JPH0551664B2 - - Google Patents

Info

Publication number
JPH0551664B2
JPH0551664B2 JP22612284A JP22612284A JPH0551664B2 JP H0551664 B2 JPH0551664 B2 JP H0551664B2 JP 22612284 A JP22612284 A JP 22612284A JP 22612284 A JP22612284 A JP 22612284A JP H0551664 B2 JPH0551664 B2 JP H0551664B2
Authority
JP
Japan
Prior art keywords
aluminum
substrate
carbon
vapor phase
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22612284A
Other languages
Japanese (ja)
Other versions
JPS61104081A (en
Inventor
Kanetake Takasaki
Kenji Koyama
Atsuhiro Tsukune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22612284A priority Critical patent/JPS61104081A/en
Publication of JPS61104081A publication Critical patent/JPS61104081A/en
Publication of JPH0551664B2 publication Critical patent/JPH0551664B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラズマ気相成長装置であり、特にプ
ラズマ気相成長装置の放電電極材料の改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a plasma vapor phase epitaxy apparatus, and particularly relates to an improvement of a discharge electrode material for a plasma vapor phase epitaxy apparatus.

プラズマ気相成長方法は、基板を低温にしたま
まで基板上に成膜を可能にしたものであり、通常
の気相成長方法では基板を800℃程度の高温雰囲
気中で加熱して薄膜を形成しているものに対し、
プラズマ気相成長方法は減圧下で高周波電圧を印
加することで、反応ガスにグロー放電を生じさ
せ、この反応ガスのエネルギーによつて、基板が
低温状態でも化学反応を促し、薄膜を形成するも
のである。
Plasma vapor phase epitaxy makes it possible to form a film on a substrate while keeping the substrate at a low temperature.In normal vapor phase epitaxy, a thin film is formed by heating the substrate in a high temperature atmosphere of around 800℃. For what you are doing,
The plasma vapor deposition method applies a high-frequency voltage under reduced pressure to generate a glow discharge in the reactant gas, and the energy of this reactant gas promotes chemical reactions even when the substrate is at a low temperature, forming a thin film. It is.

従つて、パツシベーシヨン線やアルミニウム配
線の層間絶縁膜を形成するために行われる気相成
長では、アルミニウムの融点をオーバする温度で
は気相成長が不可能であり、これに代わる方法と
してプラズマ気相成長方法を採用することによ
り、精々300℃程度の低温で気相成長ができるた
めに甚だ好都合である。
Therefore, vapor phase growth, which is used to form interlayer insulation films for passivation lines and aluminum wiring, is impossible at temperatures exceeding the melting point of aluminum, and plasma vapor phase growth is an alternative method. By adopting this method, vapor phase growth can be performed at a low temperature of about 300°C at most, which is extremely convenient.

一般にプラズマ気相成長装置の放電電極の材料
としては、グロー放電で発生するイオンによつて
衝撃を受けてもスパツタされにくい材料、例えば
カーボンまたはアルミニウムが用いられている。
In general, materials used for the discharge electrodes of plasma vapor phase growth apparatuses are materials that are resistant to sputtering even when bombarded by ions generated in glow discharge, such as carbon or aluminum.

然しながら、カーボンは耐熱性があり、又スパ
ツタに強い長所がある一面、材質が多孔性である
と共に、カーボン粒子の結合がルーズであるた
め、温度が上昇したり、他の部分と接触したりす
ると、カーボン表面からカーボンの粉体が飛散し
やすく、これらの飛散した粉体が異物として、ウ
エハ等に付着するという欠点がある。
However, while carbon is heat resistant and has the advantage of being resistant to spatter, the material is porous and the carbon particles are loosely bonded, so if the temperature rises or comes into contact with other parts. However, carbon powder easily scatters from the carbon surface, and these scattered powders adhere to wafers and the like as foreign matter.

一方アルミニウムは耐スパツタ性がある他、金
属であるから加工が容易であり、異物が発生する
恐れはないが、溶融温度が低いために使用中に電
極の温度が上がると、溶解してしまうという不都
合がある。
Aluminum, on the other hand, has spatter resistance, and since it is a metal, it is easy to process, and there is no risk of foreign matter being generated, but because of its low melting temperature, it will melt if the electrode temperature rises during use. There is an inconvenience.

従つて、これらの材料の電極を使用する場合に
は、電極を定期的に洗浄や交換をしながら使用し
ているが、異物発生や溶解のために寿命が短く、
電極の長寿命化を計る必要がある。
Therefore, when using electrodes made of these materials, the electrodes are cleaned and replaced regularly, but their lifespan is short due to foreign matter generation and dissolution.
It is necessary to extend the life of the electrode.

〔従来の技術〕[Conventional technology]

第2図は従来のブラズマ気相成長装置を説明す
るための断面図である。
FIG. 2 is a cross-sectional view for explaining a conventional plasma vapor phase growth apparatus.

気密性容器1があり、ガスの供給孔2と真空排
気孔3があつて、内部には基板4を搭載する基板
台5があり、その上部に基板に対向して電極6が
ある。
There is an airtight container 1, which has a gas supply hole 2 and a vacuum exhaust hole 3. Inside thereof, there is a substrate stand 5 on which a substrate 4 is mounted, and on the top thereof, an electrode 6 is provided opposite to the substrate.

プラズマ気相成長を行う場合には、加熱ヒータ
ー7を用いて被処理基板4を加熱して被処理基板
の温度を上昇させ、高周波発振器8により高周波
電圧を放電電極16と基板台5の間に印加ことに
より、供給孔2から供給した反応ガスをプラズマ
化して気相成長を行つている。
When performing plasma vapor phase growth, the heating heater 7 is used to heat the substrate 4 to increase the temperature of the substrate, and the high frequency oscillator 8 applies a high frequency voltage between the discharge electrode 16 and the substrate table 5. By applying this voltage, the reaction gas supplied from the supply hole 2 is turned into plasma and vapor phase growth is performed.

電極6は気相成長を行われている期間、プラズ
マ空間内でイオンの衝撃を受けるために、電極表
面の金属がスパツタをされ、そのために表面の消
耗が激しくなる。
During vapor phase growth, the electrode 6 is bombarded by ions in the plasma space, so that the metal on the electrode surface is spattered, resulting in severe wear on the surface.

このような理由から、通常電極材料はイオン衝
撃に強いカーボンか、アルミニウムが使用される
が、カーボンでは表面からカーボンの粉体が飛散
して異物を発生する原因となり、一方アルミニウ
ムは溶融温度が低いために使用している内に高温
になると溶解するという欠点がある。
For this reason, electrode materials are usually made of carbon or aluminum, which is resistant to ion bombardment.However, with carbon, carbon powder can scatter from the surface and generate foreign matter, whereas with aluminum, the melting temperature is low. It has the disadvantage that it melts when the temperature reaches a high temperature during use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の構成のプラズマ気相成長装置の電極材料
であるカーボンやアルミニウムは、イオンの衝撃
を受けてもスパツタに強い材料であるが、カーボ
ンは機械的な力や多孔性であるため異物を発生
し、又アルミニウムは高温になると溶融してしま
うことが問題点であり、そのために電極の寿命が
短いという不具合を生ずる。
Carbon and aluminum, which are the electrode materials for the plasma vapor deposition apparatus with the above configuration, are strong against spatter even when subjected to ion bombardment, but carbon generates foreign matter due to mechanical force and porosity. Another problem is that aluminum melts at high temperatures, resulting in a short lifespan of the electrode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のプラズマ気相成長装置は、気密性容器
内に被処理基板を載置する基板台を設け、この被
処理基板に対向する放電電極をこの気密性容器内
に具備し、この放電電極とこの基板台との間に高
周波電圧を印加する高周波発信器を備えたプラズ
マ気相成長装置において、カーボンからなる基体
の側面を含む表面にアルミニウムあるいはアルミ
ニウムを主成分とする合金からなる被膜が被着さ
れた放電電極を具備するように構成する。
The plasma vapor phase growth apparatus of the present invention includes a substrate stage on which a substrate to be processed is placed in an airtight container, a discharge electrode facing the substrate to be processed is provided in the airtight container, and the discharge electrode and In this plasma vapor phase growth apparatus equipped with a high-frequency oscillator that applies a high-frequency voltage between the base plate and the substrate, a film made of aluminum or an alloy mainly composed of aluminum is deposited on the surface including the side surfaces of the base made of carbon. The discharge electrode is configured to include a discharge electrode.

〔作用〕[Effect]

本発明においては、放電電極をカーボンからな
る基体の側面を含む表面にアルミニウムあるいは
アルミニウムを主成分とする合金からなる被膜を
被着して構成するので、プラズマ気相成長時にグ
ロー放電により発生したイオンによつて衝撃を受
けても、基体からの異物の発生及び高温によるア
ルミニウムからなる被膜の溶解を防止することが
可能となる。
In the present invention, since the discharge electrode is constructed by depositing a coating made of aluminum or an alloy mainly composed of aluminum on the surface including the side surfaces of the base body made of carbon, ions generated by glow discharge during plasma vapor phase growth are formed. Even if the base body is subjected to impact, it is possible to prevent the generation of foreign matter from the base body and to prevent the coating made of aluminum from dissolving due to high temperatures.

〔実施例〕〔Example〕

第1図は本発明の実施例である電極を説明する
ための断面図である。電極16は、厚みが10mm程
度のカーボンからなる基体16aの表面に膜厚
500μm〜1000μmのアルミニウムからなる被膜1
6bを被着したものである。
FIG. 1 is a sectional view for explaining an electrode according to an embodiment of the present invention. The electrode 16 is a film formed on the surface of a base body 16a made of carbon with a thickness of about 10 mm.
Coating 1 made of aluminum with a thickness of 500 μm to 1000 μm
6b.

プラズマ気相成長装置の通常の稼働時の放電電
極16の温度は350℃程度であり、高くても600℃
以上になることはないが、仮にプラズマ気相成長
時にイオンが放電電極16の表面に衝撃を与えて
多量のエネルギーが集中して発熱した場合でも、
カーボンからなる基体16aの表面にアルミニウ
ムからなる被膜16bを被着しているから、表面
の被膜16bに発生した熱が基体16aに伝導し
て被膜16bの温度が低下し、カーボンからなる
基体16aの温度を上昇させるが、カーボンから
なる基体16aは高温になつても安定しており、
アルミニウムからなる被膜16bが溶解すること
がない。
The temperature of the discharge electrode 16 during normal operation of the plasma vapor deposition apparatus is about 350°C, and at most 600°C.
Although this will not happen, even if ions impact the surface of the discharge electrode 16 during plasma vapor phase growth and a large amount of energy is concentrated and heat is generated,
Since the coating 16b made of aluminum is coated on the surface of the base 16a made of carbon, the heat generated in the coating 16b on the surface is conducted to the base 16a and the temperature of the coating 16b decreases, causing the temperature of the base 16a made of carbon to decrease. Although the temperature increases, the base 16a made of carbon remains stable even at high temperatures.
The coating 16b made of aluminum does not dissolve.

カーボンにアルミニウムを被着する方法とし
て、第1の方法として、アルミニウムを溶解して
液状とし、このアルミニウムの溶液を、プラズマ
ジエツト法によりカーボン本体に噴射して付着す
ることにより、極めて強固にカーボン本体にアル
ミニウムを被着することができる。
The first method for attaching aluminum to carbon is to melt aluminum into a liquid state and inject this aluminum solution onto the carbon body using a plasma jet method to adhere it to the carbon body, thereby making the carbon extremely strong. The body can be coated with aluminum.

第2の方法として、溶解しているアルミニウム
溶液に、カーボンの本体を適正時間だけ侵漬する
ことにより、比較的多孔性のカーボンの表面から
アルミニウムが侵透することを含めて、カーボン
表面に所定の厚みでアルミニウムの表面被着を行
う方法がある。
A second method is to immerse the carbon body in a dissolved aluminum solution for an appropriate amount of time, thereby allowing the aluminum to penetrate through the relatively porous carbon surface. There is a method of surface adhesion of aluminum to a thickness of .

いずれの方法でも、カーボン本体表面にアルミ
ニウムの被膜が得られ、所定の厚みの500μm程度
の厚みを形成することが可能である。
In either method, an aluminum coating can be obtained on the surface of the carbon body, and it is possible to form a predetermined thickness of about 500 μm.

このようにして形成されたプラズマ気相成長装
置の放電電極16を用いると、長時間のプラズマ
気相成長装置の稼働が可能になり、本願発明の放
電電極を用いた場合の稼働時間を従来の稼働時間
のほぼ10倍以上にすることが可能となる。
By using the discharge electrode 16 of the plasma vapor phase growth apparatus formed in this way, it is possible to operate the plasma vapor phase growth apparatus for a long time, and when the discharge electrode of the present invention is used, the operating time is longer than that of the conventional one. It is possible to increase the operating time by more than 10 times.

〔発明の効果〕 以上詳細に説明したように、本発明のプラズマ
気相成長装置の電極は長寿命で、信頼性が高く、
高品質の気相成長に供し得るという効果大なるも
のがある。
[Effects of the Invention] As explained in detail above, the electrode of the plasma vapor deposition apparatus of the present invention has a long life, high reliability,
It has a great effect in that it can be used for high-quality vapor phase growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプラズマCVD装置の電極を
説明するための断面図、第2図は従来のプラズマ
CVD装置の電極を説明するための断面図、 図において、16は放電電極、16aは基体、
16bは被膜である。
Fig. 1 is a cross-sectional view for explaining the electrode of the plasma CVD apparatus of the present invention, and Fig. 2 is a cross-sectional view for explaining the electrode of the plasma CVD apparatus of the present invention.
A cross-sectional view for explaining electrodes of a CVD device. In the figure, 16 is a discharge electrode, 16a is a base,
16b is a coating.

Claims (1)

【特許請求の範囲】 1 気密性容器1内に被処理基板4を載置する基
板台5を設け、前記被処理基板4に対向する放電
電極6を前記気密性容器1内に具備し、該放電電
極6と前記基板台5との間に高周波電圧を印加す
る高周波発信器8を備えたプラズマ気相成長装置
において、 カーボンからなる基体16aの側面を含む表面
にアルミニウムあるいはアルミニウムを主成分と
する合金からなる被膜16bが被着された放電電
極16を具備することを特徴とするプラズマ気相
成長装置。
[Scope of Claims] 1. A substrate stand 5 on which a substrate to be processed 4 is placed is provided in an airtight container 1, a discharge electrode 6 facing the substrate to be processed 4 is provided in the airtight container 1, and a In a plasma vapor phase growth apparatus equipped with a high frequency oscillator 8 that applies a high frequency voltage between the discharge electrode 6 and the substrate pedestal 5, the surface including the side surfaces of the base body 16a made of carbon is coated with aluminum or aluminum as a main component. A plasma vapor deposition apparatus characterized by comprising a discharge electrode 16 on which a coating 16b made of an alloy is deposited.
JP22612284A 1984-10-26 1984-10-26 Plasma vapor phase growth device Granted JPS61104081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22612284A JPS61104081A (en) 1984-10-26 1984-10-26 Plasma vapor phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22612284A JPS61104081A (en) 1984-10-26 1984-10-26 Plasma vapor phase growth device

Publications (2)

Publication Number Publication Date
JPS61104081A JPS61104081A (en) 1986-05-22
JPH0551664B2 true JPH0551664B2 (en) 1993-08-03

Family

ID=16840182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22612284A Granted JPS61104081A (en) 1984-10-26 1984-10-26 Plasma vapor phase growth device

Country Status (1)

Country Link
JP (1) JPS61104081A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5196400A (en) * 1990-08-17 1993-03-23 At&T Bell Laboratories High temperature superconductor deposition by sputtering

Also Published As

Publication number Publication date
JPS61104081A (en) 1986-05-22

Similar Documents

Publication Publication Date Title
US4173522A (en) Method and apparatus for producing carbon coatings by sputtering
KR100631275B1 (en) Sputtering target producing few particles or backing plate and sputtering method producing few particles
Scheibe et al. The laser-arc: a new industrial technology for effective deposition of hard amorphous carbon films
CN107112475A (en) For coat lithium battery barrier film method and coating barrier film
JPH0551664B2 (en)
RU2522874C1 (en) Method to protect aluminium surface against corrosion
KR20190056558A (en) manufacturing method of Ti-Zr alloy target and coating method of gold color thin layer using the same
JPH0757739A (en) Manufacture of fuel electrode for high temperature type fuel cell
KR20220165676A (en) Component for film formation apparatus, and film formation apparatus provided with component for film formation apparatus
US20110014394A1 (en) film depositing apparatus and method
JP4056680B2 (en) Film forming apparatus and method
US20100058986A1 (en) System and method for plasma plating
JPH0581050B2 (en)
JP2842876B2 (en) Plasma dispersion plate
GB1574677A (en) Method of coating electrically conductive components
US3947606A (en) Process for producing chemical compounds applicable to surfaces in the form of thin layers
RU2141744C1 (en) Method for manufacturing of electric heater
JP4502738B2 (en) Deposition boat
KR20180065899A (en) Plasma processing apparatus having tungsten boride and method of manufacturing the apparatus
JP4651547B2 (en) Film forming method by PVD method and film forming target used in PVD method
KR100473114B1 (en) Sputtering target
JP4670613B2 (en) Film forming method, film forming apparatus, and film forming target
JP2525799B2 (en) Method for metallizing nitride ceramics
KR100193365B1 (en) How to Form Titanium Nitride Film on Metal Surface
JP2010037576A (en) Film deposition method for strip-of-paper-like substrate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees