JPH0551856B2 - - Google Patents

Info

Publication number
JPH0551856B2
JPH0551856B2 JP59098552A JP9855284A JPH0551856B2 JP H0551856 B2 JPH0551856 B2 JP H0551856B2 JP 59098552 A JP59098552 A JP 59098552A JP 9855284 A JP9855284 A JP 9855284A JP H0551856 B2 JPH0551856 B2 JP H0551856B2
Authority
JP
Japan
Prior art keywords
flow
flow field
light
fluid
scattering medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59098552A
Other languages
Japanese (ja)
Other versions
JPS60243536A (en
Inventor
Toshiaki Hasegawa
Yasuo Hirose
Hiroshi Ishikawa
Toshio Abe
Noboru Hisamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denryoku Chuo Kenkyusho
Central Research Institute of Electric Power Industry
Nippon Furnace Co Ltd
Original Assignee
Denryoku Chuo Kenkyusho
Central Research Institute of Electric Power Industry
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denryoku Chuo Kenkyusho, Central Research Institute of Electric Power Industry, Nippon Furnace Co Ltd filed Critical Denryoku Chuo Kenkyusho
Priority to JP9855284A priority Critical patent/JPS60243536A/en
Publication of JPS60243536A publication Critical patent/JPS60243536A/en
Publication of JPH0551856B2 publication Critical patent/JPH0551856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、流れの挙動を三次元解析するための
手法の一つであつて、流れを三次元において定量
的に可視化する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is one of the methods for three-dimensionally analyzing the behavior of a flow, and relates to a method of quantitatively visualizing a flow in three dimensions.

(従来の技術) 流れの挙動を観測する手段としては流れを可視
化することが最も一般的である。この流れの可視
化は、元来流れの剥離、渦の発生などを含む流れ
の状態や流れの方向といつたものを、主な対象と
する定性的な観察にとどまるものが多かつたが、
最近では、いまだ十分な確度は期待できないにし
て、一応定量的な計測が可能となりつつある。た
とえば断続光を用いて得られるトレーサの流跡か
ら、またはトレーサの発生を電気的に制御できる
電気制御法などによるタイムラインから任意の流
れ場の流速分布を容易に求めることができるよう
になつてきた。
(Prior Art) Visualizing the flow is the most common means of observing the behavior of the flow. Originally, this visualization of flow was mostly limited to qualitative observation, mainly focusing on flow conditions and direction, including flow separation and generation of vortices.
Recently, it has become possible to perform quantitative measurements, although sufficient accuracy cannot be expected yet. For example, it has become possible to easily determine the flow velocity distribution of any flow field from a tracer trajectory obtained using intermittent light, or from a timeline using electrical control methods that can electrically control tracer generation. Ta.

(発明が解決しようとする課題) しかし、従来の可視化方法によつて流れの挙動
を解析する場合、一般には写真などに記録された
トレーサの流跡などに基づいて行なわれるため、
平面的な流れ即ち二次元流における挙動を把握で
きるに止まり、旋回や渦あるいは揺らぎを伴う立
体的な流れ即ち三次元流のメカニズムを定量的に
評価できるまでには至つていない。
(Problem to be Solved by the Invention) However, when analyzing flow behavior using conventional visualization methods, it is generally based on tracer trails recorded in photographs, etc.
It is only possible to understand the behavior in a planar flow, that is, a two-dimensional flow, and it has not yet been possible to quantitatively evaluate the mechanism of a three-dimensional flow, that is, a three-dimensional flow that involves swirls, vortices, or fluctuations.

本発明は、流れの三次元解析を実現するため、
定性的、定量的な観測が可能な状態で瞬時に流れ
の立体的可視化を達成できる流れの三次元可視化
方法を提供することを目的とする。
In order to realize three-dimensional analysis of flow, the present invention
The purpose of this invention is to provide a three-dimensional flow visualization method that can instantaneously achieve three-dimensional visualization of a flow while allowing qualitative and quantitative observation.

(課題を解決するための手段) かかる目的を達成するため、本発明の流れの三
次元可視化方法は、微細粒子あるいは微細気泡か
ら成る散乱媒体を散乱光の集まりを形成できる程
度に大量かつ均一に分散させたコロイド流体で可
視化対象たる流れ場を形成する一方、この流れ場
を瞬間的に移動するスリツト光で断続的に瞬間照
明して流れ場の異なる断面における流れを散乱媒
体の乱反射に起因する散乱光の集まりから成る光
の明暗として瞬間的に順次可視化する一方、これ
を順次撮像して流れ場の異なる断面における流れ
の画像データとして取込むようにしている。
(Means for Solving the Problems) In order to achieve the above object, the method for three-dimensional visualization of a flow of the present invention uses a scattering medium consisting of fine particles or fine bubbles in large quantities and uniformly to the extent that a collection of scattered light can be formed. A flow field to be visualized is formed using dispersed colloidal fluid, and this flow field is intermittently illuminated with an instantaneously moving slit light to detect the flow at different cross sections of the flow field due to diffused reflection of the scattering medium. While the brightness and darkness of light consisting of a collection of scattered lights are visualized sequentially in an instant, this is sequentially imaged and captured as image data of the flow in different cross sections of the flow field.

(実施例) 以下、本発明の構成を図面に示す一実施例に基
づいて詳細に説明する。
(Example) Hereinafter, the configuration of the present invention will be described in detail based on an example shown in the drawings.

まず、本発明の流れの可視化原理を第1図に示
す可視化装置に基づいて説明する。この可視化装
置は、流れ場を再現するモデル槽1と、このモデ
ル槽1に散乱媒体4を均一な濃度で分散させた流
体を例えば底面から供給する流体供給ユニツト2
及びモデル槽1内の流れ場に瞬間的に平面な光5
を照射するスリツト光源3とから主に構成されて
いる。モデル槽1の底面から流入する流体は、モ
デル槽1内において流れ場を再現したのちモデル
槽1の上方の排水口6から図示しない排出管を通
じて排出される。流体は、通常そのままの状態で
あるいは必要な処理を施した後排水される。尚、
流体をモデル槽1の上方から導入し底面から排出
することも、また側面から導入することも場合に
よつては可能である。
First, the flow visualization principle of the present invention will be explained based on the visualization device shown in FIG. This visualization device includes a model tank 1 that reproduces a flow field, and a fluid supply unit 2 that supplies a fluid in which a scattering medium 4 is dispersed at a uniform concentration to the model tank 1, for example, from the bottom.
and instantaneous flat light 5 on the flow field in the model tank 1.
It mainly consists of a slit light source 3 that emits light. The fluid flowing in from the bottom of the model tank 1 reproduces a flow field in the model tank 1 and is then discharged from the drain port 6 above the model tank 1 through a discharge pipe (not shown). The fluid is normally drained as is or after any necessary treatment. still,
Depending on the case, it is also possible to introduce the fluid from above the model tank 1 and discharge it from the bottom, or to introduce it from the side.

モデル槽1は、例えば、第2図に示すように、
アクリル樹脂やガラス等の透光性材料によつて所
定形状に形成され、その上方に排水口6を底面に
噴射口7を有する。このモデル槽1は、ノズルや
バーナ等をモデルとする場合には、有限の流れ場
を形成するための容器に過ぎないが、管内の流体
の流れを可視化する場合等にはそれ自体がモデル
として使用される。また、無限空間における流れ
場を再現する場合には、モデル槽1に代えて実験
室全体を流れ場とし、静止空間を得る。モデル槽
底面の噴射口7には観察しようとする流れ場を再
現するモデルが一般に取付けられる。例えば、バ
ーナノズルモデル8とバーナタイルモデル9とが
設置され、燃料と空間の混合状態、その割合など
を測定するため、バーナノズルモデル8からは散
乱媒体4を含むコロイド流体(燃料に相当する)
を噴射させると共にその周囲からは散乱媒体が混
入されていない流体(二次空気に相当する)を噴
射させてバーナタイルモデル9内で両者を混合さ
せるように設けられている。もつとも、モデルを
噴射口7から離してモデル槽1内に設置し、噴射
口7においては何ら流体の流れに変化を与えない
場合もある。
The model tank 1 is, for example, as shown in FIG.
It is formed of a translucent material such as acrylic resin or glass into a predetermined shape, and has a drain port 6 above and a jet port 7 at the bottom. This model tank 1 is only a container for forming a finite flow field when a nozzle, a burner, etc. used. Furthermore, when reproducing a flow field in an infinite space, the entire laboratory is used as a flow field instead of the model tank 1 to obtain a static space. A model that reproduces the flow field to be observed is generally attached to the injection port 7 on the bottom of the model tank. For example, a burner nozzle model 8 and a burner tile model 9 are installed, and in order to measure the mixing state of fuel and space, its ratio, etc.
is injected, and a fluid (corresponding to secondary air) not mixed with a scattering medium is injected from the surrounding area so as to mix the two inside the burner tile model 9. However, there are cases where the model is placed in the model tank 1 away from the injection port 7 and no change is made to the flow of fluid at the injection port 7.

ここで、本発明に係る流れの三次元可視化を実
施する場合、例えば、第4図Aに示す実施例の場
合、複数台の光源3をモデル槽1周囲に円形に配
置して全方位から瞬間的にスリツト光5を入射さ
せるようにしているので、モデル槽1は周壁全面
を可視光線を透過させる材料で形成することが好
ましい。しかし、モデル槽1は全周壁面を透過性
材料で形成する必要はなく、少なくとも観察窓1
0と入射窓11が透過性を有すれば足りる。例え
ばスリツト光5の入射方向と90〜145度の角度θ
の位置で最適の乱反射が得られることからその範
囲に観察窓10と入射窓とを位置させておけば良
い。したがつて、本発明に係る流れの三次元可視
化を第4図Bに示す実施例の如く角型モデル槽を
使用する場合には、少なくとも隣り合う2面を透
光性材料で形成すれば足りる。尚、この場合、観
察窓10と入射窓11を除く他の周壁面を光吸収
体で形成すれば、散乱光の検出が極めて容易とな
る。更に、流れ場を輪切りにして観察する場合に
は、流れ場を横切るスリツト光5を観察するた
め、モデル槽1の上方に観察者ないし観察機器を
配置する。
Here, when carrying out three-dimensional visualization of the flow according to the present invention, for example, in the case of the embodiment shown in FIG. 4A, a plurality of light sources 3 are arranged in a circle around the model tank 1, Since the slit light 5 is made to be incident on the model tank 1, the entire peripheral wall of the model tank 1 is preferably formed of a material that transmits visible light. However, the model tank 1 does not need to have its entire peripheral wall made of a transparent material, and at least the observation window 1
It is sufficient that the entrance window 11 and the entrance window 11 have transparency. For example, the incident direction of the slit light 5 and the angle θ of 90 to 145 degrees
Since optimal diffused reflection can be obtained at a position of , it is sufficient to position the observation window 10 and the entrance window within that range. Therefore, when using a rectangular model tank as in the embodiment shown in FIG. 4B for the three-dimensional visualization of the flow according to the present invention, it is sufficient to form at least two adjacent sides with a translucent material. . In this case, if the peripheral wall surface other than the observation window 10 and the entrance window 11 is formed of a light absorber, detection of scattered light becomes extremely easy. Furthermore, when observing the flow field in slices, an observer or observation equipment is placed above the model tank 1 in order to observe the slit light 5 that crosses the flow field.

前述のモデル槽1に流体を供給する流体供給ユ
ニツト2は、流体供給源(図示省略)とモデル槽
1とを結ぶ管路12の途中に散乱媒体注入部13
を設け、圧送途中の流体に散乱媒体4を定量的に
強制注入することによつてあるいは発生させるこ
とによつて散乱媒体4を一定濃度で大量かつ均一
に分散させたコロイド流体として供給するもので
ある。勿論、供給ユニツト2は前述のものに限定
されない。例えば、あらかじめ可視化に最適な濃
度に調整されたコロイド流体をタンクに貯留し、
これを定量ポンプで取り出しモデル槽1に圧送す
るようにしても良い。
The fluid supply unit 2 that supplies fluid to the model tank 1 described above includes a scattering medium injection section 13 in the middle of a pipe line 12 that connects a fluid supply source (not shown) and the model tank 1.
The scattering medium 4 is supplied as a colloidal fluid in which the scattering medium 4 is uniformly dispersed in large quantities at a constant concentration by quantitatively forcibly injecting the scattering medium 4 into the fluid being pumped or by generating the scattering medium 4. be. Of course, the supply unit 2 is not limited to the one described above. For example, a colloidal fluid adjusted in advance to the optimal concentration for visualization is stored in a tank,
This may be taken out using a metering pump and fed under pressure to the model tank 1.

流れ場を形成する流体は、気体ないし液体に、
微細粒子あるいは微細気泡から成る散乱媒体4を
均一な濃度で分散させたコロイド流体であつて、
流れ場の形成に影響をおよばさない範囲において
可能な限り散乱媒体4が密にかつ均一に存在する
濃度に保たれている。尚、このような状態の流体
は厳密な意味でのコロイド溶液ではないが、液体
ないし気体中に直径0.1mm程度の微細気泡や1〜
2μm程度の微粒子が浮上や沈澱せずに分散して
いる状態がコロイド溶液に近似していることか
ら、本明細書では説明を簡便にするためコロイド
流体あるいは単に気体コロイド等と表現してい
る。
The fluid that forms the flow field can be gas or liquid.
A colloidal fluid in which a scattering medium 4 consisting of fine particles or bubbles is dispersed at a uniform concentration,
The concentration is maintained such that the scattering medium 4 is present as densely and uniformly as possible within a range that does not affect the formation of the flow field. Although the fluid in this state is not a colloidal solution in the strict sense of the word, it does contain microbubbles with a diameter of about 0.1 mm and particles of 1 to 1 mm in diameter.
Since the state in which fine particles of about 2 μm are dispersed without floating or settling is similar to a colloidal solution, in this specification, to simplify the explanation, it is expressed as a colloidal fluid or simply a gas colloid.

分散媒としては気体を使用する場合には空気
を、また液体を使用する場合には水を採用するの
が最も一般的であるが、これに限定されるもをで
はなく、必要に応じて他の気体を採用することも
ある。
The most common dispersion medium is air when using a gas, and water when using a liquid. The gas may also be used.

また、分散相即ち散乱媒体4としては、コロイ
ド粒子に代表される微細粒子か、微細気泡の採用
が好ましい。分散媒に気体を使用する場合の散乱
媒体4としては、直径1μm程度の微粒子が容易
に入手できるMgO、SiO、Al2O3等の所謂フアイ
ンセラミツクスの球状物が好適である。このフア
インセラミツクスから成る微粒子は取扱易く一定
濃度の気体コロイドが得易いからである。勿論、
霧や煙を散乱媒体とした気体コロイドも充分均一
化すれば使用できる。
Further, as the dispersed phase, that is, the scattering medium 4, it is preferable to employ fine particles such as colloidal particles or fine bubbles. As the scattering medium 4 when a gas is used as the dispersion medium, spherical particles of so-called fine ceramics such as MgO, SiO, Al 2 O 3 , etc., of which fine particles with a diameter of about 1 μm are easily available, are suitable. This is because fine particles made of fine ceramics are easy to handle and gas colloids of a constant concentration can be easily obtained. Of course,
Gas colloids using fog or smoke as a scattering medium can also be used if they are sufficiently homogenized.

また、分散媒に液体を使用する場合の散乱媒体
4としては、上述のフアインセラミツクスの他、
極めて微細な乳脂肪球を含む牛乳等の採用が好適
である。殊に、牛乳は、容易に入手できかつ安価
で取扱いが容易であると共に高輝度の散乱光が得
られることから最も好ましい散乱媒体・微粒子の
一つである。中でも加工乳は、一般に乳脂肪球が
直径2μm以下(1μm未満41.8%、1〜2μm47.7
%)に調整されているため、液体中においてコロ
イドを形成するに好適である。そこで、加工乳を
水に対して0.2%重量部含ませ親水コロイドを形
成させている。尚、フアインセラミツクスの微粒
子を採用する場合、牛乳と違つて流れの中に直接
注ぎ込むだけでは直ちにコロイド状態を形成でき
ない。そこで、フアインセラミツクスをあらかじ
め少量のに浸した高濃度コロイド溶液とを言うべ
きものを用意する。この高濃縮コロイド溶液は、
例えば、一定比率の水とフアインセラミツクスの
微粒子とを減圧下のタンク内において撹拌混合
し、微粒子表面に付着している気泡を完全に脱泡
させることによつて作られる。この高濃縮コロイ
ド溶液は、定量スラリポンプを使つて流体供給ユ
ニツト2に定量的に供給され、流体供給源から供
給される水と混合されて一定濃度のコロイド溶液
を形成する。
In addition to the above-mentioned fine ceramics, as the scattering medium 4 when a liquid is used as the dispersion medium,
Milk or the like containing extremely fine milk fat globules is preferably used. In particular, milk is one of the most preferred scattering media/fine particles because it is easily available, inexpensive, easy to handle, and provides high-intensity scattered light. Among them, processed milk generally has milk fat globules with a diameter of 2 μm or less (41.8% less than 1 μm, 47.7% 1-2 μm).
%), it is suitable for forming colloids in liquids. Therefore, 0.2% by weight of processed milk is included in water to form a hydrocolloid. Note that when fine ceramic particles are used, unlike milk, they cannot immediately form a colloidal state just by pouring them directly into a flow. Therefore, a highly concentrated colloid solution in which fine ceramics are soaked in a small amount is prepared. This highly concentrated colloid solution is
For example, it is produced by stirring and mixing a certain ratio of water and fine ceramic particles in a tank under reduced pressure, and completely defoaming air bubbles attached to the surface of the particles. This highly concentrated colloidal solution is quantitatively supplied to the fluid supply unit 2 using a metering slurry pump and mixed with water supplied from the fluid supply to form a colloidal solution of constant concentration.

また、分散媒として液体を使用する場合には、
0.06〜0.2mmの範囲の微細気泡、更に好ましくは
0.1〜0.2mmの微細気泡を均一濃度で分散させ得れ
ば使用可能である。この微細な気泡は、流体供給
ユニツト2の管路12の途中に直径3mm以下好ま
しくは0.8〜0.5mmの小孔を少なくとも1つ穿孔し
たオリフイス(図示省略)を設定することによ
り、0.2mm以下の気泡が70%程度を占める平均0.1
mmの微細気泡が局所的減圧によつて脱気され、連
続的に大量的に安定供給できる。
In addition, when using a liquid as a dispersion medium,
Microbubbles in the range of 0.06-0.2mm, more preferably
It can be used if fine bubbles of 0.1 to 0.2 mm can be dispersed at a uniform concentration. These fine bubbles can be created by setting an orifice (not shown) in which at least one small hole with a diameter of 3 mm or less, preferably 0.8 to 0.5 mm, is bored in the middle of the pipe line 12 of the fluid supply unit 2. Average 0.1 with bubbles accounting for about 70%
Microbubbles of mm size are degassed by local decompression and can be continuously and stably supplied in large quantities.

尚、前述の気体コロイドの場合、散乱媒体4を
定量噴射装置を使つて流体供給ユニツト2に定量
的に供給し、流体供給源から供給される空気と混
合して一定濃度に形成されるか、或いはあらかじ
め空気を散乱媒体4を混合撹拌して一定濃度とし
てモデル槽1に供給される。
In the case of the above-mentioned gas colloid, the scattering medium 4 is quantitatively supplied to the fluid supply unit 2 using a metering injection device, and mixed with air supplied from a fluid supply source to form a constant concentration, or Alternatively, the air is mixed and stirred with the scattering medium 4 in advance, and the mixture is supplied to the model tank 1 at a constant concentration.

このような可視化装置にあつては、散乱光の集
まりを形成できる程度に可視化媒体を大量かつ均
一に分散させたコロイド流体単独若しくはコロイ
ド流体と可視化媒体を全く含まない流体とを組み
合わせて使用し、所望の流れ場を形成すれば、そ
こにスリツト光を照射することによつて可視化媒
体で起こる散乱によつて散乱光の集まりから成る
光の明暗として瞬間的に流れ場が可視化される。
この流れ場の可視化は、流れの乱れ・拡散などに
よつて起こる可視化媒体の集合・離散に比例した
例えば単位面積当たりの散乱光の強度の違いに因
る散乱光強度の分布画像として得られる。
In such a visualization device, a colloidal fluid in which a large amount of visualization medium is uniformly dispersed to the extent that a collection of scattered light can be formed is used alone, or a colloidal fluid and a fluid containing no visualization medium are used in combination, Once a desired flow field is formed, by irradiating it with slit light, the flow field is instantaneously visualized as bright and dark light consisting of a collection of scattered lights due to scattering that occurs in the visualization medium.
Visualization of this flow field is obtained as a distribution image of scattered light intensity due to the difference in the intensity of scattered light per unit area, which is proportional to the aggregation/dispersion of the visualization medium caused by flow turbulence, diffusion, etc.

ここで、本発明に係る流れの三次元可視化を実
現するには、更に、可視化しようとする流れ場を
瞬間的に移動して断続的に瞬間照明する光源と撮
像手段とを必要とする。このような光源及び撮像
手段としては、例えば第4図のAあるいはBに示
されるような配置関係のものが挙げられる。この
とき流れ場は、スリツト光に代表される局所的な
照明で流れの任意の位置の断面を瞬間的に順次可
視化し得る。スリツト光5は公知のスリツト光源
3によつてあるいは二次元光学系を使用して拡げ
ることによつて簡単に得られる。また、レーザー
ビームをそのままの状態で高速にオシレートさせ
ることにより、実質的なスリツト光として得るこ
とも可能である。このスリツト光5を瞬間的に発
光させるため、各光源3の直前には瞬間シヤツタ
装置14が設置されている。瞬間シヤツタ装置1
4は、機械的なシヤツタでも可能であるが、瞬間
照明との同期を容易にするため慣性のない電気的
シヤツタの採用が最も好適である。勿論、各シヤ
ツタ装置14は、相互に関連して順次作動し、照
明光が閃きつつ瞬時に流れ場内を移動するような
状態を作り上げるように設けられている。尚、シ
ヤツタ装置14を用いる代りにルビーパルスレー
ザやXeフラツシユなどの高速度繰り返し光源を
採用することも可能である。
Here, in order to realize the three-dimensional visualization of the flow according to the present invention, a light source and an imaging means that instantaneously move and intermittently illuminate the flow field to be visualized are required. Examples of such a light source and imaging means include those having the arrangement shown in A or B in FIG. 4, for example. At this time, the flow field can be visualized instantaneously and sequentially through cross-sections at arbitrary positions of the flow using local illumination such as slit light. The slit light 5 can be easily obtained by a known slit light source 3 or by expanding it using a two-dimensional optical system. Furthermore, by oscillating the laser beam as it is at high speed, it is also possible to obtain a substantial slit beam. In order to instantaneously emit this slit light 5, an instantaneous shutter device 14 is installed immediately before each light source 3. Instant shutter device 1
4 is possible with a mechanical shutter, but it is most preferable to use an electric shutter with no inertia in order to facilitate synchronization with instantaneous lighting. Of course, the shutter devices 14 are provided so as to operate in sequence in conjunction with each other to create a state in which the illumination light flashes and moves instantaneously within the flow field. Note that instead of using the shutter device 14, it is also possible to employ a high-speed repetition light source such as a ruby pulse laser or a Xe flash.

一方、上述の瞬間照明光の散乱によつて可視化
された流れ場を連続的に記録する手段15として
は、高速度写真撮影カメラや工業用TVカメラ等
の使用が好ましい。中でも、3000駒/秒の撮影速
度を得ている高速度写真撮影カメラの使用は、30
あるいは60フレーム/秒が限度のITVカメラに
比べると、流れ場の揺らぎを記録する場合には大
きな効果を発揮する。
On the other hand, as the means 15 for continuously recording the flow field visualized by the scattering of the instantaneous illumination light, it is preferable to use a high-speed photographic camera, an industrial TV camera, or the like. Among them, the use of high-speed photography cameras that have a shooting speed of 3000 frames per second is
Also, compared to ITV cameras, which have a limit of 60 frames per second, they are highly effective in recording fluctuations in flow fields.

上述の光源3と撮影手段15とはこれらの光軸
がおおよそ90〜145°の範囲で交差するときに最適
な散乱光を得ることから、そのような角度関係に
なるように設置されている。例えば、第4図Aに
示すように、瞬間照明光が流れ場の周りを円周方
向に移動する場合には、複数台の光源3a〜3e
とこれらに夫々対応する撮影手段15a〜15e
とが円周上に配置されている。また、第4図Bに
示すように、光源3a〜3eを一直線上に配置し
てモデル槽1の奥行き方向あるいは手前方向に瞬
時照明光5を瞬時に直線移動させる場合には、一
台の撮影装置15に異なるセクシヨンの流れ状態
を連続的に記録させることができる。
The above-mentioned light source 3 and photographing means 15 are installed in such an angular relationship because optimal scattered light is obtained when their optical axes intersect within a range of approximately 90 to 145 degrees. For example, as shown in FIG. 4A, when the instantaneous illumination light moves circumferentially around the flow field, a plurality of light sources 3a to 3e are used.
and photographing means 15a to 15e corresponding to these, respectively.
and are arranged on the circumference. In addition, as shown in FIG. 4B, when the light sources 3a to 3e are arranged in a straight line and the instantaneous illumination light 5 is instantaneously moved in a straight line in the depth direction or the front direction of the model tank 1, it is possible to The device 15 can be made to record the flow conditions of different sections continuously.

以上のように構成された可視化装置を使つて本
発明の流れの三次元可視化方法をバーナモデルを
例に挙げて詳細に説明する。
A method for three-dimensionally visualizing a flow according to the present invention using the visualization device configured as described above will be explained in detail by taking a burner model as an example.

まず、モデル槽1あるいは無限空間に向けて均
質な散乱媒体4を大量かつ均一に分散させた流体
を必要なだけ安定供給し槽底の噴射口7から吹き
出させて流れ場を作り出す。散乱媒体4を含む流
体は流れ場を形成しかつ可視化に好適な濃度にあ
らかじめ全量調整されたものか、あるいは流体供
給ユニツト2において圧送中に混合調整されたも
のが使用される。次いで、この流れ場に瞬間的に
閃くスリツト光5を連続的に異なる場所ないし方
向から一定の方向性ないし関連性をもたせて順次
に照射し、各瞬間照明光5を散乱媒体4に乱反射
させることにより任意断面における流れを抽出し
て可視化する。
First, a fluid in which a large amount of homogeneous scattering medium 4 is uniformly dispersed is stably supplied as necessary to the model tank 1 or infinite space, and is blown out from the injection port 7 at the bottom of the tank to create a flow field. The fluid containing the scattering medium 4 forms a flow field and the total amount is adjusted in advance to a concentration suitable for visualization, or the fluid is mixed and adjusted during pumping in the fluid supply unit 2. Next, this flow field is sequentially irradiated with instantaneously flashing slit light 5 from different locations or directions with a certain directionality or relationship, and each instantaneous illumination light 5 is diffusely reflected by the scattering medium 4. The flow in an arbitrary cross section is extracted and visualized.

高速瞬間移動する瞬間照明光5の散乱によつて
可視化された流れ場は、観察者の目には残像現象
によつても判読不能な立体像にしか見えないが、
瞬間照明5a,5b…と同期させて高速撮影した
場合には一断面における散乱媒体4による散乱光
の集まりで形成される光の明暗の動きから、流れ
の現象、流れ方向等を正確に知ることができる。
しかも、十分微細でかつ均質な散乱媒体4によつ
て散乱する光の強度は単位体積中の散乱媒体個数
即ち散乱媒体の数密度に比例すると考えられ、そ
れは散乱光の強度が流れ場を構成する2つの流体
(コロイド流体と散乱媒体を含まない流体)の混
合時の体積濃度(以下単に濃度という)に対応す
ることを意味することから、散乱媒体4の粗密に
伴う散乱光の強弱によつて濃度及び濃度分布をも
同時に目視観察できる。
The flow field visualized by the scattering of the instantaneous illumination light 5 that moves instantaneously at high speed appears to the observer's eyes only as an unreadable three-dimensional image due to the afterimage phenomenon.
When high-speed photography is performed in synchronization with the instantaneous illuminations 5a, 5b, etc., it is possible to accurately determine the flow phenomenon, flow direction, etc. from the light and dark movement of the light formed by the collection of scattered light by the scattering medium 4 in one cross section. I can do it.
Moreover, the intensity of light scattered by a sufficiently fine and homogeneous scattering medium 4 is considered to be proportional to the number of scattering media in a unit volume, that is, the number density of scattering media, and this means that the intensity of the scattered light constitutes a flow field. This means that it corresponds to the volume concentration (hereinafter simply referred to as concentration) when two fluids (a colloidal fluid and a fluid that does not contain a scattering medium) are mixed, so it depends on the intensity of scattered light due to the density of the scattering medium 4. The concentration and concentration distribution can also be visually observed at the same time.

また、流れ場の濃度は、散乱光の明るさと相似
関係にあり、混合状態にある二流体において散乱
媒体4を含まない流体の割合が高くなるにつれて
単位体積中の散乱媒体量が減少して明るさを失う
ことから、バーナモデル8の出口の明るさを基準
明るさ(濃度100%相当)として定量的に求めら
れる。しかも、流れ場の異なるセクシヨンにおけ
る流体の濃度を瞬時に可視化して高速撮影用カメ
ラ15で記録するため、流れ場全域における瞬間
的な濃度分布が極めて近似したものとして立体的
かつ定量的に解析できる。
In addition, the concentration of the flow field has a similar relationship with the brightness of the scattered light, and as the proportion of the fluid that does not contain the scattering medium 4 increases in two fluids in a mixed state, the amount of scattering medium in a unit volume decreases and the brightness increases. Therefore, the brightness at the outlet of burner model 8 can be quantitatively determined as the standard brightness (equivalent to 100% concentration). Moreover, since the concentration of the fluid in different sections of the flow field is instantly visualized and recorded by the high-speed camera 15, the instantaneous concentration distribution in the entire flow field can be analyzed three-dimensionally and quantitatively as a highly approximated one. .

更に、この高速撮影の繰り返しによつて流れ場
の同一セクシヨンにおける散乱媒体4群の移動、
拡散及び集合現象即ち濃度変動が各駒の画像を比
較することによつてその明るさの変動として知る
ことができる。しかも、この濃度変動は極めて近
い点において極めて類似する波形の濃度変化とし
て表われることから、同一セクシヨン内における
極めて近い二点間あるいは極めて近い二つのセク
シヨンの瞬間照明光移動方向(三次元方向)の二
点間において極めて類似する波形の濃度変化が認
められるまでの変動の時間的ずれをフイルムの駒
送り時間から割出すことによつて、二次元方向あ
るいは三次元方向に流れの速度を測定できる。
Furthermore, by repeating this high-speed imaging, the movement of the four groups of scattering media in the same section of the flow field,
By comparing the images of each frame, diffusion and aggregation phenomena, that is, density variations, can be known as variations in brightness. Furthermore, since this density fluctuation appears as a density change with extremely similar waveforms at extremely close points, it is possible to change the direction of instantaneous illumination light movement (three-dimensional direction) between two extremely close points within the same section or between two extremely close sections. The velocity of the flow can be measured in two or three dimensions by determining the time lag in fluctuations until a very similar waveform density change is observed between two points from the film frame advance time.

勿論、上述の濃度測定等は工業用TVカメラを
使つて映し出されるテレビ画像の輝度変化を利用
しても実施できる。この場合には輝度変化即ち濃
度変化をモニタテレビ上のフオトセンサで連続的
に検出してリアルタイムの画像処理が実現でき
る。しかし1秒当り30フレームないし60フレーム
の画像しか得られないことから、低速流体にしか
応用できない。
Of course, the above-mentioned concentration measurement etc. can also be carried out by utilizing changes in the brightness of a television image displayed using an industrial TV camera. In this case, real-time image processing can be realized by continuously detecting changes in brightness, that is, changes in density, using a photo sensor on a monitor television. However, since it can only obtain images at 30 to 60 frames per second, it can only be applied to low-velocity fluids.

(発明の効果) 以上の説明から明らなように、本発明の流れの
三次元可視化方法は、微細粒子あるいは微細気泡
から成る散乱媒体を散乱光の集まりを形成できる
程度に大量かつ均一に分散させたコロイド流体で
可視化対象たる流れ場を形成する一方、この流れ
場を瞬間的に移動するスリツト光で断続的に瞬間
照明して流れ場の異なる断面における流れを散乱
媒体の乱反射に起因する散乱光の集まりから成る
光の明暗として瞬間的に順次可視化する一方、こ
れを順次撮像して流れ場の異なる断面における流
れの画像データとして取込むようにしたので、或
る断面における流れの状態や流れの方向といつた
定性的な観察は勿論のこと、散乱光の強弱から濃
度分布及び変動が一目で観察できるし、該可視断
面を組立てることによつて立体的な流れ場全域に
おける瞬間的な濃度分布あるいは濃度変動等の定
性的観察並びに定量的測定が可能となる。
(Effects of the Invention) As is clear from the above description, the method for three-dimensional visualization of a flow according to the present invention enables scattering media consisting of fine particles or bubbles to be dispersed uniformly in large quantities to the extent that a collection of scattered light can be formed. A flow field to be visualized is formed using colloidal fluid, and this flow field is intermittently illuminated with a slit light beam that moves instantaneously to detect the flow at different cross sections of the flow field, and to detect scattering caused by diffused reflection of the scattering medium. While the brightness and darkness of the light consisting of a collection of lights are visualized sequentially in an instant, this is sequentially imaged and captured as image data of the flow in different cross sections of the flow field, so it is possible to visualize the state of the flow and the flow in a certain cross section. In addition to qualitative observation such as direction, concentration distribution and fluctuations can be observed at a glance from the strength and weakness of scattered light, and by assembling the visible cross sections, instantaneous concentration over the entire three-dimensional flow field can be observed. Qualitative observation and quantitative measurement of distribution or concentration fluctuations, etc., becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は可視化媒体を大量かつ均一に分散させ
たコロイド流体を用いて再現される流れ場の可視
化原理説明図、第2図はモデル槽と、光源並びに
撮影装置の関係を上から見て示す原理説明図、第
3図は可視化された流れ場の例を示す原理説明
図、第4図は本発明の流れの可視化方法の実施例
を示すもので、Aは瞬間照明光を回転移動させる
場合、Bは瞬間照明光を直線移動させる場合を示
す概略図である。 4……散乱媒体、3……光源、5……瞬間照
明、14……シヤツタ装置、15……撮影装置。
Figure 1 is an explanatory diagram of the visualization principle of a flow field reproduced using a colloidal fluid in which a large amount of visualization medium is uniformly dispersed. Figure 2 shows the relationship between the model tank, light source, and imaging device viewed from above. Figure 3 is a diagram explaining the principle showing an example of a visualized flow field, Figure 4 is a diagram showing an example of the flow visualization method of the present invention, and A is a case where instantaneous illumination light is rotated. , B are schematic diagrams showing the case where instantaneous illumination light is moved in a straight line. 4...Scattering medium, 3...Light source, 5...Momentary illumination, 14...Shutter device, 15...Photographing device.

Claims (1)

【特許請求の範囲】[Claims] 1 微細粒子あるいは微細気泡から成る散乱媒体
を散乱光の集まりを形成できる程度に大量かつ均
一に分散させたコロイド流体で可視化対象たる流
れ場を形成する一方、この流れ場を瞬間的に移動
するスリツト光で断続的に瞬間照明して前記流れ
場の異なる断面における流れを前記散乱媒体の乱
反射に起因する散乱光の集まりから成る光の明暗
として瞬間的に順次可視化する一方、これを順次
撮像して前記流れ場の異なる断面における流れの
画像データとして取込むことを特徴とする流れの
三次元可視化方法。
1 A flow field to be visualized is formed using a colloidal fluid in which a scattering medium consisting of fine particles or bubbles is uniformly dispersed in large quantities to form a collection of scattered light, and a slit is used to instantaneously move this flow field. Intermittent instantaneous illumination with light is used to instantaneously and sequentially visualize the flow in different cross sections of the flow field as brightness and darkness of light consisting of a collection of scattered light caused by diffused reflection of the scattering medium, and this is sequentially imaged. A method for three-dimensional visualization of a flow, characterized in that image data of the flow in different cross sections of the flow field is captured.
JP9855284A 1984-05-18 1984-05-18 Three-dimensional visualizing method of flow Granted JPS60243536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9855284A JPS60243536A (en) 1984-05-18 1984-05-18 Three-dimensional visualizing method of flow

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9855284A JPS60243536A (en) 1984-05-18 1984-05-18 Three-dimensional visualizing method of flow

Publications (2)

Publication Number Publication Date
JPS60243536A JPS60243536A (en) 1985-12-03
JPH0551856B2 true JPH0551856B2 (en) 1993-08-03

Family

ID=14222848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9855284A Granted JPS60243536A (en) 1984-05-18 1984-05-18 Three-dimensional visualizing method of flow

Country Status (1)

Country Link
JP (1) JPS60243536A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154666A (en) * 1982-03-10 1983-09-14 Mitsubishi Heavy Ind Ltd Method for measuring flow trace and camera for photographing flow trace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58154666A (en) * 1982-03-10 1983-09-14 Mitsubishi Heavy Ind Ltd Method for measuring flow trace and camera for photographing flow trace

Also Published As

Publication number Publication date
JPS60243536A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
KR890000691B1 (en) Simulator of fluid flow in fille of flow entaling combustion or reaction
JPS5987369A (en) Method for measuring speed in water current model
US7227621B2 (en) System for visualizing flow and measuring velocity field using X-ray particle image velocimetry
Kintner et al. Photography in bubble and drop research
Sheu et al. A three-dimensional measurement technique for turbulent flows
JP2004340619A (en) Atomization measuring method and instrument
Zhang et al. Particle Image Velocimetry: User Guide
Shlien Observations of dispersion of entrained fluid in the self-preserving region of a turbulent jet
JP2004177312A (en) Three dimensional temperature/velocity simultaneous measuring method of fluid
JPH0551856B2 (en)
La Fontaine et al. Particle image velocimetry applied to a stirred vessel
JPS63103941A (en) Detecting method for rotary motion of flow
Gärtner et al. Velocity measurements in the field of an internal gravity wave by means of speckle photography
DE19948827A1 (en) Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels
JPS6129729A (en) Device and method for visualizing turbulent flow
Shlien Instantaneous concentration field measurement technique from flow visualization photographs
Cheng et al. Image-based system for particle counting and sizing
JPH0750119B2 (en) Flow visualization information detection method
JPH0654279B2 (en) 3D observation method of flow
JPH0327861B2 (en)
JPH0338537B2 (en)
Roesner Flow field visualization by photochromic coloring
JPH08201413A (en) Two-dimensional flow velocity measuring instrument
Felton A study of spherical bubbles in a vertical turbulent boundary layer
SU838583A1 (en) Device for measuring flow rate parameters of fluid medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term