JPH0551749A - Vacuum treating device - Google Patents

Vacuum treating device

Info

Publication number
JPH0551749A
JPH0551749A JP23227491A JP23227491A JPH0551749A JP H0551749 A JPH0551749 A JP H0551749A JP 23227491 A JP23227491 A JP 23227491A JP 23227491 A JP23227491 A JP 23227491A JP H0551749 A JPH0551749 A JP H0551749A
Authority
JP
Japan
Prior art keywords
gas
sample
vacuum
wafer
nitrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23227491A
Other languages
Japanese (ja)
Inventor
Tadahiro Omi
忠弘 大見
Nobuhiro Konishi
信博 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP23227491A priority Critical patent/JPH0551749A/en
Priority to EP92917995A priority patent/EP0661385A1/en
Priority to PCT/JP1992/001048 priority patent/WO1993004210A1/en
Publication of JPH0551749A publication Critical patent/JPH0551749A/en
Priority to US08/680,519 priority patent/US6146135A/en
Priority to US10/120,628 priority patent/US6949478B2/en
Priority to US11/129,710 priority patent/US20050206018A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the deposition of particles on a material to be treated by injecting UV into a gas passing through a tube with the inner surface formed with an insulator and introducing the gas into a vessel. CONSTITUTION:A sample 107 is treated in the load-lock chamber 101 of a vacuum vessel. Nitrogen gas passing through a pipeline 103 is irradiated with UV from a deuterium lamp 104. The partially ionized nitrogen gas flows onto the sample 107 to remove electrification of the sample. The pipeline 103 is formed with an insulator to prevent the neutralization of the formed ion and electron. Even if the sample 107 moving in the vessel is charged, the electric charge is neutralized. Consequently, the particles are not deposited on the sample 107, and yields are increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は複数の真空容器を連結して成る真
空処理装置に係わり、特にロ−ドロックチャンバのよう
な真空容器における被処理物へのパ−ティクル付着を防
止するための真空処理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum processing apparatus formed by connecting a plurality of vacuum vessels, and more particularly to a vacuum processing apparatus for preventing particles from adhering to an object to be processed in a vacuum vessel such as a load lock chamber. It is a thing.

【0002】[0002]

【従来技術】図4は一般的な真空搬送処理装置の構成を
表すものである。
2. Description of the Related Art FIG. 4 shows the structure of a general vacuum transfer processing apparatus.

【0003】図において401はロ−ドロックチャン
バ、402は搬送室、403は反応室であり、これら3
室は連鎖的に接続されている。実際にプロセスを行うと
きには、まずウェハをカセットなどのホルダ−に入れ次
いで扉404を開け大気圧の状態でセットし扉を閉め
る。そして真空ポンプ405でロ−ドロックチャンバ4
01を10-6Torr程度の真空に引く。このとき、真
空ポンプ406で搬送室402を10-8Torr程度の
真空度に引いておき、ロ−ドロックチャンバ401と搬
送室402の間にあるゲ−トバルブ407を開けウェハ
を搬送し、その後ゲ−トバルブ407を閉める。このと
き、真空ポンプ408で反応室403を10-1 0Tor
r程度の真空度に引いておき、搬送室402と反応室4
03の間にあるゲ−トバルブ409を開けウェハを搬送
する。このようにすると大気圧まで真空度を下げたロ−
ドロック室401と反応室403が直接同じ雰囲気に触
れること無く搬送でき、反応室403を常に高真空の状
態に保つことができる。反応室403にウェハが搬送さ
れたら、ゲ−トバルブ409を閉め反応室403を密閉
し真空ポンプでさらに高真空に引く。このような状態
で、例えばガス配管410を介して所定のガスを反応室
403内に流入しプロセスを行う。プロセスが終了した
後には再びゲ−トバルブ409を開けウェハを搬送室4
02に搬送する。そしてゲートバルブ409を閉め反応
室403と遮断してからゲートバルブ407を開けロー
ドロックチャンバ401に搬送する。その搬送後は、ゲ
ートバルブ407を閉め搬送室402とロードロックチ
ャンバ401を遮断する。その後、ガス導入口411を
介してガスを流しロードロックチャンバ401をリーク
し真空度を大気圧まで下げ大気圧下でウェハの取り出し
を行っている。このようにロードロックチャンバではウ
ェハを取り出す際、チャンバ内に乾燥した窒素ガスやア
ルゴンガス等のガスを流しチャンバをリークする。
In the figure, 401 is a load lock chamber, 402 is a transfer chamber, and 403 is a reaction chamber.
The chambers are connected in a chain. When actually performing the process, first, the wafer is put in a holder such as a cassette, and then the door 404 is opened and set under the atmospheric pressure, and the door is closed. Then, the vacuum pump 405 is used to load the load lock chamber 4
01 is evacuated to about 10 -6 Torr. At this time, the transfer chamber 402 is evacuated by the vacuum pump 406 to a vacuum degree of about 10 −8 Torr, the gate valve 407 between the load lock chamber 401 and the transfer chamber 402 is opened to transfer the wafer, and then the wafer is transferred. -Close valve 407. At this time, 10 -1 0 Tor reaction chamber 403 by the vacuum pump 408
The transfer chamber 402 and the reaction chamber 4 are evacuated to a vacuum degree of about r.
The gate valve 409 located between 03 and 03 is opened to transfer the wafer. This will reduce the vacuum to atmospheric pressure.
The docking chamber 401 and the reaction chamber 403 can be transported without directly touching the same atmosphere, and the reaction chamber 403 can always be kept in a high vacuum state. When the wafer is transferred to the reaction chamber 403, the gate valve 409 is closed to close the reaction chamber 403, and the vacuum pump further draws a high vacuum. In this state, for example, a predetermined gas is introduced into the reaction chamber 403 via the gas pipe 410 to perform the process. After the process is completed, the gate valve 409 is opened again and the wafer transfer chamber 4 is opened.
02. Then, the gate valve 409 is closed to shut off the reaction chamber 403, and then the gate valve 407 is opened to convey the load lock chamber 401. After the transfer, the gate valve 407 is closed and the transfer chamber 402 and the load lock chamber 401 are shut off. After that, gas is flown through the gas introduction port 411 to leak the load lock chamber 401, the vacuum degree is lowered to the atmospheric pressure, and the wafer is taken out under the atmospheric pressure. As described above, when the wafer is taken out from the load lock chamber, a dry gas such as nitrogen gas or argon gas is caused to flow into the chamber to leak the chamber.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術には、ロ
ードロックチャンバのリークに大きな問題がある。すな
わちガス導入口より、例えば乾燥窒素ガスを流した際、
ロードロックチャンバ内のパーティクルが舞い上がりウ
ェハに降り注いだり、窒素ガスを流すために発生する静
電気等によりウェハが帯電しパーティクルが多量に付着
したりする。このため従来型のロードロックチャンバで
は付着したパーティクルによりウェハを汚染し歩留まり
の低下を引き起こした。なお、例えば上記帯電の問題を
解決するためチャンバのリークに用いる窒素ガスの流量
を減らす等の対応がなされているが、パーティクルの付
着にはウェハの帯電による要因が大き過ぎて十分な効果
が上がらない。
The above-mentioned prior art has a big problem in the leak of the load lock chamber. That is, for example, when flowing dry nitrogen gas from the gas inlet,
The particles in the load lock chamber may rise and fall on the wafer, or the wafer may be charged due to static electricity generated by flowing the nitrogen gas and a large amount of particles may adhere to the wafer. For this reason, in the conventional load lock chamber, the adhered particles contaminate the wafer and reduce the yield. Note that, for example, in order to solve the above-mentioned problem of charging, measures such as reducing the flow rate of nitrogen gas used for leaking the chamber have been taken, but for the adhesion of particles, the factor due to the charging of the wafer is too large and a sufficient effect can be obtained. Absent.

【0005】[0005]

【課題を解決するための手段】本発明の真空処理装置
は、各々が減圧可能な複数の容器を開閉機構を介して連
設して成り、前記各容器間で被処理物を移動可能に構成
された真空装置において、少なくとも一つの前記容器内
に導入されるガス体に紫外光を投光するための投光手段
を設けたことを特徴とする。上記投光手段によりガス体
をイオン化し試料に照射するため試料の帯電が除去でき
る。
A vacuum processing apparatus according to the present invention comprises a plurality of containers, each of which is capable of depressurizing, connected in series through an opening / closing mechanism, and an object to be processed can be moved between the containers. In the vacuum device described above, a light projecting unit for projecting ultraviolet light to at least one gas body introduced into the container is provided. Since the gas body is ionized by the light projecting means to irradiate the sample, the charge of the sample can be removed.

【0006】[0006]

【作用】容器(例えばロードロックチャンバ)内に導入
されるガス(例えば窒素ガス)は投光手段(例えば重水
素ランプ)から投光される紫外線により電離されている
ので、容器内に置かれる被処理物(例えばウェハ)が帯
電している場合にもその帯電電荷は前記電離した荷電体
により中和される。
The gas (for example, nitrogen gas) introduced into the container (for example, the load lock chamber) is ionized by the ultraviolet rays projected from the light projecting means (for example, the deuterium lamp), so that the object to be placed in the container is kept. Even when the processed object (for example, wafer) is charged, the charged electric charge is neutralized by the ionized charged body.

【0007】[0007]

【実施例】以下本発明の実施例を図面を参照して説明す
る。なお、本実施例の説明は重設された真空容器のうち
代表的なロードロックチャンバについてのみ説明する。
図1は第1実施例を示すものである。図1において10
1は真空容器たるロードロックチャンバであり、例えば
材質はSUS316Lで内面が複合電解研磨及び酸化不
動態処理されており、一辺が300mmの中空立方箱体
状に形成されている。
Embodiments of the present invention will be described below with reference to the drawings. In the description of the present embodiment, only a typical load lock chamber among the vacuum containers that are installed in a stack will be described.
FIG. 1 shows a first embodiment. 1 in FIG.
Reference numeral 1 denotes a load lock chamber which is a vacuum container. For example, the material is SUS316L, the inner surface of which is subjected to complex electropolishing and oxidation passivation treatment, and is formed into a hollow cubic box shape with one side of 300 mm.

【0008】102はガスの配管であり、例えば材質は
SUS316Lで内面が複合電解研磨及び酸化不動態処
理されており口径は1/4インチである。なお、ガスと
してアルゴンが用いられる。
Reference numeral 102 denotes a gas pipe, which is made of, for example, SUS316L, the inner surface of which is subjected to complex electrolytic polishing and oxidation passivation treatment, and has a diameter of 1/4 inch. Argon is used as the gas.

【0009】103はガスの配管であり、例えば材質は
SUS316Lで内面が複合電解研磨及び酸化不動態処
理されており口径は1/4インチである。なお、このガ
スとしては、例えば窒素ガスを用いられる。
Reference numeral 103 is a gas pipe, for example, made of SUS316L, the inner surface of which is subjected to complex electrolytic polishing and oxidation passivation treatment, and has a diameter of 1/4 inch. As this gas, for example, nitrogen gas is used.

【0010】104は紫外光投光部であり、例えば重水
素ランプから成る。
Reference numeral 104 denotes an ultraviolet light projecting section, which is composed of, for example, a deuterium lamp.

【0011】105は紫外光がガスに投光される際に通
過する窓で例えば波長360nm以下の紫外光をよく通
過させる合成石英を用いてある。これは、紫外光を透過
させるものであれば他の材質を用いてもよい。
Reference numeral 105 denotes a window through which ultraviolet light is projected when it is projected onto the gas, and synthetic quartz which allows ultraviolet light having a wavelength of 360 nm or less to pass therethrough is used. Other materials may be used as long as they transmit ultraviolet light.

【0012】106は試料のサセプターであり、例えば
材質がSUS316Lで表面が複合電解研磨されており
その大きさは直径6インチである。
Reference numeral 106 is a sample susceptor, for example, made of SUS316L, the surface of which is subjected to complex electropolishing, and its size is 6 inches in diameter.

【0013】107は試料であり、例えば直径5インチ
のシリコンウェハを用いた。
Reference numeral 107 is a sample, for example, a silicon wafer having a diameter of 5 inches was used.

【0014】108は前記真空漕を真空に引くための真
空ポンプであり、例えばターボ分子ポンプを用いた。
Reference numeral 108 denotes a vacuum pump for evacuating the vacuum tank, and for example, a turbo molecular pump is used.

【0015】では実際の動作原理を示す。The actual operation principle will be described below.

【0016】窒素ガスが配管103に流れると重水素ラ
ンプ104から投光される紫外光が合成石英窓105を
通して前記窒素ガスに照射される。照射された紫外線に
より窒素ガスの一部がN2 +とe-に電離し電離した状態
でシリコンウェハ上に流れ込みウェハの帯電を除去す
る。例えば、紫外線投光された窒素ガスを流さずにター
ボ分子ポンプ108を止めて配管102よりアルゴンガ
スのみを例えば2〜3l/min流してロードロックチ
ャンバをリークし、その時のシリコンウェハ上のパーテ
ィクルをパーティクル測定装置によって測定すると10
00〜1500個であった。上記と同じ条件で窒素ガス
を配管103を介して、例えば常圧で5cc/min流
し重水素ランプ104を投光してやるとシリコンウェハ
上のパーティクルは通常の手法による測定で5個以下で
あった。このようにパーティクルを激減できるという顕
著な効果を有する。
When the nitrogen gas flows through the pipe 103, the ultraviolet light emitted from the deuterium lamp 104 is applied to the nitrogen gas through the synthetic quartz window 105. A part of the nitrogen gas is ionized into N 2 + and e by the irradiated ultraviolet rays and flows into the silicon wafer in an ionized state to remove the charge on the wafer. For example, the turbo molecular pump 108 is stopped without flowing the nitrogen gas projected by the ultraviolet rays, and only the argon gas is allowed to flow through the pipe 102, for example, at a rate of 2 to 3 l / min to leak the load lock chamber and to remove particles on the silicon wafer at that time. 10 when measured with a particle measuring device
The number was from 00 to 1500. Under the same conditions as above, when nitrogen gas was flowed through the pipe 103 at a normal pressure of 5 cc / min to project the deuterium lamp 104, the number of particles on the silicon wafer was 5 or less as measured by a usual method. Thus, there is a remarkable effect that the number of particles can be drastically reduced.

【0017】なお上記実施例では真空漕101及び配管
102には、例えばその材質はSUS316Lで内面が
複合電解研磨及び酸化不動態処理されているものを用い
たが用途によって任意の材質、大きさのものを用いても
よい。
In the above embodiment, the vacuum tank 101 and the pipe 102 are made of, for example, SUS316L, the inner surface of which is subjected to complex electrolytic polishing and oxidation passivation treatment. You may use the thing.

【0018】配管103には上記実施例では、例えばそ
の材質としてSUS316Lで内面が複合電解研磨及び
酸化不動態処理されているものを用いたが、例えばテフ
ロンを内面にコートしたチューブやあるいはセラミック
チューブでもよい。要は、できたイオンと電子を中和し
ないよう表面が絶縁物であればよい。
In the above embodiment, the pipe 103 is made of, for example, SUS316L whose inner surface is subjected to complex electrolytic polishing and oxidation passivation treatment. However, for example, a tube having Teflon coated on its inner surface or a ceramic tube may be used. Good. The point is that the surface should be an insulator so as not to neutralize the formed ions and electrons.

【0019】サセプター106には上記実施例では、例
えばその材質がSUS316Lで複合電解研磨されてい
るものを用いたが用途によって任意の材質、形状のもの
を用いてもよいし複数でもよい。
In the above-described embodiment, the susceptor 106 is made of SUS316L and is subjected to composite electrolytic polishing. However, the susceptor 106 may be made of any material or shape depending on the application.

【0020】試料107には上記実施例では、例えばシ
リコンウェハを用いたが用途によって任意の材料を用い
てもよい。即ち、石英基板やガラス基板あるいはガリウ
ム砒素等の化合物半導体のウェハでもよい。
Although a silicon wafer is used as the sample 107 in the above embodiment, any material may be used depending on the application. That is, it may be a quartz substrate, a glass substrate, or a compound semiconductor wafer such as gallium arsenide.

【0021】真空ポンプ108には上記実施例では、例
えばターボ分子ポンプを用いたが用途によって任意の真
空ポンプを用いてもよい。
In the above embodiment, for example, a turbo molecular pump was used as the vacuum pump 108, but any vacuum pump may be used depending on the application.

【0022】又、上記実施例では第1のガスとして窒素
ガス、第2のガスとしてアルゴンガスを用いたが乾燥ガ
スであれば任意のガスを用いてもよいしガス導入口10
2と103に導入されるガスが同じであってもよい。望
ましくは酸素濃度が10ppm以下であるとよい。これ
は紫外線投光によりオゾンが発生しN2 +イオンが減少す
るからである。ガス導入口についても上記実施例では個
別のものを用いたが共通していてもよい。
Further, in the above embodiment, nitrogen gas was used as the first gas and argon gas was used as the second gas, but any gas may be used as long as it is a dry gas, and the gas inlet port 10 may be used.
The gases introduced into 2 and 103 may be the same. Desirably, the oxygen concentration is 10 ppm or less. This is because ozone is generated and N 2 + ions are reduced by the ultraviolet irradiation. The gas inlets are also individual in the above embodiment, but they may be common.

【0023】図2は第2実施例を示すものである。FIG. 2 shows a second embodiment.

【0024】本実施例は上記実施例の配管103を試料
107の直近まで延長した配管201で構成したもの
で、他の構成は第1実施例と同様であるので重複した説
明は省略する。第1実施例と同じく紫外光が投光された
窒素ガスを配管103に流してパーティクルをパーティ
クル測定装置で測定した結果5個以下であった。即ち第
1実施例と同様の効果を有する。
In this embodiment, the pipe 103 of the above-mentioned embodiment is constituted by a pipe 201 which is extended to a position closest to the sample 107. Since other constitutions are the same as those of the first embodiment, duplicated explanation will be omitted. As in the case of the first embodiment, the nitrogen gas onto which the ultraviolet light was projected was made to flow through the pipe 103, and the number of particles measured by the particle measuring device was 5 or less. That is, it has the same effect as that of the first embodiment.

【0025】なお、上記実施例では、例えばガス配管2
01を試料直近まで延長させたが、この配管201は真
空漕内にガスを導入できればどこについていてもよく移
動可能な構成であってもよい。
In the above embodiment, for example, the gas pipe 2
Although 01 was extended to the vicinity of the sample, this pipe 201 may be anywhere as long as gas can be introduced into the vacuum tank and may be movable.

【0026】又、上記実施例では、例えば配管201は
直管であるがその用途に応じた曲管であってもよい。
Further, in the above embodiment, for example, the pipe 201 is a straight pipe, but it may be a curved pipe according to its application.

【0027】図3は第3実施例を示すものである。FIG. 3 shows a third embodiment.

【0028】本実施例では実施例のサセプター106
を、例えばウェハ302を複数枚処理できるキャリア3
01とした構成にしたものである。その他の構成は第1
実施例と同様とした。第1実施例と同様に窒素ガスを流
してパーティクルをパーティクル測定装置で測定した結
果、例えばウェハ5枚を保持できるキャリアとしたとこ
ろ平均してパーティクルの数がウェハ1枚あたり5個以
下であった。第1の実施例と同様な効果を奏する。
In this embodiment, the susceptor 106 of the embodiment is used.
Carrier 3 capable of processing a plurality of wafers 302, for example
The configuration is 01. Other configurations are first
The same as in the example. As a result of flowing a nitrogen gas in the same manner as in the first embodiment, the particles were measured by a particle measuring device. As a result, when a carrier capable of holding, for example, 5 wafers was used, the average number of particles was 5 or less per wafer. .. The same effect as the first embodiment is obtained.

【0029】本第3の実施例のキャリア301は、例え
ばウェハを垂直にして5枚保持する構造としたがその用
途によって任意の角度に傾かせて保持してもよい。
The carrier 301 of the third embodiment has a structure in which, for example, five wafers are held vertically, but may be held at an arbitrary angle depending on the application.

【0030】上記第1から第3の実施例においては、チ
ャンバのリークの際に起こるウェハの帯電を防止するた
めにロードロックチャンバに紫外光を投光した窒素ガス
を導入した。しかし、真空中でのウェハの搬送中にもウ
ェハが帯電することが報告されている。その原因は今の
ところ明らかにされていないが、上記紫外線を投光した
ガスを搬送室に導入してもウェハの帯電が除去できるの
で、搬送中の帯電を防止するために搬送室に導入口を設
けてもよい。
In the above-mentioned first to third embodiments, the nitrogen gas irradiated with ultraviolet light is introduced into the load lock chamber in order to prevent the wafer from being charged when the chamber leaks. However, it has been reported that the wafer is electrically charged even during the transportation of the wafer in vacuum. The cause has not been clarified so far, but since the electrostatic charge on the wafer can be removed by introducing the above-mentioned ultraviolet-ray-transmitted gas into the transfer chamber, the inlet of the transfer chamber must be installed to prevent electrostatic charge during transfer. May be provided.

【0031】[0031]

【発明の効果】請求項1の発明によれば、容器間を移動
する被処理物が帯電した場合でも、その帯電電荷が中和
され、前記被処理物へのパーティクル付着を防止でき、
被処理物の歩留まり低下の回避に貢献できる。
According to the first aspect of the present invention, even when the object to be processed moving between the containers is charged, the electrostatic charge is neutralized, and the particles can be prevented from adhering to the object to be processed.
This can contribute to avoiding a decrease in the yield of objects to be processed.

【0032】請求項2の発明によれば、電離したガス体
を試料に高効率で被処理物に供給できる。
According to the second aspect of the present invention, the ionized gas body can be efficiently supplied to the sample as the sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係わる真空処理装置の要部概略模
式図である。
FIG. 1 is a schematic view of a main part of a vacuum processing apparatus according to a first embodiment.

【図2】第2実施例に係わる真空処理装置の要部概略模
式図である。
FIG. 2 is a schematic view of a main part of a vacuum processing apparatus according to a second embodiment.

【図3】第3実施例に係わる真空処理装置の要部概略模
式図である。
FIG. 3 is a schematic view of a main part of a vacuum processing apparatus according to a third embodiment.

【図4】従来技術に係わる真空処理装置の概略模式図で
ある。
FIG. 4 is a schematic diagram of a vacuum processing apparatus according to a conventional technique.

【符号の説明】[Explanation of symbols]

101 真空漕容器、 102 第2のガスの配管、 103 第1のガスの配管、 104 紫外線投光手段、 105 合成石英窓投光部、 106 サセプター、 107 試料(被処理物)、 108 真空ポンプ、 201 ガスの配管、 301 サセプター、 302 試料(被処理物)。 101 vacuum tank container, 102 second gas pipe, 103 first gas pipe, 104 UV light projecting means, 105 synthetic quartz window light projecting part, 106 susceptor, 107 sample (processed object), 108 vacuum pump, 201 gas pipe, 301 susceptor, 302 sample (processing object).

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各々が減圧可能な複数の容器を開閉機構
を介して連設して成り、前記各容器間で被処理物を移動
可能に構成された真空装置において、少なくとも一つの
前記容器内に導入されるガス体に紫外光を投光するため
の投光手段を設けたことを特徴とする真空処理装置。
1. A vacuum device comprising a plurality of containers, each of which is capable of depressurizing, connected in series via an opening / closing mechanism, and is capable of moving an object to be processed between the respective containers. A vacuum processing apparatus, characterized in that a light projecting means for projecting ultraviolet light is provided on the gas body introduced into the vacuum processing apparatus.
【請求項2】 前記投光手段は、前記少なくとも一つの
容器と前記ガス体の供給手段との間に設けられ、少なく
とも内部表面が絶縁物で形成された管体に導入されるガ
ス体を照射することを特徴とする請求項1記載の真空処
理装置。
2. The light projecting means is provided between the at least one container and the gas body supply means, and irradiates a gas body introduced into a tube body at least an inner surface of which is made of an insulator. The vacuum processing apparatus according to claim 1, wherein:
【請求項3】 前記ガス体は窒素ガス若しくはアルゴン
ガス、叉は窒素ガスとアルゴンガスの混合ガスであるこ
とを特徴とする請求項1又は請求項2に記載の真空処理
装置。
3. The vacuum processing apparatus according to claim 1, wherein the gas body is nitrogen gas or argon gas, or a mixed gas of nitrogen gas and argon gas.
【請求項4】 前記投光手段は、合成石英から成る投光
部分を介して前記ガス体を照射することを特徴とする請
求項1から請求項3までのいずれか一項に記載の真空処
理装置。
4. The vacuum processing according to claim 1, wherein the light projecting means irradiates the gas body through a light projecting portion made of synthetic quartz. apparatus.
JP23227491A 1991-08-19 1991-08-20 Vacuum treating device Pending JPH0551749A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP23227491A JPH0551749A (en) 1991-08-20 1991-08-20 Vacuum treating device
EP92917995A EP0661385A1 (en) 1991-08-19 1992-08-19 Method for forming oxide film
PCT/JP1992/001048 WO1993004210A1 (en) 1991-08-19 1992-08-19 Method for forming oxide film
US08/680,519 US6146135A (en) 1991-08-19 1996-07-09 Oxide film forming method
US10/120,628 US6949478B2 (en) 1991-08-19 2002-04-11 Oxide film forming method
US11/129,710 US20050206018A1 (en) 1991-08-19 2005-05-13 Oxide film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23227491A JPH0551749A (en) 1991-08-20 1991-08-20 Vacuum treating device

Publications (1)

Publication Number Publication Date
JPH0551749A true JPH0551749A (en) 1993-03-02

Family

ID=16936673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227491A Pending JPH0551749A (en) 1991-08-19 1991-08-20 Vacuum treating device

Country Status (1)

Country Link
JP (1) JPH0551749A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635589B2 (en) 1994-08-11 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Methods of heat treatment and heat treatment apparatus for silicon oxide films
JP2007012467A (en) * 2005-06-30 2007-01-18 Hamamatsu Photonics Kk Static eliminator and chamber equipped therewith
CN106016977A (en) * 2016-05-20 2016-10-12 京东方科技集团股份有限公司 Drying device
JP2021048355A (en) * 2019-09-20 2021-03-25 日新イオン機器株式会社 Substrate processing apparatus
TWI724316B (en) * 2017-11-22 2021-04-11 日商日新離子機器股份有限公司 Flat panel display manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635589B2 (en) 1994-08-11 2003-10-21 Semiconductor Energy Laboratory Co., Ltd. Methods of heat treatment and heat treatment apparatus for silicon oxide films
JP2007012467A (en) * 2005-06-30 2007-01-18 Hamamatsu Photonics Kk Static eliminator and chamber equipped therewith
CN106016977A (en) * 2016-05-20 2016-10-12 京东方科技集团股份有限公司 Drying device
TWI724316B (en) * 2017-11-22 2021-04-11 日商日新離子機器股份有限公司 Flat panel display manufacturing device
JP2021048355A (en) * 2019-09-20 2021-03-25 日新イオン機器株式会社 Substrate processing apparatus

Similar Documents

Publication Publication Date Title
TWI540658B (en) Cleaning methods, handling devices and memory media
TW511185B (en) Substrate processing apparatus and processing method
JP5371854B2 (en) Substrate processing apparatus and substrate processing method
JPH07245332A (en) Apparatus and method for manufacturing semiconductor device and semiconductor device
JPH0555148A (en) Method and apparatus for multichamber-type single wafer processing
US8193101B2 (en) Substrate processing apparatus and semiconductor device manufacturing method for forming film
US11626269B2 (en) Chamber seasoning to improve etch uniformity by reducing chemistry
JP2001137800A (en) Apparatus and method for treating substrate
JPH0551749A (en) Vacuum treating device
EP0597103B1 (en) Apparatus for neutralizing charged body
US5237756A (en) Method and apparatus for reducing particulate contamination
JP3118737B2 (en) Processing method of the object
JP5586316B2 (en) UV ozone cleaning device
JP3327492B2 (en) Apparatus and method for removing gas phase dust from substrate surface, process apparatus and process line
JPH07161598A (en) Vacuum processing apparatus
JP2006156769A (en) Vacuum processor
JPS593931A (en) Forming of thin film
JP4319287B2 (en) Processing equipment
JPH02184333A (en) Load locker
JPH01135015A (en) Semiconductor wafer treating device
JPH0663379A (en) Vacuum storehouse
JPH06204196A (en) Removal of extraneous matter and device therefor
JP3452422B2 (en) Vacuum processing equipment
KR20210000356A (en) Apparatus and Method for treating substrate
JPH09143674A (en) Film forming device and using method therefor