶液をカーボン電極に含浸させ、還元し
てPd−Pt合金の触媒を担持した。
Example 4 A carbon electrode was impregnated with a salt solution of a Pd-Pt alloy made by adding 10 wt% of pt to Pd and reduced to support a Pd-Pt alloy catalyst.

従来例 1 Ptの粉末をカーボン電極(0.50mm厚)上に焼付
塗装して100μm厚の触媒層を形成した。
Conventional Example 1 Pt powder was baked onto a carbon electrode (0.50 mm thick) to form a 100 μm thick catalyst layer.

従来例 2 Ptをカーボン電極(0.50mm厚)上にめつきして
10μm厚の触媒層を形成した。
Conventional example 2 Pt is plated on a carbon electrode (0.50mm thick)
A catalyst layer with a thickness of 10 μm was formed.

従来例 3 Ptより成る150μmの箔をカーボン電極(0.50mm
厚)上に接合して触媒層を形成した。
Conventional example 3 A 150μm foil made of Pt is connected to a carbon electrode (0.50mm
(thick) to form a catalyst layer.

従来例 4 Ptの塩の溶液をカーボン電極に含浸させ、還
元してPtの触媒を担持した。
Conventional Example 4 A carbon electrode was impregnated with a Pt salt solution and reduced to support a Pt catalyst.

然してこれら実施例1〜4及び従来例1〜4の
電極触媒をリン酸型燃料電池の負極に用い、正極
にPt−Rh5wt%合金の粉末をカーボン電極(0.50
mm厚)上に焼付塗装して100μm厚の触媒層を形
成した電極触媒を用いて起電した処、第1図のグ
ラフに示すような発電特性が見られた。この第1
図のグラフで明らかなように実施例1〜4の電極
触媒を負極に用いたリン酸型燃料電池は従来例1
〜4の電極触媒を負極に用いたリン酸型燃料電池
に比べ発電特性に優れていることが判る。これは
ひとえに負極に用いた実施例1〜4の電極触媒
が、触媒活性に優れ、ガス透過性が高く且つ放電
特性が極めて優れているからに他ならない。
However, the electrode catalysts of Examples 1 to 4 and Conventional Examples 1 to 4 were used as the negative electrode of a phosphoric acid fuel cell, and the Pt-Rh5wt% alloy powder was used as a carbon electrode (0.50 wt%) for the positive electrode.
When electricity was generated using an electrode catalyst on which a 100 μm thick catalyst layer was formed by baking coating on a 100 μm thick catalyst layer, the power generation characteristics shown in the graph of Figure 1 were observed. This first
As is clear from the graph in the figure, the phosphoric acid fuel cell using the electrode catalysts of Examples 1 to 4 as the negative electrode is the conventional example 1.
It can be seen that the power generation characteristics are superior to the phosphoric acid fuel cells using the electrode catalysts No. 4 to 4 as the negative electrode. This is simply because the electrode catalysts of Examples 1 to 4 used for the negative electrode have excellent catalytic activity, high gas permeability, and extremely excellent discharge characteristics.

以上詳記した通り本発明のリン酸型燃料電池用
触媒は、Ptが分子の状態でPd中に均一に分散し
ていて触媒活性が高く、またPdが主成分である
為ガス透過性が高く且つ放電特性が極めて優れて
いて、その上安価であるので、従来のPt或いは
Pt合金の触媒にとつて代わることのできる画期
的なものと言える。
As detailed above, the phosphoric acid fuel cell catalyst of the present invention has high catalytic activity because Pt is uniformly dispersed in Pd in molecular form, and also has high gas permeability because Pd is the main component. In addition, it has extremely excellent discharge characteristics and is inexpensive, so it is different from conventional Pt or
It can be said to be a revolutionary product that can replace Pt alloy catalysts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のPd−Pt合金触媒を用いたリ
ン酸型燃料電池と従来のPt触媒を用いたリン酸
型燃料電池との発電特性を示すグラフである。
FIG. 1 is a graph showing power generation characteristics of a phosphoric acid fuel cell using the Pd-Pt alloy catalyst of the present invention and a phosphoric acid fuel cell using a conventional Pt catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 Pd中にPtを5〜15wt%含有するPd−Pt合金
であるリン酸型燃料電池用触媒。
1. A phosphoric acid fuel cell catalyst which is a Pd-Pt alloy containing 5 to 15 wt% of Pt in Pd.
JP59032891A 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell Granted JPS60177554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59032891A JPS60177554A (en) 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59032891A JPS60177554A (en) 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell

Publications (2)

Publication Number Publication Date
JPS60177554A JPS60177554A (en) 1985-09-11
JPH0552032B2 true JPH0552032B2 (en) 1993-08-04

Family

ID=12371504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59032891A Granted JPS60177554A (en) 1984-02-23 1984-02-23 Catalyst for phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPS60177554A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231861B1 (en) * 1986-01-27 1993-07-28 Fuji Photo Film Co., Ltd. Method for processing silver halide color photographic material for prints
JP7281157B2 (en) * 2018-07-19 2023-05-25 グローバル・リンク株式会社 Polymer electrolyte fuel cell and electrode manufacturing method

Also Published As

Publication number Publication date
JPS60177554A (en) 1985-09-11

Similar Documents

Publication Publication Date Title
Kinoshita Electrochemical oxygen technology
US5069988A (en) Metal and metal oxide catalyzed electrodes for electrochemical cells, and methods of making same
KR100982645B1 (en) Supports for fuel cell catalysts
JPH05258755A (en) Manufacture of solid polyelectrolyte fuel cell
US3549423A (en) Method for manufacturing foam type electrode
JPH09245801A (en) Electrode for polymer solid electrolyte fuel cell and manufacture thereof
JPS6322023B2 (en)
US5800938A (en) Sandwich-type solid polymer electrolyte fuel cell
US3393100A (en) Process of generating electrical energy utilizing a fuel containing carbon monoxide and a fuel cell electrode structure therefor, comprising a carbon-monoxide resistant electrode body
EP0101423A3 (en) Fuel cell anode
JPS5910024B2 (en) Mitsupei alkaline chikudenchi
JP4937527B2 (en) Platinum catalyst for fuel cell and fuel cell including the same
JP3019978B2 (en) Electrochemical cell, electrochemically active material and method for producing the same
JPH11126616A (en) Co-tolerant platinum-zinc electrode for fuel cell
RU2230400C1 (en) Air-spirit fuel cell
JPS60746B2 (en) gas electrode
US3306780A (en) Sintered nickel-carbon gas diffusion electrode for fuel cells
JPH0552032B2 (en)
JPH05258781A (en) Lithium/air cell
US3414438A (en) Fuel cell having sintered porous electrode consisting of electrically conductive material and of boron
JP2001015120A (en) Catalyst for polymer solid electrolyte type fuel cell and polymer solid electrolyte type fuel cell
US4461812A (en) Lightweight storage battery
JPS6247968A (en) Molten carbonate fuel cell capable of internal reformation
JP2001015121A (en) Catalyst for polymer solid electrolyte type fuel cell and solid electrolyte type fuel cell
JP2988673B2 (en) Molten carbonate fuel cell