JPH0551623A - Method for adding ca in refining of stainless steel - Google Patents

Method for adding ca in refining of stainless steel

Info

Publication number
JPH0551623A
JPH0551623A JP21515391A JP21515391A JPH0551623A JP H0551623 A JPH0551623 A JP H0551623A JP 21515391 A JP21515391 A JP 21515391A JP 21515391 A JP21515391 A JP 21515391A JP H0551623 A JPH0551623 A JP H0551623A
Authority
JP
Japan
Prior art keywords
stainless steel
refining
addition
added
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21515391A
Other languages
Japanese (ja)
Inventor
Kiyoto Fujiwara
清人 藤原
Yuzo Tajiri
裕造 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21515391A priority Critical patent/JPH0551623A/en
Publication of JPH0551623A publication Critical patent/JPH0551623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To eliminate the loss in the addition of Ca and to improve its yield in the final stage of the refining process of stainless steel by adding Al to stainless molten steel, removing silicic acid up to a prescribed concn. and thereafter adding Ca. CONSTITUTION:In the final stage of the refining process of stainless steel, the molten steel in a ladle is mixed with Al to regulate the concn. of SiO2 to <=2%. Next, Ca is added thereto to increase the basicity of slag and to improve the capacity of desulfurization. Then, the loss in the addition of Ca is eliminated to improve the yield of Ca.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼の精錬プ
ロセスの最終において、脱硫等のためにCaを歩留り良
く添加する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of adding Ca at a high yield for desulfurization and the like at the end of a refining process of stainless steel.

【0002】[0002]

【従来の技術】一般的に知られているように、特にα
系、二相系ステンレス鋼では、熱間加工性を阻害する
S、Oの除去および酸化物系介在物の除去促進のため
に、精錬プロセスの最終に、CaSi、CaC2 などの
Ca合金、またはCaOを主成分とするフラックスなど
の脱流剤が添加される場合がある。前者のS、Oの除去
の場合の具体例としては、耐水素誘起割れ性の必要なパ
イプ用鋼へのCa添加が挙げられる。これは、フラック
ス脱硫後の残留硫黄とその後のピックアップ硫黄の介在
物形態制御を目的としており、CaSi合金等の吹込み
によって行う。また、後者の酸化物系介在物の除去の具
体例としては、電縫管用鋼などへのCa系フラックスの
添加が挙げられる。これは、溶鋼中のAl23 介在物
が吹き込まれたフラックス粒子との合体により浮上させ
るものである。なお、添加方法としては、注入管による
添加、シュート添加、気体とともに溶鋼中に吹込んで添
加する方法等種々の添加方法がある。
2. Description of the Related Art As is generally known, in particular α
System and duplex stainless steels, Ca alloys such as CaSi and CaC 2 are added at the end of the refining process in order to remove S and O that hinder hot workability and promote removal of oxide inclusions. A defluent such as a flux containing CaO as a main component may be added in some cases. A specific example of the former case of removing S and O is addition of Ca to pipe steel which requires hydrogen-induced cracking resistance. This is for the purpose of controlling the inclusion morphology of residual sulfur after flux desulfurization and subsequent pickup sulfur, and is performed by blowing CaSi alloy or the like. As a specific example of the latter removal of oxide inclusions, addition of Ca-based flux to steel for electric resistance welded pipes and the like can be mentioned. In this method, Al 2 O 3 inclusions in molten steel are floated by coalescence with flux particles blown in. As the addition method, there are various addition methods such as addition by an injection pipe, addition by chute, and addition by blowing into the molten steel together with gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、添加さ
れたCa系添加物は、溶鋼中のSiO2 、MnO、Fe
O、Cr2 3 と反応するため、Ca添加ロスが大き
く、非常に歩留りの悪いものとなっていた。このため、
高価なCaの使用原単位が増加し、コストアップの原因
ともなっていた。また、添加されたCa分が吹込みラン
スのノズルに付着し閉塞を起こしたり、Caの過剰添加
により製品瑕疵を引き起こしたりする場合もあった。
However, the Ca-based additive added is SiO 2 , MnO, Fe in the molten steel.
Since it reacts with O and Cr 2 O 3 , the Ca addition loss is large and the yield is very poor. For this reason,
The unit consumption of expensive Ca has increased, which has been a cause of cost increase. In addition, the added Ca content may adhere to the nozzle of the blowing lance to cause blockage, or the excessive addition of Ca may cause product defects.

【0004】そこで、本発明の主たる目的は、ステンレ
ス鋼の精錬に係り、精錬プロセスの最終において添加さ
れるCaの添加ロスを無くし、歩留りの向上を図らんと
するものである。
Therefore, the main object of the present invention relates to the refining of stainless steel, and aims to improve the yield by eliminating the addition loss of Ca added at the final stage of the refining process.

【0005】[0005]

【課題を解決するための手段】前記課題は、ステンレス
鋼の精錬プロセスにおける最終において、取鍋中のステ
ンレス溶鋼に、Alを添加してSiO2 濃度を2%以下
とした後、Caを添加することを特徴とすることで解決
できる。
In the final stage of the refining process of stainless steel, Al is added to the molten stainless steel in the ladle to reduce the SiO 2 concentration to 2% or less, and then Ca is added. It can be solved by featuring that.

【0006】また、ステンレス鋼の精錬プロセスにおけ
る最終において、取鍋中のステンレス溶鋼に、除滓を行
った後、Caを添加することでもよい。
Further, at the final stage of the refining process of stainless steel, Ca may be added to the molten stainless steel in the ladle after removing slag.

【0007】[0007]

【作用】たとえば、AOD精錬により還元精錬されたス
テンレス溶鋼上のスラグには、SiO2 が約10〜20
%前後含有されている。本発明に従って、Alを添加す
ると、 3SiO2 +4Al→2Al2 3 +3Si−−−(1) 上記(1)式の反応により、Al還元されスラグ中のS
iO2 濃度が著しく低下する。
For example, the slag on the molten stainless steel reduced and refined by AOD refining contains about 10 to 20% of SiO 2.
It is contained around%. According to the present invention, when Al is added, 3SiO 2 + 4Al → 2Al 2 O 3 + 3Si-(1) By the reaction of the above formula (1), Al is reduced and S in the slag is reduced.
The iO 2 concentration is significantly reduced.

【0008】前記(1)式の反応は、SiO2 濃度が2
%以下となるまで行う。SiO2 濃度の低下に伴い、次
に添加されるCaの歩留りが向上するとともに、スラグ
塩基度(CaO/SiO2 )が高くなり、脱硫能が向上
する。なお、SiO2 濃度が2%を超える場合には、ス
ラグ中のSiO2 はCaに還元されCa歩留り悪化の原
因となり好ましくない。
In the reaction of the above formula (1), the SiO 2 concentration is 2
Perform until it becomes less than or equal to%. As the SiO 2 concentration decreases, the yield of Ca to be added next increases, and the slag basicity (CaO / SiO 2 ) also increases, improving desulfurization ability. In the case where SiO 2 concentration exceeds 2%, SiO 2 in the slag is not desirable cause Ca yield deterioration is reduced to Ca.

【0009】一方、Al添加によるFeO、MnO、C
2 3濃度は、それぞれ[%FeO]≦1.0%、
[%MnO]≦1.0%、[%Cr2 3 ]≦3.0%
であることが望ましい。
On the other hand, FeO, MnO, and C added with Al
r 2 O 3 concentration is [% FeO] ≦ 1.0%,
[% MnO] ≦ 1.0%, [% Cr 2 O 3 ] ≦ 3.0%
Is desirable.

【0010】他方、前記Alの添加量は、各酸化物との
反応式(1)〜(4)により〜式の累計値として求
められる。
On the other hand, the addition amount of Al can be obtained as a cumulative value of the equations (1) to (4) by the reaction with each oxide.

【0011】 3MnO+2Al→Al2 3 +3Mn−−−(2) 3FeO+2Al→Al2 3 +3Fe−−−(3) Cr2 3 +2Al→Al2 3 +2Cr−−(4) (1)〜(4)式より、 添加Al量(V1 )=SiO2 量×4/3×[Al]/[SiO2 ]− 〃 (V2 )=MnO量×2/3×[Mn]/[SiO2 ]−− 〃 (V3 )=FeO量×2/3×[Fe]/[SiO2 ]−− 〃 (V4 )=Cr2 3 ×2×[Cr]/[SiO2 ]−−− したがって、Al添加量は、V1 〜V4 の累計値として
求められる。なお、実際には、Al投入前のAl2 3
量、溶鋼中のO2 量により増減するため、その量を考慮
に入れて添加量を決定する。
3MnO + 2Al → Al 2 O 3 + 3Mn −−− (2) 3FeO + 2Al → Al 2 O 3 + 3Fe −−− (3) Cr 2 O 3 + 2Al → Al 2 O 3 + 2Cr −− (4) (1) to (3) From the formula 4), the added Al amount (V 1 ) = SiO 2 amount × 4/3 × [Al] / [SiO 2 ] − 〃 (V 2 ) = MnO amount × 2/3 × [Mn] / [SiO 2 ] - 〃 (V 3) = FeO amount × 2/3 × [Fe] / [SiO 2] - 〃 (V 4) = Cr 2 O 3 × 2 × [Cr] / [SiO 2] --- Therefore, the Al addition amount is obtained as a cumulative value of V 1 to V 4 . Actually, Al 2 O 3 before Al addition
Since the amount varies depending on the amount and the amount of O 2 in the molten steel, the amount to be added is determined in consideration of the amount.

【0012】[0012]

【実施例】以下、本発明を実施例に基づき詳説する。表
1に示される成分のステンレス鋼を、AOD操業の下で
精錬を行った。
EXAMPLES The present invention will be described in detail below based on examples. The stainless steel having the components shown in Table 1 was refined under the AOD operation.

【0013】[0013]

【表1】 [Table 1]

【0014】AOD精錬の場合には、VOD、RHなど
の他のステンレス精錬法に比べて、最終工程で、除滓、
造滓などのスラグ制御が容易であるとともに、攪拌能力
が大きいこと、精錬温度は高いことなどにより高い脱硫
能が得られる。さらには、スラグとの強攪拌により酸化
物系介在物の浮上分離が促進されるなどの利点がもたら
される。
In the case of AOD refining, as compared with other stainless refining methods such as VOD and RH, in the final step, slag and
Slag control such as slag can be controlled easily, and high desulfurization ability can be obtained due to its large stirring ability and high refining temperature. Further, strong stirring with the slag brings advantages such as promotion of floating separation of oxide inclusions.

【0015】なお、前記AOD精錬における操業条件は
表2による。
The operating conditions in the AOD refining are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】図1のフローおよび図2に示されるよう
に、前記AOD精錬におけるSi添加による脱酸反応の
後、Caを添加するに際して本発明法が適用される。A
OD精錬によるSi還元精錬後のステンレス溶鋼上スラ
グには、SiO2 が11%含有されている。Ca添加の
前処理として、Arガス吹込みとともにステンレス溶鋼
中にAlを0.7kg/t添加し、スラグ中のSiO2 濃度
が2%になるまで、5分間のAr攪拌を行った。スラグ
中のSiO2 濃度が2%になったならば、インジェクシ
ョン法によりCaSiを2.6Kg/t添加した。
As shown in the flow chart of FIG. 1 and FIG. 2, the method of the present invention is applied when Ca is added after the deoxidation reaction by Si addition in the AOD refining. A
11% of SiO 2 is contained in the slag on the molten stainless steel after Si reduction refining by OD refining. As a pretreatment for Ca addition, 0.7 kg / t of Al was added to the molten stainless steel along with Ar gas blowing, and Ar stirring was performed for 5 minutes until the SiO 2 concentration in the slag became 2%. When the SiO 2 concentration in the slag became 2%, 2.6 kg of CaSi was added by the injection method.

【0018】前記Si還元精錬後〜Al添加による還元
前処理を経てCaSiインジェクションに至るまでの各
鋼滓成分量の推移を図2に示すとともに、前記Al添加
による前処理有無のそれぞれについてCa歩留りの対比
を図3に示す。
FIG. 2 shows the transition of the amount of each component of the steel slag from the Si reduction refining to the reduction treatment by adding Al to CaSi injection. The comparison is shown in FIG.

【0019】Al添加による還元前処理有りの場合のC
a歩留りは、12〜15%の範囲で安定しており、高い
歩留りを得ることができたのに対して、前処理無しの場
合のCa歩留りは0.5〜5%であり、本発明によりC
a歩留りが著しく改善されたことが判明される。
C with and without reduction pretreatment by addition of Al
The a yield was stable in the range of 12 to 15%, and a high yield could be obtained, whereas the Ca yield without pretreatment was 0.5 to 5%. C
It is found that the yield is significantly improved.

【0020】また、図4にAl添加による前処理におけ
る酸化還元バランスを示すが、前記前処理により、Si
2 を含む低級酸化物の90%がAlで還元され、Ca
の低級酸化物還元ロスは10%に留めることができたこ
とが判明している。
FIG. 4 shows the redox balance in the pretreatment by adding Al.
90% of the lower oxide containing O 2 is reduced by Al, Ca
It was found that the reduction loss of the lower oxides of was able to be limited to 10%.

【0021】以上、Ca添加前にAlを添加して還元前
処理を行う場合について詳述したが、Al還元せずに、
スラグを除去することによっても取鍋中のSiO2 量の
低減を図ることができる。しかし、この場合には除滓に
よる地金流出ロスのためにコスト的に不利となるため、
損益を考慮して採用することが必要である。
The case of performing Al pre-reduction treatment by adding Al before Ca addition has been described in detail above.
The amount of SiO 2 in the ladle can also be reduced by removing the slag. However, in this case, there is a cost disadvantage due to the loss of metal outflow due to slag removal,
It is necessary to consider it in consideration of profit and loss.

【0022】[0022]

【発明の効果】以上、詳説のとおり、本発明によれば、
ステンレス鋼の精錬に係り、精錬プロセスの最終におい
て添加されるCaの添加ロスを無くし、Ca歩留りの向
上を図ることができる。
As described above in detail, according to the present invention,
With respect to the refining of stainless steel, it is possible to improve the Ca yield by eliminating the addition loss of Ca added at the end of the refining process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法に係る精錬フロー図である。FIG. 1 is a refining flow chart according to the method of the present invention.

【図2】スラグ中の各鋼滓成分量の推移を表す図であ
る。
FIG. 2 is a diagram showing a transition of the amount of each steel slag component in slag.

【図3】Al添加による還元前処理の有無によるCa歩
留りの比較図である。
FIG. 3 is a comparison diagram of Ca yields with and without reduction pretreatment by adding Al.

【図4】酸化・還元バランスを示す図である。FIG. 4 is a diagram showing an oxidation / reduction balance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ステンレス鋼の精錬プロセスにおける最終
において、取鍋中のステンレス溶鋼に、Alを添加して
SiO2 濃度を2%以下とした後、Caを添加すること
を特徴とするステンレス鋼の精錬におけるCa添加方
法。
1. At the end of the stainless steel refining process, Al is added to the molten stainless steel in the ladle to reduce the SiO 2 concentration to 2% or less, and then Ca is added. Method of adding Ca in refining.
【請求項2】ステンレス鋼の精錬プロセスにおける最終
において、取鍋中のステンレス溶鋼に、除滓を行った
後、Caを添加することを特徴とするステンレス鋼の精
錬におけるCa添加方法。
2. A method for adding Ca in the refining of stainless steel, characterized in that, at the final stage of the refining process of stainless steel, Ca is added to the molten stainless steel in the ladle after removing slag.
JP21515391A 1991-08-27 1991-08-27 Method for adding ca in refining of stainless steel Pending JPH0551623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21515391A JPH0551623A (en) 1991-08-27 1991-08-27 Method for adding ca in refining of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21515391A JPH0551623A (en) 1991-08-27 1991-08-27 Method for adding ca in refining of stainless steel

Publications (1)

Publication Number Publication Date
JPH0551623A true JPH0551623A (en) 1993-03-02

Family

ID=16667548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21515391A Pending JPH0551623A (en) 1991-08-27 1991-08-27 Method for adding ca in refining of stainless steel

Country Status (1)

Country Link
JP (1) JPH0551623A (en)

Similar Documents

Publication Publication Date Title
CN108330245B (en) High-purity smelting method for stainless steel
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
CN112322958A (en) Low-carbon aluminum-containing steel and smelting control method thereof
US4097269A (en) Process of desulfurizing liquid melts
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH06207212A (en) Production of high creanliness extra-low carbon steel of extremely low s
JPH0472009A (en) Method for refining high cleanliness steel
RU2566230C2 (en) Method of processing in oxygen converter of low-siliceous vanadium-bearing molten metal
JPH0551623A (en) Method for adding ca in refining of stainless steel
JP3220233B2 (en) Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel
JP2002241829A (en) Desiliconizing method for molten iron
CN112126842A (en) LF furnace smelting method for improving low-silicon steel water continuous casting castability
JPS6157372B2 (en)
JPH11279631A (en) Method for refining molten stainless steel
JP3364534B2 (en) Manufacturing method of high clean steel
JP2000087128A (en) Secondary refining method of molten steel
JP2855334B2 (en) Modification method of molten steel slag
JPH0762419A (en) Method for refining stainless steel
JP2750048B2 (en) Ladle slag reforming method
JP2776188B2 (en) Hot metal pretreatment method
JPH08218111A (en) Method for reducing entrapment of slag into molten steel
JP2002038212A (en) Slag modifier and method for producing high purity ultra-low carbon steel
JP3147740B2 (en) Demanganese method for high chromium molten iron alloy
CN118256683A (en) Smelting method of molten steel with extremely low sulfur content and application thereof
JPH0885814A (en) Method for effectively refining molten chromium-containing steel using decarburized slag