JPH0551680A - Tial intermetallic compound having high strength, high toughness, and high ductility - Google Patents

Tial intermetallic compound having high strength, high toughness, and high ductility

Info

Publication number
JPH0551680A
JPH0551680A JP21555691A JP21555691A JPH0551680A JP H0551680 A JPH0551680 A JP H0551680A JP 21555691 A JP21555691 A JP 21555691A JP 21555691 A JP21555691 A JP 21555691A JP H0551680 A JPH0551680 A JP H0551680A
Authority
JP
Japan
Prior art keywords
intermetallic compound
grain size
ductility
toughness
tial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21555691A
Other languages
Japanese (ja)
Inventor
Yoshinari Fujiwara
良也 藤原
Sakae Tsunashima
栄 綱島
Toshio Tokune
敏生 徳根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP21555691A priority Critical patent/JPH0551680A/en
Publication of JPH0551680A publication Critical patent/JPH0551680A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve strength, toughness, and ductility by specifying the average crystalline grain size and the amount of contained oxygen in a TiAl intermetallic compound, respectively. CONSTITUTION:This TiAl intermetallic compound has a composition consisting of 36-60 atomic % Al and the balance Ti and also has <=50mu average crystalline grain size and <=1.0wt.% contained oxygen content. When the average grain size exceeds 50mu, the regularity of crystal orientation is increased and, as a results, transgranular cleavage is allowed to occur and the strength, toughness, and ductility of the above intermetallic compound are deteriorated. Further, when the amount of contained oxygen exceeds 1.0wt.%, the toughness and ductility of the above intermetallic compound are deteriorated similarly. Because this intermetallic compound is obtained by regulating the amount of oxygen contained in powdery raw materials at the time of preparing these powdery raw materials and also regulating the crystalline grain size by means of heat treatment, the refining of crystalline grains and the reduction in the amount of contained oxygen can be relatively easily attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高強度高靱延性TiAl
系金属間化合物に関する。
FIELD OF THE INVENTION The present invention relates to high strength and high ductility TiAl.
Related to intermetallic compounds.

【0002】[0002]

【従来の技術】TiAl系金属間化合物は、軽量で、且
つ優れた耐熱性を有するためエンジン部品等の構造材料
として着目されている。
2. Description of the Related Art TiAl-based intermetallic compounds are noted as a structural material for engine parts and the like because they are lightweight and have excellent heat resistance.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、一般に
TiAl系金属間化合物は、常温延性が低いために加工
性が悪く、その上、製品化しても強度および靱性が低い
ために実用性が乏しい、といった問題がある。
However, in general, TiAl-based intermetallic compounds are poor in workability due to low room temperature ductility, and are poor in practicability due to low strength and toughness even when commercialized. There's a problem.

【0004】そこで、現在、Mn等の第3元素の添加を
行うことによってTiAl系金属間化合物の機械的特性
を向上させる試みがなされているが、この場合には、長
時間の均質化熱処理の実施が不可欠であるため、生産コ
ストの上昇、生産能率の低下等の生産面での新たな問題
を生じる。
Therefore, at present, it is attempted to improve the mechanical properties of the TiAl-based intermetallic compound by adding a third element such as Mn. In this case, long-term homogenization heat treatment is performed. Since implementation is indispensable, new problems will occur in terms of production, such as increased production costs and reduced production efficiency.

【0005】本発明は前記に鑑み、第3元素の添加とい
う技術的観点から離れて、結晶粒径および含有酸素量を
調整することにより、強度および靱延性を向上させた前
記TiAl系金属間化合物を提供することを目的とす
る。
In view of the above, the present invention separates from the technical point of view of the addition of the third element, and adjusts the crystal grain size and the oxygen content to improve the strength and toughness and ductility of the TiAl intermetallic compound. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明に係る高強度高靱
延性TiAl系金属間化合物は、平均結晶粒径が50μ
m以下であり、含有酸素量が1.0重量%以下であるこ
とを特徴とする。
The high-strength and high-toughness ductile TiAl-based intermetallic compound according to the present invention has an average crystal grain size of 50 μm.
m or less, and the content of oxygen is 1.0 wt% or less.

【0007】[0007]

【実施例】本発明に係るTiAl系金属間化合物におい
て、その組成は、36原子%以上、60原子%以下のA
lおよび残部Tiであり、また平均結晶粒径は50μm
以下であり、さらに含有酸素量は1.0重量%以下であ
る。
EXAMPLES In the TiAl-based intermetallic compound according to the present invention, the composition is 36 atomic% or more and 60 atomic% or less of A.
1 and the balance Ti, and the average crystal grain size is 50 μm.
And the oxygen content is 1.0 wt% or less.

【0008】このようにAl含有量を設定し、また結晶
方位をランダム化すべく結晶粒を微細化し、さらに脆化
の原因となる酸素の含有量を低減させると、TiAl系
金属間化合物の破壊形態を粒内劈開から粒界破壊へ移行
させて、そのTiAl系金属化合物の強度および靱延性
を向上させることができる。
When the Al content is set as described above, the crystal grains are refined to randomize the crystal orientation, and the oxygen content that causes embrittlement is further reduced, the fracture mode of the TiAl-based intermetallic compound is reduced. It is possible to improve the strength and toughness and ductility of the TiAl-based metal compound by shifting the grain boundary from intragranular cleavage to grain boundary fracture.

【0009】結晶粒径の微細化を図る場合、一般的には
微細な原料粉末を用いる、といった手段が採用されてい
るが、原料粉末を微細化すればする程それらに含まれる
酸素量が増加する傾向があり、そのため期待通りにTi
Al系金属間化合物の強度および靱延性を向上させるこ
とができない。
In order to reduce the crystal grain size, generally, a fine raw material powder is used. However, the finer the raw material powder, the larger the amount of oxygen contained therein. As expected, therefore Ti
The strength and toughness and ductility of the Al-based intermetallic compound cannot be improved.

【0010】本発明においては、原料粉末製造時にそれ
ら粉末に含まれる酸素量を調整し、また結晶粒径を熱処
理により調整するようにしたので、結晶粒の微細化と含
有酸素量の低減を比較的容易に達成することができる。
In the present invention, the amount of oxygen contained in the powder is adjusted during production of the raw material powder, and the crystal grain size is adjusted by heat treatment. Can be easily achieved.

【0011】ただし、Al含有量が36原子%未満では
TiAl系金属間化合物の靱延性が低く、一方60原子
%を超えると、TiAl系金属間化合物の強度が低下す
る。また平均結晶粒径が50μmを上回ると、結晶方位
の規則性が強められるので、粒内劈開を発生してTiA
l系金属間化合物の強度および靱延性が低下する。さら
に含有酸素量が1.0重量%を超えると、同様にTiA
l系金属間化合物の靱延性が低下する。
However, if the Al content is less than 36 atomic%, the toughness and ductility of the TiAl intermetallic compound is low, while if it exceeds 60 atomic%, the strength of the TiAl intermetallic compound decreases. Further, when the average crystal grain size exceeds 50 μm, the regularity of the crystal orientation is strengthened, so that intra-grain cleavage occurs and TiA
The strength and toughness and ductility of the l-based intermetallic compound decrease. If the oxygen content exceeds 1.0 wt%, TiA
The toughness and ductility of the l-based intermetallic compound decreases.

【0012】次に、TiAl系金属間化合物の具体例に
ついて説明する。
Next, specific examples of the TiAl intermetallic compound will be described.

【0013】先ず、次のような方法によってTiAl系
金属間化合物を製造した。
First, a TiAl intermetallic compound was manufactured by the following method.

【0014】純度99.5%のTi(スポンジチタン)
と、純度99.99%Al(アルミニウムショット)と
を、Al含有量が48原子%となるように秤量し、その
秤量物をプラズマ溶解炉を用いて溶解することによりイ
ンゴットを得た。そのインゴットを電極として使用し、
PREP法(プラズマ回転電極法)の適用下、平均粒径
200〜250μm、含有酸素量0.03〜0.5重量
%の急冷凝固粉末を製造した。
Ti (sponge titanium) with a purity of 99.5%
And 99.99% purity Al (aluminum shot) were weighed so that the Al content was 48 atomic%, and the weighed product was melted using a plasma melting furnace to obtain an ingot. Use that ingot as an electrode,
Under the application of the PREP method (plasma rotating electrode method), a rapidly solidified powder having an average particle diameter of 200 to 250 μm and an oxygen content of 0.03 to 0.5% by weight was produced.

【0015】急冷凝固粉末をTi製缶体に入れ、真空脱
ガス処理を行った後その缶体を封緘した。次いで、粉末
封入缶体に、1200℃、147MPa、3時間の条件
下でHIP処理(熱間静水圧プレス処理)を施して、焼
結体よりなる48原子%Alの各種素材を得た。
The rapidly solidified powder was placed in a Ti can body, subjected to vacuum degassing treatment, and then the can body was sealed. Next, the powder-encapsulated can body was subjected to HIP treatment (hot isostatic pressing treatment) under the conditions of 1200 ° C., 147 MPa, and 3 hours to obtain various raw materials of 48 atomic% Al made of a sintered body.

【0016】また前記急冷凝固粉末に、高エネルギボー
ルミルを用いて機械的強制ひずみ付与処理を施し、平均
粒径25〜50μm、含有酸素量0.5〜2.0重量%
の処理粉末を製造した。次いで処理粉末を用い、前記と
同一条件でHIP処理を行うことによって、焼結体より
なる48原子%Alの各種素材を得た。
The rapidly solidified powder is subjected to a mechanical forced straining treatment using a high energy ball mill to obtain an average particle size of 25 to 50 μm and an oxygen content of 0.5 to 2.0% by weight.
Processed powder was produced. Then, the treated powder was subjected to HIP treatment under the same conditions as described above to obtain various raw materials of 48 atomic% Al made of a sintered body.

【0017】その後、各素材に1000〜1300℃、
1〜72時間の条件下で熱処理を施して、平均結晶粒径
および含有酸素量を調整された各種TiAl系金属間化
合物を得た。
After that, 1000 to 1300 ° C. for each material,
Heat treatment was performed for 1 to 72 hours to obtain various TiAl-based intermetallic compounds having an adjusted average crystal grain size and oxygen content.

【0018】TiAl系金属間化合物の強度および靱延
性を調べるため、次のような常温曲げ試験を行った。
In order to examine the strength and toughness and ductility of the TiAl intermetallic compound, the following room temperature bending test was conducted.

【0019】前記金属間化合物より、縦3mm、横4mm、
長さ37mmの試験片を製作し、その試験片について4点
曲げ試験(JIS R 1601)を行った。この試験
では、クロスヘッド速度を0.5mm/minに設定して、
試験片の伸び側に貼着されたストレインゲージによるひ
ずみと圧下荷重とを測定し、それら測定値より曲げ強
さ、曲げ伸びおよび真ひずみ量を求めた。
From the above-mentioned intermetallic compound, length 3 mm, width 4 mm,
A test piece having a length of 37 mm was manufactured, and a 4-point bending test (JIS R 1601) was performed on the test piece. In this test, set the crosshead speed to 0.5 mm / min,
The strain and the rolling load by the strain gauge attached to the stretch side of the test piece were measured, and the bending strength, the bending elongation, and the true strain amount were obtained from the measured values.

【0020】図1は、平均結晶粒径と曲げ伸びとの関係
を示し、また図2は、平均結晶粒径と曲げ強さとの関係
を示す。この場合、各TiAl系金属間化合物の含有酸
素量は0.5重量%である。
FIG. 1 shows the relationship between the average crystal grain size and bending elongation, and FIG. 2 shows the relationship between the average crystal grain size and bending strength. In this case, the oxygen content of each TiAl-based intermetallic compound is 0.5% by weight.

【0021】図1,図2から明らかなように、含有酸素
量0.5重量%において、平均結晶粒径を50μm以下
に設定することにより、TiAl系金属間化合物の強度
および靱延性を向上させることができる。
As is clear from FIGS. 1 and 2, the strength and toughness and ductility of the TiAl-based intermetallic compound are improved by setting the average crystal grain size to 50 μm or less when the oxygen content is 0.5% by weight. be able to.

【0022】図3は、含有酸素量と曲げ伸びとの関係を
示す。この場合、各TiAl系金属間化合物の平均結晶
粒径は50μmである。
FIG. 3 shows the relationship between the oxygen content and the bending elongation. In this case, the average crystal grain size of each TiAl-based intermetallic compound is 50 μm.

【0023】図3から明らかなように、平均結晶粒径5
0μm以下において、含有酸素量を1.0重量%以下に
設定することにより、TiAl系金属間化合物の曲げ伸
びを向上させることができる。
As is apparent from FIG. 3, the average crystal grain size is 5
When the content of oxygen is 0 μm or less, the bending elongation of the TiAl-based intermetallic compound can be improved by setting the oxygen content to 1.0% by weight or less.

【0024】図4は、含有酸素量と曲げによる真ひずみ
量との関係を示す。図中、線a,bが本発明に該当し、
線aは平均結晶粒径が7μmの場合を、また線bは平均
結晶粒径が50μmの場合をそれぞれ示す。線cは比較
例に該当し、平均結晶粒径が200μmの場合である。
FIG. 4 shows the relationship between the oxygen content and the true strain amount due to bending. In the figure, lines a and b correspond to the present invention,
The line a shows the case where the average crystal grain size is 7 μm, and the line b shows the case where the average crystal grain size is 50 μm. Line c corresponds to the comparative example, and the average crystal grain size is 200 μm.

【0025】両線a,bで示す本発明においては、含有
酸素量を減少させた場合、その値が1.0重量%以下に
なると、含有酸素量の減少に伴いTiAl系金属間化合
物の強度および靱延性が漸次向上することが判る。
In the present invention shown by both lines a and b, when the oxygen content is decreased and the value becomes 1.0% by weight or less, the strength of the TiAl-based intermetallic compound decreases with the decrease of the oxygen content. It can be seen that the toughness and ductility are gradually improved.

【0026】また両線a,bより、含有酸素量1.0重
量%以下において、その含有酸素量が同一であるときに
は、平均結晶粒径の小さいTiAl系金属間化合物の方
が平均結晶粒径の大きなものよりも高強度高靱延性であ
ることが判る。
From both lines a and b, when the oxygen content is 1.0 wt% or less and the oxygen content is the same, the TiAl-based intermetallic compound having a smaller average crystal grain size has a smaller average crystal grain size. It can be seen that it has higher strength and higher toughness and ductility than the larger one.

【0027】さらに、線cの比較例は、含有酸素量が少
なくても平均結晶粒径が極めて大きいことに起因して低
強度低靱延性である。
Further, the comparative example of the line c has low strength and low ductility due to the extremely large average crystal grain size even if the oxygen content is small.

【0028】[0028]

【発明の効果】本発明によれば、平均結晶粒径および含
有酸素量を前記のように特定することによって、第3元
素の添加を行うことなく、優れた強度および靱延性を有
するTiAl系金属間化合物を提供することができる。
According to the present invention, by specifying the average crystal grain size and the oxygen content as described above, the TiAl-based metal having excellent strength and ductility without adding the third element. Intermetallic compounds can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】平均結晶粒径と曲げ伸びとの関係を示すグラフ
である。
FIG. 1 is a graph showing the relationship between the average crystal grain size and bending elongation.

【図2】平均結晶粒径と曲げ強さとの関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the average crystal grain size and bending strength.

【図3】含有酸素量と曲げ伸びとの関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between the oxygen content and bending elongation.

【図4】含有酸素量と曲げによる真ひずみ量との関係を
示すグラフである。
FIG. 4 is a graph showing the relationship between the amount of oxygen contained and the amount of true strain due to bending.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平均結晶粒径が50μm以下であり、含
有酸素量が1.0重量%以下であることを特徴とする高
強度高靱延性TiAl系金属間化合物。
1. A high-strength and high-toughness TiAl-based intermetallic compound having an average crystal grain size of 50 μm or less and an oxygen content of 1.0% by weight or less.
JP21555691A 1991-08-27 1991-08-27 Tial intermetallic compound having high strength, high toughness, and high ductility Pending JPH0551680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21555691A JPH0551680A (en) 1991-08-27 1991-08-27 Tial intermetallic compound having high strength, high toughness, and high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21555691A JPH0551680A (en) 1991-08-27 1991-08-27 Tial intermetallic compound having high strength, high toughness, and high ductility

Publications (1)

Publication Number Publication Date
JPH0551680A true JPH0551680A (en) 1993-03-02

Family

ID=16674387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21555691A Pending JPH0551680A (en) 1991-08-27 1991-08-27 Tial intermetallic compound having high strength, high toughness, and high ductility

Country Status (1)

Country Link
JP (1) JPH0551680A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271830A (en) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd Tial intermetallic compound based alloy member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271830A (en) * 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd Tial intermetallic compound based alloy member

Similar Documents

Publication Publication Date Title
WO1996037635A1 (en) Composite materials including metallic matrix composite reinforcements
CN111118422B (en) Preparation method of high-tungsten high-cobalt nickel alloy fine-grain plate
US5417781A (en) Method to produce gamma titanium aluminide articles having improved properties
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
JPH0572452B2 (en)
US2918367A (en) Titanium base alloy
JP2007527466A (en) Beta titanium alloy, process for producing hot rolled products from this type of alloy, and use thereof
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JPH02173234A (en) Titanium alloy excellent in superplastic workability
JPH05507766A (en) Forging method for rapidly solidifying magnesium-based metal alloy billets
US5015305A (en) High temperature hydrogenation of gamma titanium aluminide
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP3374553B2 (en) Method for producing Ti-Al-based intermetallic compound-based alloy
JPH05255827A (en) Production of alloy based on tial intermetallic compound
JPH0593233A (en) Aluminum-modified titanium/titanium alloy microcomposite material
JPH0578762A (en) Tial-based composite material having excellent strength and its production
JPH0551680A (en) Tial intermetallic compound having high strength, high toughness, and high ductility
JP2000345259A (en) CREEP RESISTANT gamma TYPE TITANIUM ALUMINIDE
JP2001152208A (en) OXIDE DISPERSION STRENGTHENED TYPE Ni BASE ALLOY WIRE AND PRODUCING METHOD THEREFOR
JPH0353037A (en) High strength titanium alloy
WO2020189214A1 (en) Titanium aluminide alloy material for hot forging, and method for forging titanium aluminide alloy material
JPH01177340A (en) Thermo-mechanical treatment of high-strength and wear-resistant al powder alloy
CN109468484B (en) Method for realizing high-temperature titanium alloy composite reinforcement by adding zirconium nitride
JPH02163334A (en) Titanium alloy having excellent cold workability
JPH0353049A (en) Heat treatment for intermetallic compound tial-base alloy