JPH0551543B2 - - Google Patents

Info

Publication number
JPH0551543B2
JPH0551543B2 JP1646590A JP1646590A JPH0551543B2 JP H0551543 B2 JPH0551543 B2 JP H0551543B2 JP 1646590 A JP1646590 A JP 1646590A JP 1646590 A JP1646590 A JP 1646590A JP H0551543 B2 JPH0551543 B2 JP H0551543B2
Authority
JP
Japan
Prior art keywords
weight
dielectric constant
pbo
high dielectric
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1646590A
Other languages
Japanese (ja)
Other versions
JPH0375238A (en
Inventor
Takashi Matsubara
Satoru Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Mitsubishi Electric Corp
NGK Frit Co Ltd
Original Assignee
NGK Insulators Ltd
Mitsubishi Electric Corp
NGK Frit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Mitsubishi Electric Corp, NGK Frit Co Ltd filed Critical NGK Insulators Ltd
Priority to JP1646590A priority Critical patent/JPH0375238A/en
Publication of JPH0375238A publication Critical patent/JPH0375238A/en
Publication of JPH0551543B2 publication Critical patent/JPH0551543B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特に金属と高誘電率体との複合体の製
造に適するホウロウフリツトに関するものであ
る。更に詳しく述べれば本発明は主として鋼板、
ステンレス板等の金属板に被着し、焼成すること
によつて上記金属板に良好に密着する高誘電率体
を形成するホウロウフリツトに関するものであ
る。 近年電子部品、放電電極部品等に用いる高誘電
率材料として、耐熱性、機械的強度、冷却性能の
向上を目的として高誘電率体と金属との複合体が
注目され開発されている。上記高誘電率体として
は従来、チタン酸塩セラミツクが主として用いら
れているが、上記チタン酸塩セラミツクと金属と
を複合するには合成樹脂接着剤によつて接着する
方法、Ag,Ag−Pd等の貴金属ペーストを上記チ
タン酸塩セラミツクに塗布し焼付後金属とハンダ
付けを行なう方法等がある。しかし前者は耐熱性
に乏しく、また層間接着強度も満足なものではな
いという欠点があり、後者は上記貴金属ペースト
が高価であり、また工程が多く繁雑であるという
欠点があつた。上記高誘電率体としては更に高誘
電率BaTiO3結晶を含有するガラスの研究も行な
われているが(例えばJournal of American
Ceramic Society,Vol.47,No.3,1964)、上記
ガラスは金属との親和性に乏しく金属と複合体に
するには実用上大きな問題を有している。即ち上
記ガラスは熱膨張特性、軟化溶融温度において鋼
板、ステンレス板等の金属板と調和しないため、
これら金属板に対する密着性がなく、上記複合体
の製造には実用上用いることが不可能であつた。 本発明は上記従来の欠点を改良して金属板に良
好な密着性を有する高誘電率体を形成するホウロ
ウフリツトを提供することを目的とする。そして
上記目的はPbOと、TiO2とを合量で10〜60重量
%含み、かつPbOとTiO2とのモル比が0.5〜1.5の
範囲内であるガラスであり、加熱処理されること
によつて高誘電率の結晶を析出する本発明のホウ
ロウフリツトによつて達成せられる。上記ホウロ
ウフリツトは更に望ましくは体熱膨張係数が200
〜330×10-7(/℃)であり、かつ軟化溶融温度が
500〜700℃であり、加熱処理前においては実質的
に高誘電率の結晶を含有しないものであり、その
ためにはPbOとTiO2の合量が25〜55重量%、
PbOとTiO2とのモル比が0.9〜1.4であるか、また
はPbOとTiO2以外のガラス成分がSiO215〜45重
量%、B2O310〜30重量%、Al2O310重量%以下、
Na2O,K2OおよびLi2Oからなる群から選ばれ
た一種または二種以上の金属酸化物10重量%以
下、CaO,ZnO,MgOおよびSb2O3からなる群か
ら選ばれた一種または二種以上の金属酸化物4〜
25重量%、F10重量%以下よりなることが望まし
い。 本発明を以下に詳細に説明する。 上記組成を有する本発明のホウロウフリツトを
製造する一例を以下に説明する。 PbOとTiO2とを供与する例えば金属酸化物、
金属水酸化物、あるいは金属塩等の金属化合物を
上記モル比、即ちPbO/TiO20.5〜1.5、望ましく
は0.9〜1.4を与えるように混合した混合物かある
いはPbOとTiO2との上記モル比の仮焼物を用い、
これに他のガラス原料である例えばSiO2,Al2O3
等の強火性原料と例えばB2O3、アルカリ金属酸
化物、アルカリ土類金属酸化物等の弱火性原料と
をPbOとTiO2との合量が10〜60重量%(以下単
に%とする)、望ましくは25〜55%になるように
混合し、更に望ましくは他のガラス原料がSiO2
15〜45%、B2O310〜30%、Al2O310%以下、Na2
O,K2OおよびLi2Oからなる群から選ばれた一
種または二種以上の金属酸化物10%以下、CaO,
ZnO,MgOおよびSb2O3からなる群から選ばれた
一種または二種以上の金属酸化物4〜25%、F10
%以下なるガラス組成を与えるように混合し、ガ
ラスを製造する通常の方法で上記混合物を1200〜
1300℃で50〜60分間加熱溶融し、その後水または
空気により冷却する。かくして本発明のホウロウ
フリツトが得られるが、この場合PbOとTiO2
から生成される高誘電率の結晶がガラス中に多量
に析出しないよう急速に冷却することが望まし
い。 上記したように本発明においてはPbO+TiO2
=10〜60%、PbO/TiO2=0.5〜1.5モル比である
ことを必須とするが、その理由はPbO+TiO2
10%であるホウロウフリツトは加熱処理によつて
高誘電率結晶相の析出が少なく、したがつて高誘
電率体が形成されないし、一方PbO+TiO2>60
%であるホウロウフリツトは軟化温度が低くなり
かつ耐水性が悪くなつて実用的でない。更に0.5
PbO/TiO21.5の範囲外においては高誘電率
体が得られない。 体熱膨張係数が200〜330×10-7(/℃)でかつ
軟化溶融温度が500〜700℃である本発明のホウロ
ウフリツトは鋼板、ステンレス板等の一般の金属
板と調和して特に良好な密着性を有する高誘電率
体を形成する。ここに軟化溶融温度とは体熱膨張
係数測定の際の屈伏点を指す。上記好ましい体熱
膨張係数と軟化溶融温度を本発明のホウロウフリ
ツトに与えるにはPbO,TiO2以外のガラス成分
の組成を上記のごとく調節するのである。PbO,
TiO2以外のガラス成分の各構成要素の作用とそ
の限定理由について以下に説明する。 SiO2<15%においてはホウロウフリツト製造
において材料がガラス化し難く、またSiO2>45
%では金属に施して融着させる際に必要とされる
処理温度が高くなり過ぎる。 B2O3<10%においては上記処理温度が同様に
高くなり過ぎ、またB2O3>30%では得られる高
誘電率体の耐水性が低下し実用に適さなくなる。 Al2O3>10%においては上記処理温度が高くな
り過ぎる。 Na2O+K2O+Li2O>10%においては得られ
る高誘電率体中において易動度の大きなアルカリ
金属イオン濃度が増加し絶縁破壊強度が低下す
る。 CaO+ZnO+MgO+Sb2O3<4%においては上
記処理温度が高くなり過ぎ、また体熱膨張係数が
小さくなつてしまう。またCaO+ZnO+MgO+
Sb2O3>25%では得られる上記高誘電率体の耐水
性が低下し実用に適さなくなる。 F>10%では加熱処理による溶融の際分相す
る。 上記構成要素の他に金属との密着性を向上する
ため更にCoO,NiO等の公知化合物を含有せしめ
てもよいことは勿論である。 本発明のホウロウフリツトを用いて高誘電率体
−金属複合体を製造する一例を以下に説明する。 前記の如くして得られたホウロウフリツトに電
解質、粘着剤を混合し常法により粉砕して水性ス
リツプを調製する。かくして得られた水性スリツ
プを所定の金属板にスプレー法、刷毛塗り法、流
し塗り法、浸漬法等通常の方法により通常100〜
200μ厚程度に塗布し常温もしくは若干の加熱に
よつて乾燥させる。その後、軟化溶融温度以上に
加熱処理して金属板表面に上記ホウロウフリツト
を融着させた後、適宜冷却すればPbOとTiO2
ら生成される高誘電率結晶が析出し、かくして複
合体が得られるのである。金属板に本発明のホウ
ロウフリツトを被着せしめるには上記方法の他、
スキージオイルにホウロウフリツトを混練して製
造したインキを用いてスクリーン印刷する方法、
ホウロウフリツトを適当な媒体中に分散させて電
気泳動により被着せしめる方法、ホウロウフリツ
ト粉末を乾式スプレー、静電塗装、流動浸漬等に
よつて被着せしめる乾式法等が適用されてよい
し、また乾式法においては金属板を予めホウロウ
フリツトの軟化溶融温度以上に加熱しておけばホ
ウロウフリツトは被着と同時に融着されることに
なる。上記複合体において形成される高誘電率体
の誘電率を所定の値に調節することは冷却速度を
変化させたり、冷却過程において所定の温度に所
定時間維持したり、あるいは再熱処理によつて上
記高誘電率結晶の析出量を加減することによつて
容易に可能である。 本発明のホウロウフリツトが金属板に対して良
好な密着性を示す理由は明確ではないが、本発明
のホウロウフリツトは熱処理前では高誘電率結晶
を殆んど含まないか、含んでも僅かであるから金
属板に施して熱処理する際、高誘電率結晶を多量
含有するホウロウフリツトと比較して良好な濡れ
が発現するためと思われる。したがつて本発明の
ホウロウフリツトにおいては高誘電率結晶がPbO
+TiO2の40%以下であることが望ましく、勿論
上記高誘電率結晶を全く含まないことが最も望ま
しい。本発明のホウロウフリツトにおいて高誘電
率結晶含量を上記のように制限することは金属と
の密着性に好結果をもたらすこと以外に高誘電率
体の誘電率を熱処理条件によつて前記したように
所望の値に調節することを更に容易にするという
利点がある。 以下に本発明を更に具体的に説明するための実
施例について述べる。 実施例 原料配合物をルツボに入れて1200〜1300℃で50
〜60分加熱溶融し、得られた溶融物を水中に投入
することによつて急冷して第1表に示す組成のホ
ウロウフリツトを得た。 かくして得られたホウロウフリツトを水と共に
ミル引きして常法によりスリツプを調製する。上
記スリツプをスプレー法により100〜200μ程度に
軟鋼板およびステンレス板(50×50×1.4mm)に
施釉する。常温で乾燥させその後950℃3分の熱
処理を行なつた。上記熱処理の後850℃まで冷却
し、この温度にて50分間維持した後放冷する。か
くして得られた高誘電率体の誘電率とホウロウフ
リツトの体熱膨張係数、軟化溶融温度の値を第2
表に示す。なお第1表、第2表において試料No.1
〜9は本発明の実施例であり、試料No.10〜13は比
較例である。 第2表によれば、本発明の実施例No.1〜9は比
較例No.10〜13に比して高誘電率を有する。また比
較例No.10は熱膨張が小さく鋼板の熱膨張とマツチ
せず、比較例No.11は軟化温度が低くガラスとして
の耐久性に問題がある。 また第1表試料No.5,8の組成のものを上記と
同様に熱処理した後、400℃/hrの速度で冷却し
て得られた高誘電率体の誘電率を第3表に示す。
第3表においては850℃,50分間維持した第2表
のデータを併記した。
The present invention particularly relates to an enamel frit suitable for manufacturing composites of metal and high dielectric constant material. More specifically, the present invention mainly involves steel plates,
The present invention relates to an enamel frit that is adhered to a metal plate such as a stainless steel plate and fired to form a high dielectric constant material that adheres well to the metal plate. BACKGROUND ART In recent years, composites of high-permittivity materials and metals have been attracting attention and being developed as high-permittivity materials for use in electronic components, discharge electrode parts, etc., with the aim of improving heat resistance, mechanical strength, and cooling performance. Conventionally, titanate ceramics have been mainly used as the above-mentioned high dielectric constant material, but in order to composite the above-mentioned titanate ceramics and metals, there is a method of bonding with a synthetic resin adhesive, Ag, Ag-Pd. There is a method in which a noble metal paste such as the above is applied to the titanate ceramic and soldered to the metal after baking. However, the former has the drawbacks of poor heat resistance and unsatisfactory interlayer adhesion strength, while the latter has the drawbacks that the noble metal paste is expensive and involves many complicated steps. As the above-mentioned high dielectric constant material, research is also being conducted on glasses containing BaTiO 3 crystals with a high dielectric constant (for example, Journal of American
Ceramic Society, Vol. 47, No. 3, 1964), the above-mentioned glasses have poor affinity with metals, and there is a practical problem in making them into composites with metals. In other words, the above-mentioned glass does not match metal plates such as steel plates and stainless steel plates in terms of thermal expansion characteristics and softening and melting temperatures.
It had no adhesion to these metal plates and could not be practically used in the production of the above-mentioned composites. SUMMARY OF THE INVENTION An object of the present invention is to improve the above-mentioned conventional drawbacks and to provide an enamel frit that forms a high dielectric constant material having good adhesion to a metal plate. The above object is a glass that contains PbO and TiO 2 in a total amount of 10 to 60% by weight, and the molar ratio of PbO and TiO 2 is within the range of 0.5 to 1.5. This is achieved by the enamel frit of the present invention which deposits crystals with a high dielectric constant. The enameled frit above preferably has a body thermal expansion coefficient of 200.
〜330×10 -7 (/℃), and the softening and melting temperature is
500 to 700°C, and substantially does not contain high dielectric constant crystals before heat treatment, so the total amount of PbO and TiO 2 must be 25 to 55% by weight
The molar ratio of PbO and TiO2 is 0.9-1.4, or the glass components other than PbO and TiO2 are SiO2 15-45% by weight , B2O3 10-30% by weight, Al2O3 10 % by weight %below,
10% by weight or less of one or more metal oxides selected from the group consisting of Na 2 O, K 2 O and Li 2 O, one selected from the group consisting of CaO, ZnO, MgO and Sb 2 O 3 or two or more metal oxides 4-
It is preferable that the F content is 25% by weight or less, and F is 10% by weight or less. The present invention will be explained in detail below. An example of manufacturing the enamel frit of the present invention having the above composition will be described below. e.g. metal oxides that donate PbO and TiO2 ,
A mixture of metal compounds such as metal hydroxides or metal salts to give the above molar ratio, that is, PbO/TiO 2 0.5 to 1.5, preferably 0.9 to 1.4, or a mixture of PbO and TiO 2 in the above molar ratio. Using calcined material,
In addition to this, other glass raw materials such as SiO 2 , Al 2 O 3
Highly flammable raw materials such as B 2 O 3 , alkali metal oxides, alkaline earth metal oxides, etc., and low flammable raw materials such as B 2 O 3 , alkali metal oxides, alkaline earth metal oxides, etc., with a total content of PbO and TiO 2 of 10 to 60% by weight (hereinafter simply referred to as %). ), preferably 25 to 55%, and more preferably other glass raw materials are SiO 2
15-45%, B2O3 10-30%, Al2O3 10 % or less, Na2
10% or less of one or more metal oxides selected from the group consisting of O, K 2 O and Li 2 O, CaO,
4-25% of one or more metal oxides selected from the group consisting of ZnO, MgO and Sb 2 O 3 , F10
The above mixture is mixed by the usual method of producing glass to give a glass composition of 1200% or less.
Melt by heating at 1300℃ for 50-60 minutes, then cool with water or air. In this way, the enamel frit of the present invention is obtained, but in this case it is desirable to cool it rapidly so that a large amount of crystals with a high dielectric constant produced from PbO and TiO 2 are not precipitated in the glass. As mentioned above, in the present invention, PbO + TiO 2
= 10 to 60%, PbO/TiO 2 = 0.5 to 1.5 molar ratio is essential, and the reason is that PbO + TiO 2 <
Enamel frit with a concentration of 10% has less precipitation of high dielectric constant crystal phase due to heat treatment, and therefore no high dielectric constant material is formed; on the other hand, PbO + TiO 2 >60
% of enamel frit has a low softening temperature and poor water resistance, making it impractical. 0.5 more
A high dielectric constant material cannot be obtained outside the range of PbO/TiO 2 1.5. The enamel frit of the present invention, which has a body thermal expansion coefficient of 200 to 330×10 -7 (/℃) and a softening and melting temperature of 500 to 700℃, is particularly compatible with general metal plates such as steel plates and stainless steel plates. Forms a high dielectric constant material with good adhesion. Here, the softening melting temperature refers to the yield point when measuring the body thermal expansion coefficient. In order to provide the enamel frit of the present invention with the above-mentioned preferable body thermal expansion coefficient and softening melting temperature, the composition of the glass components other than PbO and TiO 2 is adjusted as described above. PbO,
The effects of each constituent element of the glass component other than TiO 2 and the reason for its limitation will be explained below. When SiO 2 <15%, the material is difficult to vitrify during enameled frit manufacturing, and when SiO 2 >45
%, the processing temperature required when applying to metal and fusing it becomes too high. When B 2 O 3 <10%, the above-mentioned treatment temperature similarly becomes too high, and when B 2 O 3 >30%, the water resistance of the resulting high dielectric constant material decreases, making it unsuitable for practical use. When Al 2 O 3 >10%, the treatment temperature becomes too high. When Na 2 O+K 2 O+Li 2 O>10%, the concentration of highly mobile alkali metal ions increases in the obtained high dielectric constant material, and the dielectric breakdown strength decreases. When CaO+ZnO+MgO+Sb 2 O 3 <4%, the treatment temperature becomes too high and the body thermal expansion coefficient becomes small. Also, CaO + ZnO + MgO +
When Sb 2 O 3 >25%, the water resistance of the resulting high dielectric constant material decreases, making it unsuitable for practical use. When F>10%, phase separation occurs during melting by heat treatment. Of course, in addition to the above-mentioned constituent elements, known compounds such as CoO and NiO may also be contained in order to improve adhesion to metals. An example of manufacturing a high dielectric constant material-metal composite using the enamel frit of the present invention will be described below. An aqueous slip is prepared by mixing the enamel frit obtained as described above with an electrolyte and an adhesive and pulverizing it in a conventional manner. The water-based slip obtained in this way is applied to a specified metal plate by a conventional method such as spraying, brush coating, flow coating, or dipping to give a coating of usually 100 to 100%.
Apply to a thickness of about 200μ and dry at room temperature or with slight heat. After that, the enamel frit is fused to the surface of the metal plate by heat treatment above the softening melting temperature, and then, when appropriately cooled, high dielectric constant crystals generated from PbO and TiO 2 are precipitated, and thus the composite is formed. You can get it. In addition to the above method, the enamel frit of the present invention can be applied to a metal plate.
A method of screen printing using ink made by mixing enamel frit with squeegee oil,
A method in which enamel frit is dispersed in a suitable medium and deposited by electrophoresis, a dry method in which enamel frit powder is deposited by dry spraying, electrostatic coating, fluidized dipping, etc. may be applied. In addition, in the dry method, if the metal plate is heated in advance to a temperature higher than the softening and melting temperature of the enamel frit, the enamel frit can be fused at the same time as it is applied. The dielectric constant of the high dielectric constant material formed in the above composite can be adjusted to a predetermined value by changing the cooling rate, maintaining a predetermined temperature for a predetermined time during the cooling process, or by reheating the above-mentioned material. This can be easily achieved by controlling the amount of high dielectric constant crystals precipitated. The reason why the enamel frit of the present invention exhibits good adhesion to metal plates is not clear, but the enamel frit of the present invention hardly contains high dielectric constant crystals before heat treatment, or even if it does, it contains only a small amount. Therefore, when applied to a metal plate and subjected to heat treatment, it is thought that better wetting is achieved compared to enamel frit containing a large amount of high dielectric constant crystals. Therefore, in the enameled frit of the present invention, the high dielectric constant crystal is PbO.
It is desirable that the content is 40% or less of +TiO 2 , and of course it is most desirable that the above-mentioned high dielectric constant crystals are not included at all. Limiting the high dielectric constant crystal content in the enamel frit of the present invention as described above not only brings about good results in adhesion with metal, but also improves the dielectric constant of the high dielectric constant material by adjusting the heat treatment conditions. has the advantage of making it easier to adjust to the desired value. Examples for explaining the present invention in more detail will be described below. Example: Put the raw material mixture into a crucible and heat at 1200 to 1300℃ for 50 minutes.
The mixture was heated and melted for ~60 minutes, and the resulting melt was quenched by pouring it into water to obtain an enamel frit having the composition shown in Table 1. The enamel frit thus obtained is milled with water to prepare a slip in a conventional manner. The above slip is glazed to a thickness of about 100 to 200 μm on a mild steel plate and a stainless steel plate (50 x 50 x 1.4 mm) by a spray method. It was dried at room temperature and then heat treated at 950°C for 3 minutes. After the above heat treatment, it was cooled to 850°C, maintained at this temperature for 50 minutes, and then allowed to cool. The values of the dielectric constant of the high dielectric constant material obtained in this way, the body thermal expansion coefficient of the enamel frit, and the softening and melting temperature are
Shown in the table. In addition, in Tables 1 and 2, sample No. 1
Samples Nos. 1 to 9 are examples of the present invention, and Samples Nos. 10 to 13 are comparative examples. According to Table 2, Examples Nos. 1 to 9 of the present invention have higher dielectric constants than Comparative Examples Nos. 10 to 13. Further, Comparative Example No. 10 has a small thermal expansion that does not match that of the steel plate, and Comparative Example No. 11 has a low softening temperature and has a problem in durability as a glass. Further, Table 3 shows the dielectric constants of high dielectric constant materials obtained by heat-treating samples Nos. 5 and 8 of Table 1 in the same manner as above and cooling them at a rate of 400° C./hr.
Table 3 also shows the data from Table 2, which was maintained at 850°C for 50 minutes.

【表】 第3表にみるように本発明のホウロウフリツト
からなる高誘電率体は熱処理条件によつて誘電率
を大巾に調節することが可能である。
[Table] As shown in Table 3, the dielectric constant of the high dielectric constant material made of enameled frit of the present invention can be adjusted to a wide range by changing the heat treatment conditions.

【表】【table】

【表】 以上に述べたように本発明のホウロウフリツト
は金属に対して良好な密着性を有し、かつ高誘電
率体を形成するものであるから電子工業分野にお
いて極めて有用なものである。
[Table] As mentioned above, the enamel frit of the present invention has good adhesion to metals and forms a high dielectric constant material, so it is extremely useful in the electronics industry. .

Claims (1)

【特許請求の範囲】 1 PbOと、TiO2とを合量で10〜60重量%含み、
かつPbOとTiO2とのモル比が0.5〜1.5の範囲内で
あるガラスであり、加熱処理されることによつて
高誘電率の結晶を析出することを特徴とするホウ
ロウフリツト 2 体熱膨張係数が200〜330×10-7(/℃)であ
り、かつ軟化溶融温度が500〜700℃である特許請
求の範囲第1項記載のホウロウフリツト 3 加熱処理前においては実質的に高誘電率の結
晶を含有しない特許請求の範囲第1項記載のホウ
ロウフリツト 4 PbOとTiO2の合量が25〜55重量%、PbOと
TiO2とのモル比が0.9〜1.4である特許請求の範囲
第1項記載のホウロウフリツト 5 SiO215〜45重量%、B2O310〜30重量%、Al2
O310重量%以下、Na2O,K2OおよびLi2Oから
なる群から選ばれた一種または二種以上の金属酸
化物10重量%以下、CaO,ZnO,MgOおよびSb2
O3からなる群から選ばれた一種または二種以上
の金属酸化物4〜25重量%、F10重量%以下より
なるガラス成分を含む特許請求の範囲第2項、第
3項または第4項記載のホウロウフリツト。
[Claims] 1 Contains 10 to 60% by weight of PbO and TiO 2 in total,
It is a glass having a molar ratio of PbO and TiO 2 in the range of 0.5 to 1.5, and is characterized by precipitating crystals with a high dielectric constant when heated. Enamel frit 3 according to claim 1, which has a coefficient of 200 to 330×10 -7 (/°C) and a softening and melting temperature of 500 to 700°C. Before heat treatment, the enamel frit has a substantially high dielectric property. Enamel frit 4 according to claim 1, which does not contain any percentage crystals, wherein the total amount of PbO and TiO 2 is 25 to 55% by weight, PbO and
Enamel frit 5 according to claim 1, wherein the molar ratio with TiO 2 is 0.9 to 1.4, SiO 2 15 to 45% by weight, B 2 O 3 10 to 30% by weight, Al 2
10% by weight or less of O 3 , 10% by weight or less of one or more metal oxides selected from the group consisting of Na 2 O, K 2 O and Li 2 O, CaO, ZnO, MgO and Sb 2
Claims 2, 3 , or 4 contain a glass component consisting of 4 to 25% by weight of one or more metal oxides selected from the group consisting of O 3 and 10% by weight or less of F. Enamel Fritz.
JP1646590A 1990-01-26 1990-01-26 Enamel frit Granted JPH0375238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1646590A JPH0375238A (en) 1990-01-26 1990-01-26 Enamel frit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1646590A JPH0375238A (en) 1990-01-26 1990-01-26 Enamel frit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19641282A Division JPS5988340A (en) 1982-11-08 1982-11-08 Enamel frit

Publications (2)

Publication Number Publication Date
JPH0375238A JPH0375238A (en) 1991-03-29
JPH0551543B2 true JPH0551543B2 (en) 1993-08-02

Family

ID=11917006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1646590A Granted JPH0375238A (en) 1990-01-26 1990-01-26 Enamel frit

Country Status (1)

Country Link
JP (1) JPH0375238A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010085168A (en) * 2000-02-25 2001-09-07 박정원 Process for producing enamel for coating aluminum ware
KR20030062027A (en) * 2002-01-15 2003-07-23 이재윤 A Study of lowfired trantsparent glaze
KR100470740B1 (en) * 2002-01-15 2005-03-11 주식회사 대명기술단건축사사무소 Porcelain Enamel Slip For Structural
JP2009133193A (en) * 2009-02-09 2009-06-18 Sogo Corp Heat insulating fireproof panel

Also Published As

Publication number Publication date
JPH0375238A (en) 1991-03-29

Similar Documents

Publication Publication Date Title
CA2291502C (en) Lead-free alkali metal-free glass compositions
CA1183555A (en) Glass-ceramic coatings for use on metal substrates
US3384508A (en) Method of glazing semicrystalline glass-ceramic articles and resultant intermediate layer containing composite
US4065743A (en) Resistor material, resistor made therefrom and method of making the same
CA1276947C (en) Porcelain enamel composition and subtrates coated therewith
JPS6041012B2 (en) conductive metal composition
US3978316A (en) Electrical heating unit
JP2006206430A (en) Lead-free and cadmium-free glass for glazing, enameling and decoration of glass or glass-ceramic
US3459569A (en) Glass compositions
GB2090242A (en) Glazed ceramic substrate
US3503763A (en) Creptallizable lead borosilicate compositions for use as low thermal expansion,devitrifying solder glasses or coatings
US3978315A (en) Electrical heating units
JPH1143351A (en) Glass composition for glaze
GB2038104A (en) Resistor material resistor made therefrom and method of making the same
US4355114A (en) Partially devitrified porcelain containing BaO.2MgO.2SiO2 and 2MgO.B2 O3 crystalline phases obtained from alkali metal free divalent metal oxide borosilicate glass
US4397915A (en) Electrical resistor material, resistor made therefrom and method of making the same
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
US3982048A (en) Method of making an insulator with a non-linear resistivity coating of glass bonded silicon carbide
US5198393A (en) Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance
US4355115A (en) Borosilicate glass frit with MgO and BaO
US4378409A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPH0551543B2 (en)
US3277020A (en) Glass composition and electrical resistance material made therefrom
JPH0239463B2 (en)
JP4370686B2 (en) Barium borosilicate glass and glass ceramic composition