JPH0551355B2 - - Google Patents

Info

Publication number
JPH0551355B2
JPH0551355B2 JP86313699A JP31369986A JPH0551355B2 JP H0551355 B2 JPH0551355 B2 JP H0551355B2 JP 86313699 A JP86313699 A JP 86313699A JP 31369986 A JP31369986 A JP 31369986A JP H0551355 B2 JPH0551355 B2 JP H0551355B2
Authority
JP
Japan
Prior art keywords
acid
zirconium
titanium
film
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP86313699A
Other languages
Japanese (ja)
Other versions
JPS62247866A (en
Inventor
Eizo Isoyama
Takashi Atsumi
Masaaki Mizoguchi
Masaaki Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Publication of JPS62247866A publication Critical patent/JPS62247866A/en
Publication of JPH0551355B2 publication Critical patent/JPH0551355B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、ルーム・クーラなどの熱交換器に
用いられる耐熱変色性に優れた皮膜を有するアル
ミニウム・フイン材に関するものである。 従来の技術 ルーム・クーラなどの熱交換器に用いられる表
面処理アルミニウム・フイン材としては、優れた
親水性、耐食性および成形性を有したものである
ことが要求される。従来、アルミニウム・フイン
材にこれらの性能を付与するには、無機系の表面
処理剤を用いて、フイン材にクロメート皮膜やベ
ーマイト皮膜を形成したり、有機系の表面処理剤
を用いてフイン材にウレタン樹脂皮膜やアクリル
酸樹脂皮膜を形成する方法が行なわれていた。 発明が解決しようとする課題 しかしながら、従来の無機系処理剤により処理
されたフイン材は、耐食性には優れているが、成
形性に劣るという問題があり、また有機系処理剤
により処理されたフイ材は、逆に成形性には優れ
ているが、耐食性に劣り、耐食性を向上させるた
めに膜厚を厚くする必要があつた。ところがこれ
では、熱交換器の組立て工程におけるフインのろ
う付けないし溶接時に、皮膜が焼け焦げて黄変な
いし褐変し、これが外観時に大きな欠陥となると
いう問題があつた。 この発明の目的は、上記の従来技術の問題を解
決し、無機系皮膜および有機系皮膜の各長所をそ
のまゝ生かし、かつ各短所をそれぞれ克服して、
耐食性および成形性に優れしかもろう付けないし
溶接時に焼け焦げを生じるおそれがないうえに、
従来のように耐食性を向上させるために膜厚を厚
くする必要がなく、経済性が高い、耐熱変色性に
優れた皮膜を有する熱交換器用アルミニウム・フ
イン材を提供しようとするにある。 課題を解決するための手段 この発明は、上記の目的を達成するために、皮
膜形成能を有する合成樹脂と、合成樹脂とキレー
トを形成しかつクロム、ジルコニウムまたはチタ
ンよりなる金属の酸化物、同金属酸ないしその
塩、同金属酸エステル、および酸のクロム、ジル
コニウムまたはチタン塩よりなる群から選ばれた
クロム、ジルコニウムまたはチタン含有化合物の
少なくとも1種とを含みかつ膜厚0.1〜1.0μmで
あることを特徴とする耐熱変色性に優れた皮膜を
有する熱交換器用アルミニウム・フイン材を要旨
としている。 上記において、皮膜形成能を有する合成樹脂
は、アルミニウム・フイン材の良好な成形性を確
保するために必要な成分であつて、その代表例と
しては、ポリアクリル酸があげられ、ほかにポリ
ビニルアルコールやセルロースヒドロキシエチル
エーテルなども使用可能である。 合成樹脂とキレートを形成する金属含有化合物
は、処理フイン材の良好な耐食性を確保するため
に必要な成分であつて、クロム、ジルコニウムま
たはチタンを含有する化合物である。 その代表例としては、3価または6価クロムの
クロム酸があげられ、ほかに酸化ジルコニウム、
酸化チタン、酸化クロムよりなる金属酸化物、例
えばクロム酸カリウム、クロム酸ナトリウム、重
クロム酸カリウムまたは重クロム酸ナトリウムな
どの金属酸塩、チタン酸エステルなどの金属酸エ
ステル、例えば硝酸クロム、硝酸ジルコニウム、
フツ化ジルコニウム、フツ化チタンまたは硫酸チ
タンなどの、酸のクロム、ジルコニウムまたはチ
タン塩も使用可能である。 上記皮膜の膜厚は、0.1〜1.0μmである。ここ
で、皮膜の膜厚が0.1μm未満では、皮膜としての
性能が充分でない。また、皮膜の膜厚は1.0μmを
越える必要はなく、1.0μmを越える膜厚はその形
成のために処理剤を多く必要として、経済的でな
いし、熱交換器の組立て時のろう付けないし溶接
の熱によつて皮膜に焼け焦げを生じるおそれがあ
る。 合成樹脂と、クロム、ジルコニウムまたはチタ
ン含有化合物との配合比は、好ましくは2:8〜
9:1、さらに好ましくは3:7〜7:3であ
る。 実施例 つぎに、この発明の実施例と従来技術に対応す
る比較例とを示す。 実施例1〜10および比較例1〜4 皮膜として、表1に示す各種組成のものを形成
した。各皮膜については、それぞれの皮膜形成剤
を用いてロールコート法により通常の処理条件下
にアルミニウム・フイン材を表面処理し、表1に
示す膜厚の皮膜を形成した。 こうして表面処理されたフイン材について、耐
食性、成形性および耐熱変形性の試験を行なつ
た。試験結果を表1に示す。 耐食性については、フイン材に塩水を300時間
噴霧した結果、異常がない場合に◎印を付し、ほ
んのわずかに腐食を生じた場合に○印を付すこと
によつて、耐食性の評価を表わした。 成形性については、しごき加工によりカラーを
形成し、その高さが所要値に達したときに割れが
生じない場合に◎印を付し、割れが生じた場合に
△印を付すことによつて、成形性の評価を表わし
た。 耐熱変色性については、フイン材を400℃で1
分間加熱したときに、外観に変化がない場合に◎
印を付し、表面がかなり黄変した場合に△印を付
し、著しく黄変した場合に×印を付すことによつ
て、耐熱変色性の評価を表わした。
INDUSTRIAL APPLICATION FIELD This invention relates to an aluminum fin material having a coating with excellent heat discoloration resistance and used in heat exchangers such as room coolers. BACKGROUND ART Surface-treated aluminum fin materials used in heat exchangers such as room coolers are required to have excellent hydrophilicity, corrosion resistance, and formability. Conventionally, in order to impart these properties to aluminum fin materials, an inorganic surface treatment agent was used to form a chromate film or a boehmite film on the fin material, or an organic surface treatment agent was used to improve the fin material. Previously, a method of forming a urethane resin film or an acrylic acid resin film was used. Problems to be Solved by the Invention However, although fin materials treated with conventional inorganic treatment agents have excellent corrosion resistance, they have a problem of poor formability, and fin materials treated with organic treatment agents have On the other hand, the material has excellent formability, but poor corrosion resistance, and it was necessary to increase the film thickness to improve corrosion resistance. However, this method had the problem that during the brazing or welding of the fins in the heat exchanger assembly process, the film was scorched and turned yellow or brown, resulting in a major defect in appearance. The purpose of this invention is to solve the problems of the above-mentioned prior art, take advantage of each of the advantages of inorganic coatings and organic coatings, and overcome each of their disadvantages.
It has excellent corrosion resistance and formability, and there is no risk of burning during brazing or welding.
To provide an aluminum fin material for a heat exchanger that does not require thickening of the film to improve corrosion resistance as in the past, is highly economical, and has a film with excellent heat discoloration resistance. Means for Solving the Problems In order to achieve the above object, the present invention comprises a synthetic resin having film-forming ability, a metal oxide which forms a chelate with the synthetic resin and is composed of chromium, zirconium or titanium. Contains at least one chromium-, zirconium-, or titanium-containing compound selected from the group consisting of metal acids, salts thereof, esters of the same metals, and chromium-, zirconium-, or titanium salts of acids, and has a film thickness of 0.1 to 1.0 μm. The gist of this paper is an aluminum fin material for heat exchangers that has a film with excellent thermal discoloration resistance. In the above, the synthetic resin with film-forming ability is a necessary component to ensure good moldability of aluminum fin materials, and typical examples include polyacrylic acid, polyvinyl alcohol and cellulose hydroxyethyl ether can also be used. The metal-containing compound that forms a chelate with the synthetic resin is a necessary component for ensuring good corrosion resistance of the treated fin material, and is a compound containing chromium, zirconium, or titanium. Typical examples include trivalent or hexavalent chromic acid, as well as zirconium oxide,
Metal oxides consisting of titanium oxide and chromium oxide, such as metal salts such as potassium chromate, sodium chromate, potassium dichromate or sodium dichromate, metal acid esters such as titanate esters, such as chromium nitrate, zirconium nitrate ,
Chromium, zirconium or titanium salts of acids such as zirconium fluoride, titanium fluoride or titanium sulfate can also be used. The film thickness of the above film is 0.1 to 1.0 μm. Here, if the film thickness of the film is less than 0.1 μm, the performance as a film is not sufficient. In addition, the film thickness does not need to exceed 1.0 μm, and a film thickness exceeding 1.0 μm requires a large amount of processing agent to form, making it uneconomical and requiring brazing or welding when assembling the heat exchanger. There is a risk of burning the film due to the heat. The blending ratio of the synthetic resin and the chromium-, zirconium-, or titanium-containing compound is preferably 2:8 to 2:8.
The ratio is 9:1, more preferably 3:7 to 7:3. Examples Next, examples of the present invention and comparative examples corresponding to the prior art will be shown. Examples 1 to 10 and Comparative Examples 1 to 4 Films having various compositions shown in Table 1 were formed. For each film, the aluminum fin material was surface-treated using the respective film-forming agent under normal treatment conditions by a roll coating method to form a film having the thickness shown in Table 1. The thus surface-treated fin material was tested for corrosion resistance, formability, and heat deformation resistance. The test results are shown in Table 1. Corrosion resistance was evaluated by spraying salt water on the fin material for 300 hours, marking it with an ◎ mark if there was no abnormality, and marking it with an ○ mark if there was only slight corrosion. . Regarding formability, a collar is formed by ironing, and when the height reaches the required value, if no cracks occur, mark ◎, and if cracks occur, mark △. , represents the evaluation of moldability. Regarding heat discoloration resistance, the fin material was heated to 1 at 400℃.
If there is no change in appearance after heating for minutes ◎
The heat discoloration resistance was evaluated by marking the surface with a mark, △ if the surface was significantly yellowed, and × if the surface was significantly yellowing.

【表】 表1の結果から明らかなように、実施例1〜10
の皮膜を有する熱交換器用アルミニウム・フイン
材は、従来技術に対応する比較例1〜4の場合に
比べて、耐食性、成形性および耐熱変色性のいず
れにおいても申し分のないものであつた。 発明の効果 この発明による熱交換器用アルミニウム・フイ
ン材は、上述のように、皮膜形成能を有する合成
樹脂と、合成樹脂とキレートを形成しかつクロ
ム、ジルコニウムまたはチタンよりなる金属の酸
化物、同金属酸ないしその塩、同金属酸エステ
ル、および酸のクロム、ジルコニウムまたはチタ
ン塩よりなる群から選ばれたクロム、ジルコニウ
ムまたはチタン含有化合物の少なくとも1種とを
含みかつ膜厚0.1〜1.0μmであることを特徴とす
る皮膜を有するもので、従来の無機系皮膜および
有機系皮膜の各長所をそのまゝ生かし、かつ各短
所をそれぞれ克服して、耐食性および成形性に優
れしかもろう付けないし溶接時に焼け焦げを生じ
るおそれがなく、耐熱変色性に優れているうえ
に、従来のように耐食性を向上させるために膜厚
を厚くする必要がなく、従つて皮膜形成のための
処理剤を多く使用する必要がなく、かつ塗布およ
び乾燥工程等に要する時間も短縮することができ
て、非常に経済性が高いという効果を奏する。
[Table] As is clear from the results in Table 1, Examples 1 to 10
The aluminum fin material for a heat exchanger having the film had excellent corrosion resistance, moldability, and heat discoloration resistance compared to Comparative Examples 1 to 4 corresponding to the prior art. Effects of the Invention As mentioned above, the aluminum fin material for heat exchangers according to the present invention consists of a synthetic resin having film-forming ability, a metal oxide that forms a chelate with the synthetic resin, and is composed of chromium, zirconium, or titanium. Contains at least one chromium-, zirconium-, or titanium-containing compound selected from the group consisting of metal acids, salts thereof, esters of the same metals, and chromium-, zirconium-, or titanium salts of acids, and has a film thickness of 0.1 to 1.0 μm. It takes advantage of the advantages of conventional inorganic and organic coatings, and overcomes their respective disadvantages, offering excellent corrosion resistance and formability, while also being easy to use without brazing or welding. There is no risk of scorching, and it has excellent heat discoloration resistance, and there is no need to increase the thickness of the film to improve corrosion resistance, unlike conventional methods, so it is not necessary to use a large amount of processing agent to form the film. It has the advantage of being extremely economical, since it eliminates the need for drying, reduces the time required for coating and drying steps, etc.

Claims (1)

【特許請求の範囲】 1 皮膜形成能を有する合成樹脂と、合成樹脂と
キレートを形成しかつクロム、ジルコニウムまた
はチタンよりなる金属の酸化物、同金属酸ないし
その塩、同金属酸エステル、および酸のクロム、
ジルコニウムまたはチタン塩よりなる群から選ば
れたクロム、ジルコニウムまたはチタン含有化合
物の少なくとも1種とを含みかつ膜厚0.1〜1.0μ
mであることを特徴とする耐熱変色性に優れた皮
膜を有する熱交換器用アルミニウム・フイン材。 2 皮膜形成能を有する合成樹脂が、ポリアクリ
ル酸、ポリビニルアルコールまたはセルロースヒ
ドロキシエチルエーテルである、請求項1記載の
熱交換器用アルミニウム・フイン材。 3 クロム酸ないしその塩が、3価または6価ク
ロムのクロム酸、クロム酸カリウム、クロム酸ナ
トリウム、重クロム酸カリウムまたは重クロム酸
ナトリウムである、請求項1記載の熱交換器用ア
ルミニウム・フイン材。 4 酸のクロム塩が硝酸クロムであり、酸のジル
コニウム塩が硝酸ジルコニウムまたはフツ化ジル
コニウムであり、酸のチタン塩がブツ化チタンま
たは硫酸チタンである、請求項1記載の熱交換器
用アルミニウム・フイン材。
[Scope of Claims] 1. A synthetic resin having a film-forming ability, an oxide of a metal that forms a chelate with the synthetic resin and is composed of chromium, zirconium, or titanium, an acid of the same metal, a salt thereof, an acid ester of the same metal, and an acid. chrome,
and at least one chromium-, zirconium-, or titanium-containing compound selected from the group consisting of zirconium or titanium salts, and has a film thickness of 0.1 to 1.0μ.
An aluminum fin material for heat exchangers that has a film with excellent heat discoloration resistance and is characterized by the following characteristics: 2. The aluminum fin material for a heat exchanger according to claim 1, wherein the synthetic resin having film-forming ability is polyacrylic acid, polyvinyl alcohol, or cellulose hydroxyethyl ether. 3. The aluminum fin material for a heat exchanger according to claim 1, wherein the chromic acid or its salt is trivalent or hexavalent chromic chromic acid, potassium chromate, sodium chromate, potassium dichromate, or sodium dichromate. . 4. The aluminum fin for a heat exchanger according to claim 1, wherein the chromium salt of the acid is chromium nitrate, the zirconium salt of the acid is zirconium nitrate or zirconium fluoride, and the titanium salt of the acid is titanium butoxide or titanium sulfate. Material.
JP31369986A 1985-12-26 1986-12-26 Sub-surface treatment of aluminum fin material Granted JPS62247866A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP29556885 1985-12-26
JP60-295568 1985-12-26

Publications (2)

Publication Number Publication Date
JPS62247866A JPS62247866A (en) 1987-10-28
JPH0551355B2 true JPH0551355B2 (en) 1993-08-02

Family

ID=17822323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31369986A Granted JPS62247866A (en) 1985-12-26 1986-12-26 Sub-surface treatment of aluminum fin material

Country Status (1)

Country Link
JP (1) JPS62247866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219871A (en) * 2004-10-26 2011-11-04 Nippon Parkerizing Co Ltd Agent for treating metal surface, method for treating surface of metallic material, and surface-treated metallic material
JP2011241482A (en) * 2004-10-26 2011-12-01 Nippon Parkerizing Co Ltd Surface treatment agent for metal, surface treatment method for metallic material, and surface-treated metallic material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013437B1 (en) * 2013-11-20 2015-12-18 Valeo Systemes Thermiques COATING FOR HEAT EXCHANGER

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196782A (en) * 1983-04-22 1984-11-08 Nippon Seihaku Kk Manufacture of aluminum material for heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196782A (en) * 1983-04-22 1984-11-08 Nippon Seihaku Kk Manufacture of aluminum material for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219871A (en) * 2004-10-26 2011-11-04 Nippon Parkerizing Co Ltd Agent for treating metal surface, method for treating surface of metallic material, and surface-treated metallic material
JP2011241482A (en) * 2004-10-26 2011-12-01 Nippon Parkerizing Co Ltd Surface treatment agent for metal, surface treatment method for metallic material, and surface-treated metallic material

Also Published As

Publication number Publication date
JPS62247866A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
US5393354A (en) Iridescent chromium coatings and method
DE2433704A1 (en) METAL TREATMENT PRODUCTS, METHODS FOR THEIR MANUFACTURING AND APPLICATION
AU684929B2 (en) Composition and process for treating the surface of aluminiferous metals
US4637840A (en) Coated aluminum-zinc alloy plated sheet steel
DE2711431C2 (en) Process for the surface treatment of metals
US4801337A (en) Process and composition for conversion coating metal surfaces
EP0187917A1 (en) Process for improving the protection against corrosion of resin layers autophoretically deposited on metal surfaces
US3586543A (en) Coating treatment of metal surface
KR940002833B1 (en) Aluminum fin material for heat exchanger
JPH0551355B2 (en)
US3728783A (en) Process for brazing stainless steel parts to parts of aluminum and aluminum alloys
US4247344A (en) Rust preventing treatment of metal-plated steel materials
DE1521870A1 (en) Aqueous acidic solutions and processes for the production of chemical coatings on zinc-containing surfaces
JPH05322469A (en) Aluminum fin material for heat exchanger of air conditioner, whose surface is treated with hydrophilic coating
JP3324504B2 (en) Hot-dip Al-Zn alloy coated steel sheet with excellent crack resistance
JP4283698B2 (en) Precoated steel sheet having excellent end face corrosion resistance and method for producing the same
GB483551A (en) Improvements in and relating to the formation of chemical coatings on metals
KR100296687B1 (en) Chromate solution with superior corrosion/blackening resistance for hot dipped galvanized steel sheet
JPH02103133A (en) Aluminum fin material for heat exchanger
JP4500132B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance, workability and appearance quality and method for producing the same
JP2006348238A (en) Undercoating resin composition for hydrophilic coating and aluminum alloy coated plate
US3998670A (en) Process for producing steel plate substrates for lacquering
JP3845441B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP2948394B2 (en) Method for manufacturing transparent fluororesin-coated stainless steel sheet
JP4298567B2 (en) Chromate-free surface-treated Al-Zn alloy-plated steel sheet with excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees