DE19948827A1 - Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels - Google Patents

Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels

Info

Publication number
DE19948827A1
DE19948827A1 DE1999148827 DE19948827A DE19948827A1 DE 19948827 A1 DE19948827 A1 DE 19948827A1 DE 1999148827 DE1999148827 DE 1999148827 DE 19948827 A DE19948827 A DE 19948827A DE 19948827 A1 DE19948827 A1 DE 19948827A1
Authority
DE
Germany
Prior art keywords
ray
rays
opaque
particles
liquids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999148827
Other languages
German (de)
Inventor
Klaus Affeld
Axel Seeger
Ulrich Kertzscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE1999148827 priority Critical patent/DE19948827A1/en
Publication of DE19948827A1 publication Critical patent/DE19948827A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/005Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by using a jet directed into the fluid
    • G01P5/006Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by using a jet directed into the fluid the jet used is composed of ionised or radioactive particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/18Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance
    • G01P5/22Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the time taken to traverse a fixed distance using auto-correlation or cross-correlation detection means

Abstract

The flow rate measurement system mixes X-ray or gamma ray observable lead particles in styrene floats or solutions into the fluid so that three dimensional velocity can be measured using a series of X-ray or gamma ray images created by rays (1,2) from different sources (Q1,Q2) passing through the observation point (3) to shadow screens (4,5).

Description

Die Erfindung betrifft ein Verfahren, bei dem die Geschwindigkeit in Gas- oder Flüssigkeitsströmungen mittels undurchsichtige Materie durchdringende Strahlung, z. B. Röntgen- oder Gammastrahlung, berührungslos gemessen wird. Dies ist insbesondere dann von Vorteil, wenn in Strömungen gemessen werden muß, bei denen sonst übliche optische Verfahren versagen.The invention relates to a method in which the speed in gas or Liquid flows through opaque matter penetrating radiation, e.g. B. X-ray or gamma radiation is measured without contact. This is especially so an advantage if measurements have to be taken in currents in which otherwise usual optical Procedures fail.

Zur Geschwindigkeitsmessung in Strömungen existiert eine Vielzahl von Verfahren. Häufig werden Verfahren auf der Basis von Lichtstrahlen eingesetzt (z. B. Laser-Doppler-Velocimetry und Particle Image Velocimetry), weil sie berührungslos die Geschwindigkeitsmessung ermöglichen. Bedingung dafür ist ein optischer Zugang und ein durchsichtiges Strömungsmedium mit optisch homogenen Eigenschaften. Für viele Gas- und Flüssigkeitsströmungen sind diese Bedingungen erfüllbar. Manchmal ist es aber nicht möglich, einen optischen Zugang zu ermöglichen. Dazu gehören Strömungen in Brenn- oder Druckkammern, in denen aus technischen Gründen kein durchsichtiges Wandmaterial eingesetzt werden kann. Außerdem existieren Strömungen eines undurchsichtigen Mediums, z. B. Schlammströmungen. Desweiteren existieren Strömungen mit inhomogenen optischen Eigenschaften, z. B. Blasenströmungen, bei denen der Brechungsindex sich sprunghaft ändert. In all diesen Strömungen versagen die optischen Methoden, weil entweder die Strömung durch die Lichtstrahlen nicht erreicht wird oder weil die Lichtstrahlen die Strömung nicht durchdringen können. Auch ein Ausweichen in den ultravioletten oder infraroten Bereich des Lichtes erweitert den Einsatzbereich nur unwesentlich.There are a variety of methods for measuring velocity in currents. Frequently methods based on light beams are used (e.g. laser Doppler velocimetry and Particle Image Velocimetry) because they measure speed without contact enable. The condition for this is an optical access and a transparent one Flow medium with optically homogeneous properties. For many gas and These conditions can be met by liquid flows. But sometimes it is not possible to allow optical access. This includes flows in burning or Pressure chambers in which, for technical reasons, no transparent wall material can be used. There are also currents of an opaque medium e.g. B. Mud flows. Furthermore, there are flows with inhomogeneous optical Properties, e.g. B. bubble flows in which the refractive index changes abruptly. In all these currents the optical methods fail because either the flow through the light rays are not reached or because the light rays do not flow can penetrate. Also switching to the ultraviolet or infrared range of the Light extends the area of application only insignificantly.

Weiterhin sind Verfahren zur Geschwindigkeitsmessung in Strömungen auf der Basis von Ultraschall bekannt Ultraschall wird jedoch auch an Blasen reflektiert und es treten die gleichen Schwierigkeiten auf wie bei der Anwendung von Licht.Furthermore, methods for speed measurement in flows are based on Ultrasound known However, ultrasound is also reflected on bubbles and they occur same difficulties as when using light.

Weiterhin sind Verfahren zur Geschwindigkeitsmessung in Strömungen mit Sonden bekannt (z. B. Mikropropeller, Prandl- und Pitotrohr). Diese stören aber die Strömung, da sie nicht berührungslos arbeiten, und benötigen außerdem einen Zugang von außerhalb in die Strömung.Methods for measuring the speed in flows using probes are also known (e.g. micro propeller, Prandl and Pitot tube). However, these disturb the flow, since they are not work without contact and also require access from outside to the Flow.

Der Erfindung liegt die Aufgabe zugrunde, die oben erwähnten Nachteile der bisherigen Lösungen zu vermeiden und die Aufgabe auf technisch bessere Weise zu lösen.The invention is based, the above-mentioned disadvantages of the previous task Avoid solutions and solve the task in a technically better way.

Dies wird dadurch erreicht, daß nicht Lichtstrahlen zur Geschwindigkeitsmessung verwendet werden, sondern undurchsichtige Materie durchdringende Strahlung, z. B. Röntgenstrahlen. Letztere haben den Vorteil, daß sie durch viele Materialien dringen können, die für Licht völlig undurchdringlich sind, und daß sie nicht durch Phasengrenzen (z. B. Gas-Flüssigkeit) abgelenkt werden.This is achieved by not using light beams for speed measurement become, but opaque matter penetrating radiation, e.g. B. X-rays. The latter have the advantage that they can penetrate many materials that are completely light are impenetrable and that they are not separated by phase boundaries (e.g. gas-liquid) to get distracted.

Das Prinzip der Geschwindigkeitsmessung ist die häufig verwendete Particle Tracking Methode oder Particle Image Velocimetry. Bei diesen Methoden wird die Bewegung des Fluids aus der Bewegung von mit der Strömung mitschwimmenden Partikeln ermittelt. Diese Partikel werden fotografisch oder per Videokamera zu zwei unterschiedlichen Zeitpunkten aufgenommen und aus der Verschiebung der Partikel kann ein Rückschluß auf das Geschwindigkeitsfeld der Strömung gemacht werden.The principle of speed measurement is the frequently used particle tracking Method or particle image velocimetry. With these methods, the movement of the fluid determined from the movement of particles floating with the flow. These particles become photographic or by video camera at two different times recorded and from the displacement of the particles a conclusion on the Velocity field of the flow can be made.

Bei der Erfindung werden als mitschwimmende Partikel röntgendichte Teilchen verwendet. Beispielsweise können Partikel aus Blei in Styropor (zur Justierung der Dichte) verwendet werden. Die Bewegung der mitschwimmenden Partikel kann mit Röntgenfilmen aufgezeichnet werden. Die zur Auswertung der Bilder nötigen Algorithmen sind schon vorhanden, weil die gleichen eingesetzt werden können, die bei der Particle Tracking Methode oder Particle Image Velocimetry verwendet werden.In the invention, X-ray-tight particles are used as floating particles. For example, particles of lead in polystyrene (to adjust the density) can be used become. The movement of the floating particles can be recorded with X-ray films become. The algorithms necessary for the evaluation of the images already exist because the same can be used with the particle tracking method or particle image Velocimetry can be used.

Mit dieser Erfindung ist es möglich, die Geschwindigkeit von Strömungen zu messen, die lichtundurchlässig sind, die keinen optischen Zugang besitzen oder die Phasengrenzen besitzen.With this invention it is possible to measure the velocity of flows that  are opaque, have no optical access or have phase boundaries have.

Wenn zwei Röntgenstrahlen oder zwei anderen undurchsichtige Materie durchdringenden Strahlen verwendet werden, ist es möglich, alle drei Komponenten der Geschwindigkeit zu erhalten. Dazu muß ein Winkel zwischen den beiden Strahlen existieren, so daß die Position der röntgendichten Partikel oder röntgendichten Lösungen aus zwei Aufnahmen (eine aus jeder Richtung) dreidimensional erfaßt werden kann. Mit Hilfe eines zweiten Paares von Aufnahmen zu einem späteren Zeitpunkt kann die Verschiebung der röntgendichten Partikel oder röntgendichten Lösungen und damit die Geschwindigkeit der Strömung ermittelt werden. Eine Ausbildung der Erfindung ist in Fig. 1 gezeigt. Die Strahlen 1 und 2 gehen von ihrer jeweiligen Quelle (Q1 und Q2) durch den Punkt 3. Ist dieser ein röntgendichtes Partikel oder besteht er aus einer röntgendichten Lösung, so entstehen zwei Schattenwürfe 4 und 5 auf den Empfängerbildschirmen 6 und 7. Aus der Lage der Schattenwürfe 4 und 5 ist eine Rekonstruktion der Position des Partikels im dreidimensionalen Raum möglich. Wird eine zweite Aufnahme zu einem späteren Zeitpunkt gemacht, so kann die Verschiebung des röntgendichten Partikels oder der röntgendichten Lösung und damit die Geschwindigkeit bestimmt werden.If two x-rays or two other opaque matter-penetrating rays are used, it is possible to get all three components of the velocity. To do this, there must be an angle between the two beams so that the position of the X-ray-dense particles or X-ray-dense solutions can be recorded three-dimensionally from two images (one from each direction). With the help of a second pair of recordings at a later point in time, the displacement of the radiopaque particles or radiopaque solutions and thus the speed of the flow can be determined. An embodiment of the invention is shown in Fig. 1. Rays 1 and 2 go from their respective sources (Q1 and Q2) through point 3 . If this is an X-ray-tight particle or if it consists of an X-ray-tight solution, two shadow casts 4 and 5 are created on the receiver screens 6 and 7 . A reconstruction of the position of the particle in three-dimensional space is possible from the position of shadow casts 4 and 5 . If a second picture is taken at a later time, the displacement of the radiopaque particle or the radiopaque solution and thus the speed can be determined.

Claims (4)

1. Verfahren zur berührungslosen Messung der Geschwindigkeit in Strömungen von undurchsichtigen Flüssigkeiten oder von Flüssigkeiten in undurchsichtigen Behältern oder in Flüssigkeiten mit inhomogenen optischen Eigenschaften dadurch gekennzeichnet, daß den Flüssigkeiten röntgendichte Partikel oder röntgendichte Lösungen beigemischt sind, deren Bewegung mithilfe von Röntgenstrahlen oder anderen undurchsichtige Materie durchdringenden Strahlen sichtbar gemacht und dokumentiert wird.1. A method for non-contact measurement of the velocity in flows of opaque liquids or liquids in opaque containers or in liquids with inhomogeneous optical properties, characterized in that the liquids are mixed with X-ray-tight particles or X-ray-tight solutions, the movement of which penetrates with the aid of X-rays or other opaque matter Rays are made visible and documented. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß Gammastrahlung zur Sichtbarmachung und zur Dokumentation verwendet wird.2. The method according to claim 1, characterized in that gamma radiation for Visualization and documentation is used. 3. Verfahren nach Anspruch 1 oder dem voranstehenden Anspruch, dadurch gekennzeichnet, daß die Strahlen von mehreren Strahlungsquellen die Strömung unter unterschiedlichen Winkeln durchdringen, so daß die röntgendichte Partikel oder röntgendichte Lösungen in allen drei Raumkoordinaten erfaßt werden können.3. The method according to claim 1 or the preceding claim, characterized in that that the rays from several radiation sources block the flow under different Penetrate angles so that the radiopaque particles or radiopaque solutions in all three spatial coordinates can be recorded. 4. Verfahren nach Anspruch 1 oder einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß eine Serie von Bildern in entsprechendem zeitlichen Abstand aufgenommen wird, so daß daraus die Geschwindigkeiten der röntgendichte Partikel oder röntgendichte Lösungen ermittelt werden können.4. The method according to claim 1 or one of the preceding claims, characterized characterized in that a series of images at appropriate intervals is recorded so that the speeds of the x-ray-tight particles or radiopaque solutions can be determined.
DE1999148827 1999-10-06 1999-10-06 Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels Withdrawn DE19948827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE1999148827 DE19948827A1 (en) 1999-10-06 1999-10-06 Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999148827 DE19948827A1 (en) 1999-10-06 1999-10-06 Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels

Publications (1)

Publication Number Publication Date
DE19948827A1 true DE19948827A1 (en) 2001-04-12

Family

ID=7925161

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999148827 Withdrawn DE19948827A1 (en) 1999-10-06 1999-10-06 Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels

Country Status (1)

Country Link
DE (1) DE19948827A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083249A2 (en) 2008-01-22 2009-07-29 Michael Dues Method and device for producing optical access for fluids for flow measurements
DE102009005800A1 (en) 2009-01-22 2010-07-29 Dues, Michael, Dr.-Ing. Optical flow measurement
WO2011032210A1 (en) * 2009-09-16 2011-03-24 Monash University Particle image velocimetry suitable for x-ray projection imaging
US9025849B2 (en) 2009-09-16 2015-05-05 Monash University Partical image velocimetry suitable for X-ray projection imaging
CN110260945A (en) * 2019-07-09 2019-09-20 北京大学 Total-reflection type gas-liquid interface Method of flow visualization and gas-liquid interface location recognition method
US10674987B2 (en) 2014-04-15 2020-06-09 4Dx Limited Method of imaging motion of an organ
US11278256B2 (en) 2016-03-04 2022-03-22 4DMedical Limited Method and system for imaging
US11723617B2 (en) 2016-02-03 2023-08-15 4DMedical Limited Method and system for imaging
CN116698355A (en) * 2023-08-02 2023-09-05 交通运输部天津水运工程科学研究所 Wave experimental device and experimental method based on X-ray technology

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2083249A2 (en) 2008-01-22 2009-07-29 Michael Dues Method and device for producing optical access for fluids for flow measurements
DE102008005886A1 (en) 2008-01-22 2009-08-13 Dues, Michael, Dr.-Ing. Method and apparatus for providing optical accessibility to fluids for flow measurements
DE102009005800A1 (en) 2009-01-22 2010-07-29 Dues, Michael, Dr.-Ing. Optical flow measurement
WO2010083812A1 (en) 2009-01-22 2010-07-29 Michael Dues Method for measuring a flow, installation unit and measuring apparatus
US9036887B2 (en) 2009-09-16 2015-05-19 Monash University Particle image velocimetry suitable for X-ray projection imaging
US9025849B2 (en) 2009-09-16 2015-05-05 Monash University Partical image velocimetry suitable for X-ray projection imaging
WO2011032210A1 (en) * 2009-09-16 2011-03-24 Monash University Particle image velocimetry suitable for x-ray projection imaging
US9370334B2 (en) 2009-09-16 2016-06-21 Monash University Particle image velocimetry suitable for X-ray projection imaging
US10674987B2 (en) 2014-04-15 2020-06-09 4Dx Limited Method of imaging motion of an organ
US11660059B2 (en) 2014-04-15 2023-05-30 4DMedical Limited Apparatus and method of imaging
US11723617B2 (en) 2016-02-03 2023-08-15 4DMedical Limited Method and system for imaging
US11278256B2 (en) 2016-03-04 2022-03-22 4DMedical Limited Method and system for imaging
CN110260945A (en) * 2019-07-09 2019-09-20 北京大学 Total-reflection type gas-liquid interface Method of flow visualization and gas-liquid interface location recognition method
CN116698355A (en) * 2023-08-02 2023-09-05 交通运输部天津水运工程科学研究所 Wave experimental device and experimental method based on X-ray technology

Similar Documents

Publication Publication Date Title
Lindken et al. Stereoscopic micro particle image velocimetry
DE2632710C3 (en) Arrangement for the optical measurement of substance concentrations
DE4237440C1 (en) Optical imaging system for three=dimensional flow determination - has light source for short time exposure, and stereoscopic video imaging unit with synchronous image shifting by two mirrors which rotate about common axis parallel to line joining entrance-aperture objective lenses
DE102012215415A1 (en) Method and arrangement for measuring the flow rate of an optically inhomogeneous matter
DE19948827A1 (en) Flow rate measurement system uses X-ray particle image velocimetry is suitable for opaque fluids and vessels
Hassan et al. Investigation of three-dimensional two-phase flow structure in a bubbly pipe flow
Meisner et al. Eddy formation and turbulence in flowing liquids
Ibrahim Measurement of gas bubbles in a vertical water column using optical tomography
CN101216497A (en) Particle image speed-measuring device for measuring douche maze microflow path and method
DE2050672C3 (en) Flow cell for microscopic photometric measurement of particles suspended in a liquid
DE19628348C1 (en) Measuring probe for in-line measurement of suspended particle size
DE1472251A1 (en) Differential refractometer
DE102011009675A1 (en) Method for determining velocities in flows and phase-frequency-velocity field sensor
DE914788C (en) Optical device for analyzing the refractive index in layered or flowing solutions
DE102008019756B4 (en) Method for simultaneously measuring velocity and state parameter fields in a fluid flow
Cheng et al. Direct measurement of turbulence structures in mixing jar using PIV
DE102014205882B3 (en) Laser flowmeter and method for calibrating a laser flowmeter
Barnard et al. The motion generated by a body moving through a stratified fluid at large Richardson numbers
König et al. In situ calibration of an interferometric velocity sensor for measuring small scale flow structures using a Talbot-pattern
Lindken et al. 3D micro-scale velocimetry methods: A comparison between 3D-µPTV, stereoscopic µPIV and tomographic µPIV
DE508348C (en) Process for the photographic registration of subsidence, diffusion and similar processes
DE523302C (en) Optical examination apparatus for liquids
DE2260602A1 (en) DEVICE FOR DETECTION OF CONTAMINATION IN CLEAR LIQUIDS
Haffner Experimental Analysis of Suspension Flows Over and Through Various Porous Media Models
Applying Utilizing APTV to investigate the dynamics of polydisperse suspension flows beyond the dilute regime

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee