JPH0551330A - Organic thin film having anisotropic electrical conductivity - Google Patents

Organic thin film having anisotropic electrical conductivity

Info

Publication number
JPH0551330A
JPH0551330A JP23372591A JP23372591A JPH0551330A JP H0551330 A JPH0551330 A JP H0551330A JP 23372591 A JP23372591 A JP 23372591A JP 23372591 A JP23372591 A JP 23372591A JP H0551330 A JPH0551330 A JP H0551330A
Authority
JP
Japan
Prior art keywords
thin film
doping
conductivity
electrical conductivity
polycyclic aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP23372591A
Other languages
Japanese (ja)
Inventor
Takashi Namikata
尚 南方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23372591A priority Critical patent/JPH0551330A/en
Publication of JPH0551330A publication Critical patent/JPH0551330A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Paints Or Removers (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To provide an easily producible thin film of a condensed polycyclic aromatic compound having high anisotropy of conductivity and high electrical conductivity. CONSTITUTION:The objective organic thin film having conductivity anisotropy of 10<4> to 10<10> is produced by doping an electron donative molecule (e.g. halogen, Lewis acid, protonic acid or organic acid) to a thin film of a condensed polycyclic aromatic compound having 4-13 condensed benzene rings and preferably having straight-chain structure free from branch (e.g. naphthacene, pentacene or terrylene). The thin film of the compound can be formed by a dry film-forming process such as vacuum deposition, MBE process, CVD process or sputtering or by a spray-coating method, spin-coating method, blade-coating method, etc., using a solution or molten liquid of the compound. The doping of the electron donative molecule is performed e.g. by doping in a thin film prepared beforehand or introducing the electron donative molecule in the formation of the thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電材料に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive material.

【0002】[0002]

【従来の技術】これまで異方性導電材料として、金属膜
と絶縁膜の積層材料、金属フィラーを配向した複合材料
が挙げられる。これらの材料は製造が複雑であり、ま
た、薄膜として加工することが困難であるなどの問題点
を有する。最近、有機導電材料の異方性を利用した異方
性導電材料の研究がラングミュアーブロジェット薄膜
(LB膜)、導電性高分子材料などを用いて進められて
いる。ところが、これらの薄膜の電導度は充分とは言え
ない。本発明者は、直線状縮合多環芳香族化合物に電子
授与性分子をドーピングした配向性導電性有機薄膜を見
出した(特願平2−134089)。この薄膜の電導度
異方性は104 以下であった。
2. Description of the Related Art Heretofore, anisotropic conductive materials include a laminated material of a metal film and an insulating film, and a composite material in which a metal filler is oriented. These materials have problems that they are complicated to manufacture and that it is difficult to process them as a thin film. Recently, research on anisotropic conductive materials utilizing the anisotropy of organic conductive materials has been advanced using Langmuir-Blodgett thin film (LB film), conductive polymer materials and the like. However, the electrical conductivity of these thin films is not sufficient. The present inventor has found an oriented conductive organic thin film obtained by doping a linear fused polycyclic aromatic compound with an electron-donating molecule (Japanese Patent Application No. 2-134089). The electrical conductivity anisotropy of this thin film was 10 4 or less.

【0003】[0003]

【発明が解決しようとする課題】本発明は、電導度異方
性が高く、かつ、高い電導度を有する薄膜材料を提供す
ることを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a thin film material having high electric conductivity anisotropy and high electric conductivity.

【0004】[0004]

【課題を解決するための手段】本発明者は、電導度異方
性が高く、かつ、高い電導度を有する導電性薄膜を得る
ため鋭意検討を重ねた結果、高い電導度異方性を有する
縮合多環芳香族化合物の薄膜を見いだし、本発明を完成
するに至った。
The present inventor has conducted extensive studies to obtain a conductive thin film having a high electric conductivity anisotropy and a high electric conductivity, and as a result, a high electric conductivity anisotropy is obtained. The inventors have found a thin film of a condensed polycyclic aromatic compound and completed the present invention.

【0005】すなわち、本発明は、縮合したベンゼン環
の数が4以上13以下である縮合多環芳香族化合物薄膜
に電子授与性分子がドーピングされ、その電導度異方性
が104 以上1010以下である異方性導電性有機薄膜で
ある。
That is, in the present invention, an electron-donating molecule is doped into a condensed polycyclic aromatic compound thin film having 4 to 13 condensed benzene rings, and its conductivity anisotropy is 10 4 to 10 10. The following is an anisotropic conductive organic thin film.

【0006】本発明の異方性導電性有機薄膜は、薄膜中
の有機分子が秩序正しく配列することによって電導度の
異方性を発現するものであり、本発明の縮合多環芳香族
化合物の分子配列制御によって実現することができる。
The anisotropic conductive organic thin film of the present invention exhibits anisotropy of electric conductivity by the organic molecules in the thin film being arranged in an orderly manner, and the condensed polycyclic aromatic compound of the present invention is It can be realized by controlling the molecular arrangement.

【0007】本発明に用いる縮合多環芳香族化合物につ
いて説明する。本発明に用いる縮合多環芳香族化合物
は、その縮合したベンゼン環の数が4以上13以下の化
合物またはそれらの混合物である。このような化合物と
して、例えば、ナフタセン、ペンタセン、ヘキサセン、
ヘプタセン、ジベンゾペンタセン、テトラベンゾペンタ
セン、ピレン、ジベンゾピレン、クリセン、ペリレン、
コロネン、テリレン、オバレン、クオテリレン、サーカ
ムアントラセンなどを挙げることができる。これらの化
合物の炭素の一部をN、S、Oなどの原子、カルボニル
基などの官能基に置換した誘導体も本発明に用いること
ができる。この誘導体として、例えば、トリフェノジオ
キサジン、トリフェノジチアジン、ヘキサセン−6,1
5−キノンなどを挙げることができる。異方性の高い導
電膜を作成するためには、分岐のない直鎖状の構造が好
ましい。この化合物として、例えば、ナフタセン、ペン
タセン、ヘキサセン、ヘプタセン、テリレン、クオテリ
レンを挙げることができる。
The condensed polycyclic aromatic compound used in the present invention will be described. The condensed polycyclic aromatic compound used in the present invention is a compound having 4 to 13 condensed benzene rings or a mixture thereof. Examples of such compounds include naphthacene, pentacene, hexacene,
Heptacene, dibenzopentacene, tetrabenzopentacene, pyrene, dibenzopyrene, chrysene, perylene,
Examples include coronene, terylene, ovalen, quaterylene, circumanthracene and the like. Derivatives obtained by substituting a part of carbon atoms of these compounds with atoms such as N, S and O and functional groups such as carbonyl groups can also be used in the present invention. Examples of this derivative include triphenodioxazine, triphenodithiazine, and hexacene-6,1.
5-quinone etc. can be mentioned. In order to form a conductive film having high anisotropy, a linear structure without branching is preferable. Examples of this compound include naphthacene, pentacene, hexacene, heptacene, terylene, and quaterrylene.

【0008】次に、電子授与性分子について説明する。
この分子としては、例えば、Cl2 、Br2 、I2 、I
Cl、ICl3 、IBr、IFなどのハロゲン、P
5 、AsF5 、SbF5 、BF3 、BCl3 、BBr
3 、SO3 などのルイス酸、HF、HCl、HNO3
2 SO4 、HClO4 、FSO3H、CF3 SO3
などのプロトン酸、酢酸、蟻酸、アミノ酸などの有機
酸、FeCl3 、FeOCl、TiCl4 、ZrC
4 、HfCl4 、NbF5 、NbCl5 、TaC
5 、MoCl5 、WF6 、WCl6 、UF6 、LnC
3 (Ln=La、Ce、Pr、Nd、Smなどのラン
タノイドとY)などの遷移金属化合物、Cl- 、B
- 、I- 、ClO4 - 、PF6 - 、AsF5 - 、Sb
6 - 、BF4 - 、スルホン酸などの電解質アニオンを
挙げることができる。
Next, the electron donating molecule will be described.
Examples of this molecule include Cl 2 , Br 2 , I 2 , and I.
Cl, ICl 3 , IBr, halogen such as IF, P
F 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr
3 , Lewis acid such as SO 3 , HF, HCl, HNO 3 ,
H 2 SO 4 , HClO 4 , FSO 3 H, CF 3 SO 3 H
Protic acids such as, acetic acid, formic acid, organic acids such as amino acids, FeCl 3 , FeOCl, TiCl 4 , ZrC
l 4 , HfCl 4 , NbF 5 , NbCl 5 , TaC
l 5 , MoCl 5 , WF 6 , WCl 6 , UF 6 , LnC
l 3 (Ln = La, Ce, Pr, Nd, lanthanoids such as Sm and Y) and other transition metal compounds, Cl , B
r , I , ClO 4 , PF 6 , AsF 5 , Sb
Electrolyte anions such as F 6 , BF 4 and sulfonic acid can be mentioned.

【0009】前記の縮合多環芳香族化合物の薄膜を作製
する方法について、その例を示す。縮合多環芳香族化合
物の薄膜は、例えば、真空蒸着法、MBE法、CVD
法、スパッタリング法などの乾式薄膜形成法によって作
製することができる。この縮合多環芳香族化合物薄膜
は、基板温度が常温でも優れた平滑性、表面性を有す
る。また、縮合多環芳香族化合物の溶液、溶融液体を用
いてスプレーコート法、スピンコート法、ブレードコー
ト法、ディップコート法などで薄膜を形成することがで
きる。例えば、真空蒸着法で薄膜を作製する場合、作製
条件によって電導度異方性が影響する。電導度異方性の
大きい薄膜を得るための作製条件として、雰囲気圧力は
低い方が不純物の含有が少ないため好ましく、10-4
orr以下、好ましくは10-5Torr以下である。基
板温度は高温の場合、成膜速度が低下するため好ましく
なく、また、きわめて低温で成膜した場合、蒸着膜の分
子配向性が低下するため好ましくない。したがって、基
板温度は150℃以下−200℃以上、好ましくは12
0℃以下−100℃以上である。また、薄膜の成長速度
は電導度異方性の大きい薄膜を作製するために重要な因
子である。この成長速度は低い方が異方性導電膜の作製
に好ましいが、成長速度が極端に低い場合、生産性が低
下するため好ましくない。したがって、成長速度として
500オングストローム/秒以下0.01オングストロ
ーム/秒以上である。
An example of a method for producing a thin film of the above condensed polycyclic aromatic compound will be shown. The condensed polycyclic aromatic compound thin film is formed, for example, by a vacuum vapor deposition method, an MBE method, a CVD method.
It can be produced by a dry thin film forming method such as a sputtering method or a sputtering method. This condensed polycyclic aromatic compound thin film has excellent smoothness and surface properties even when the substrate temperature is room temperature. Further, a thin film can be formed by a solution of a condensed polycyclic aromatic compound or a molten liquid by a spray coating method, a spin coating method, a blade coating method, a dip coating method or the like. For example, when a thin film is formed by the vacuum vapor deposition method, the conductivity anisotropy influences the manufacturing conditions. As manufacturing conditions for obtaining the large thin conductivity anisotropy, preferably for better atmospheric pressure is low is small content of impurities, 10 -4 T
Orr or less, preferably 10 −5 Torr or less. When the substrate temperature is high, it is not preferable because the film formation rate is lowered, and when the film is formed at extremely low temperature, the molecular orientation of the vapor deposition film is lowered, which is not preferable. Therefore, the substrate temperature is 150 ° C. or lower and −200 ° C. or higher, preferably 12
0 ° C or lower and -100 ° C or higher. Further, the growth rate of the thin film is an important factor for producing a thin film having a large electrical conductivity anisotropy. A lower growth rate is preferable for producing an anisotropic conductive film, but an extremely low growth rate is not preferable because productivity is reduced. Therefore, the growth rate is 500 Å / sec or less and 0.01 Å / sec or more.

【0010】次に、電子授与性分子を前記の縮合多環芳
香族化合物薄膜中に導入するドーピングについて説明す
る。このドーピングの方法として、予め作製した縮合多
環芳香族化合物の薄膜にドーピングを行なう方法、縮合
多環芳香族化合物の薄膜形成時に電子授与性分子を薄膜
中に導入してドーピングする方法を挙げることができ
る。前者の方法として、ガス状の電子授与性分子を用い
て行なう気相ドーピング、電子授与性分子の溶液または
液体状の分子を用いて行なう液相ドーピング、固体状の
電子授与性分子を接触、拡散させて行なう固相ドーピン
グのいずれも使用可能である。また、後者の方法とし
て、例えば、真空蒸着法で作製する場合、縮合多環芳香
族化合物とともに電子授与性分子を基板上に供給して、
薄膜のドーピングを行なうことができる。また、スパッ
タリングで薄膜作製を行なう場合、縮合多環芳香族化合
物と電子授与性分子の2元ターゲットを用いてスパッタ
リングを行ない、薄膜のドーピングを行なうことができ
る。
Next, the doping for introducing the electron donating molecule into the condensed polycyclic aromatic compound thin film will be described. Examples of this doping method include a method of doping a thin film of a condensed polycyclic aromatic compound prepared in advance, and a method of introducing an electron-donating molecule into the thin film when forming a thin film of a condensed polycyclic aromatic compound and doping. You can As the former method, gas phase doping using a gas-like electron-donating molecule, liquid-phase doping using a solution of an electron-donating molecule or a liquid molecule, contacting and diffusing a solid electron-donating molecule Any of the solid-state dopings performed by using the above method can be used. Further, as the latter method, for example, in the case of producing by a vacuum vapor deposition method, an electron-donating molecule is supplied onto a substrate together with a condensed polycyclic aromatic compound,
Thin film doping can be performed. When a thin film is formed by sputtering, the thin film can be doped by sputtering using a binary target of a condensed polycyclic aromatic compound and an electron donating molecule.

【0011】本発明の電導度異方性について説明する。
電導度異方性は、基板面内方向の電導度と基板面に垂直
方向の電導度の比である。この電導度は、通常の直流四
端子法、二端子法などによって測定することができる。
本発明の薄膜の電導度異方性は、薄膜中の縮合多環芳香
族化合物の分子配向性に影響される。すなわち、分子配
向性が高いほど大きい電導度異方性を有する。この分子
配向性は、X線回折法、電子線回折法、偏光赤外分光ス
ペクトルなどによって評価することができる。例えば、
X線回折法の場合、回折ピーク強度が強く半価幅が小さ
いほど配向性がよいため好ましいものとなる。
The conductivity anisotropy of the present invention will be described.
The electrical conductivity anisotropy is the ratio of the electrical conductivity in the in-plane direction of the substrate to the electrical conductivity in the direction perpendicular to the substrate surface. This conductivity can be measured by a normal DC four-terminal method, a two-terminal method, or the like.
The electrical conductivity anisotropy of the thin film of the present invention is influenced by the molecular orientation of the condensed polycyclic aromatic compound in the thin film. That is, the higher the molecular orientation, the greater the electrical conductivity anisotropy. This molecular orientation can be evaluated by an X-ray diffraction method, an electron beam diffraction method, a polarized infrared spectroscopy spectrum, or the like. For example,
In the case of the X-ray diffraction method, the higher the diffraction peak intensity and the smaller the half width, the better the orientation, which is preferable.

【0012】本発明の異方性導電性薄膜は異方性導電材
料と異なり、積層や混練の操作が必要ないため製造が容
易であり、しかも、薄膜として高い電導度異方性を有す
るため、電子材料としてエレクトロニクス、オプトエレ
クトロニクスなどの分野に応用できるので工業上有用で
ある。
Unlike the anisotropic conductive material, the anisotropic conductive thin film of the present invention does not require the operations of lamination and kneading, and thus is easy to manufacture, and since it has high conductivity anisotropy as a thin film, It is industrially useful because it can be applied to fields such as electronics and optoelectronics as electronic materials.

【0013】[0013]

【実施例】次に、実施例および参考例によって本発明を
さらに詳細に説明する。 実施例1 一部に金を蒸着したマグネシア基板上に、ペンタセン薄
膜を2000オングストロームの膜厚で真空蒸着法で形
成した。この薄膜作製条件として、雰囲気圧力10-6
orr、基板温度−10℃、成膜速度10オングストロ
ーム/秒で行なった。該薄膜上に金電極を300オング
ストロームの膜厚で積層した。ついで、この薄膜にヨウ
素蒸気を接触させてドーピングを行なった。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Reference Examples. Example 1 A pentacene thin film having a thickness of 2000 angstrom was formed on a magnesia substrate on which gold was partially deposited by a vacuum deposition method. Atmosphere pressure of 10 −6 T
Orr, substrate temperature -10 ° C, and film formation rate 10 Å / sec. A gold electrode having a film thickness of 300 angstrom was laminated on the thin film. Then, iodine vapor was brought into contact with this thin film for doping.

【0014】得られた薄膜の分子配向性をX線回折法
(CuKα)で評価した結果、(00n)面(n=1〜
15)の回折ピークが認められた。この(001)面の
ピーク強度は30kcpsであった。薄膜の面内方向電
導度は、直流四端子法で測定したところ、105S/cm
であった。また、基板面の電極と薄膜の表面に設けた両
電極間の電導度(垂直方向の電導度)を測定した結果1
-7S/cmであった。これらの結果から求めた電導度異
方性は109 であった。
The molecular orientation of the obtained thin film was evaluated by the X-ray diffraction method (CuKα). As a result, the (00n) plane (n = 1 to 1)
The diffraction peak of 15) was recognized. The peak intensity of this (001) plane was 30 kcps. The in-plane conductivity of the thin film was 105 S / cm as measured by the DC four-terminal method.
Met. In addition, as a result of measuring the electrical conductivity (vertical electrical conductivity) between the electrode on the substrate surface and both electrodes provided on the surface of the thin film, 1
It was 0 -7 S / cm. The electrical conductivity anisotropy obtained from these results was 10 9 .

【0015】実施例2 部分的に金電極を設けたサフェイヤ基板上に、ペンタセ
ン薄膜を2000オングストロームの膜厚で真空蒸着法
で成膜した。作製条件として、雰囲気圧力5×10-7
orr、基板温度10℃、成長速度3オングストローム
/秒で行なった。該薄膜上に電導度測定のための金電極
を設けた。ついで、この薄膜にヨウ素ガスを接触させて
ドーピングを行なった。
Example 2 A pentacene thin film having a thickness of 2000 angstrom was formed on a sapphire substrate partially provided with a gold electrode by a vacuum evaporation method. Atmospheric pressure of 5 × 10 −7 T
Orr, substrate temperature 10 ° C., growth rate 3 Å / sec. A gold electrode for measuring conductivity was provided on the thin film. Then, this thin film was brought into contact with iodine gas for doping.

【0016】得られた薄膜の分子配向性をX線回折法
(CuKα)で評価した結果、(00n)面(n=1〜
16)の回折ピーク(C0 =19.5オングストロー
ム)が認められた。(001)面の回折強度は40kc
psであった。この薄膜の面内方向の電導度を直流四端
子法で測定した結果110S/cmであった。また、垂直
方向の電導度は、基板上の電極とペンタセン薄膜表面の
電極の間の抵抗を直流2端子法で測定して求めた結果1
-8S/cmであった。この結果から求めた電導度異方性
は1010であった。
The molecular orientation of the obtained thin film was evaluated by X-ray diffractometry (CuKα). As a result, the (00n) plane (n = 1 to 1)
The diffraction peak (C 0 = 19.5 Å) of 16) was observed. Diffraction intensity of (001) plane is 40 kc
It was ps. The in-plane conductivity of this thin film was measured by the DC four-terminal method, resulting in 110 S / cm. The vertical conductivity was obtained by measuring the resistance between the electrode on the substrate and the electrode on the surface of the pentacene thin film by the DC two-terminal method.
It was 0-8 S / cm. The electrical conductivity anisotropy obtained from this result was 10 10 .

【0017】実施例3 部分的に金電極を設けた石英ガラス基板上に、ヘキサセ
ンとヨウ素をMBE法で真空蒸着(共蒸着)して膜厚1
000オングストロームで薄膜を形成した。この薄膜作
製条件は、雰囲気圧力2×10-7Torr、基板温度2
0℃、成膜速度10オングストローム/秒(ヘキサセン
とヨウ素の合計成膜速度)であった。ついで、真空チャ
ンバー内でマスクを取り付け、該薄膜表面の一部に金電
極を設けた。得られた薄膜の面内方向の電導度は65S
/cmであった。また、基板の電極と薄膜表面の電極間の
抵抗から求めた電導度は10-5S/cmであった。これら
の結果から求めた電導度異方性は6.5×106 であっ
た。
Example 3 Hexacene and iodine were vacuum-deposited (co-deposited) by the MBE method on a quartz glass substrate partially provided with a gold electrode to give a film thickness of 1
A thin film was formed at 000 angstrom. The conditions for forming this thin film were as follows: atmosphere pressure 2 × 10 −7 Torr, substrate temperature 2
The film forming rate was 0 ° C. and the film forming rate was 10 Å / sec (total film forming rate of hexacene and iodine). Then, a mask was attached in the vacuum chamber, and a gold electrode was provided on a part of the surface of the thin film. The obtained thin film has an in-plane conductivity of 65 S.
It was / cm. Further, the electric conductivity obtained from the resistance between the electrode on the substrate and the electrode on the surface of the thin film was 10 −5 S / cm. The electrical conductivity anisotropy obtained from these results was 6.5 × 10 6 .

【0018】実施例4 部分的に金薄膜を設けたポリエステルフィルムを基板と
して、ペンタセンを真空蒸着法で膜厚1000オングス
トロームの薄膜を作製した。この薄膜の成長速度は20
オングストローム/秒、基板温度は5℃、雰囲気圧力は
1×10-5Torrであった。ついで、該薄膜表面に金
電極(四端子)を設けた。該薄膜にヨウ素蒸気を接触さ
せてドーピングを行なった。得られた薄膜の構造をX線
回折法(CuKα)で評価した結果、(00n)面(n
=1〜13、C0=19.5オングストローム)の回折
ピークが認められた。この(001)面の回折ピーク強
度は25kcpsであった。該ペンタセン薄膜の面内方
向の電導度は60S/cmであり、垂直方向の電導度は1
-6S/cmであった。したがって、この薄膜の電導度異
方性は107 であった。
Example 4 Using a polyester film partially provided with a gold thin film as a substrate, pentacene was formed into a thin film having a film thickness of 1000 angstrom by a vacuum deposition method. The growth rate of this thin film is 20
The substrate temperature was 5 ° C., and the atmospheric pressure was 1 × 10 −5 Torr. Then, a gold electrode (four terminals) was provided on the surface of the thin film. Doping was performed by bringing iodine vapor into contact with the thin film. The structure of the obtained thin film was evaluated by an X-ray diffraction method (CuKα), and as a result, the (00n) plane (n
= 1 to 13 and C 0 = 19.5 angstroms) were observed. The diffraction peak intensity of this (001) plane was 25 kcps. The pentacene thin film has an in-plane conductivity of 60 S / cm and a vertical conductivity of 1
It was 0 -6 S / cm. Therefore, the electrical conductivity anisotropy of this thin film was 10 7 .

【0019】[0019]

【発明の効果】本発明の異方性導電性薄膜は、従来の異
方性導電材料と異なり積層や混練の操作が必要ないた
め、製造が容易であり、しかも、薄膜として高い電導度
異方性を有するため、電子材料としてエレクトロニク
ス、オプトエレクトロニクスなどの分野に応用できるの
で工業上有用である。
EFFECT OF THE INVENTION The anisotropic conductive thin film of the present invention, unlike the conventional anisotropic conductive material, does not require the operations of lamination and kneading, and is therefore easy to manufacture and has a high conductivity as a thin film. Since it has properties, it is industrially useful because it can be applied to the fields of electronics, optoelectronics, etc. as an electronic material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 縮合ベンゼン環の数が4以上13以下で
ある縮合多環芳香族化合物薄膜に電子授与性分子がドー
ピングされ、電導度異方性が104 以上1010以下であ
ることを特徴とする異方性導電性有機薄膜。
1. A condensed polycyclic aromatic compound thin film having 4 or more and 13 or less condensed benzene rings is doped with an electron-donating molecule and has an electrical conductivity anisotropy of 10 4 or more and 10 10 or less. Anisotropic conductive organic thin film.
JP23372591A 1991-08-22 1991-08-22 Organic thin film having anisotropic electrical conductivity Withdrawn JPH0551330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23372591A JPH0551330A (en) 1991-08-22 1991-08-22 Organic thin film having anisotropic electrical conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23372591A JPH0551330A (en) 1991-08-22 1991-08-22 Organic thin film having anisotropic electrical conductivity

Publications (1)

Publication Number Publication Date
JPH0551330A true JPH0551330A (en) 1993-03-02

Family

ID=16959594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23372591A Withdrawn JPH0551330A (en) 1991-08-22 1991-08-22 Organic thin film having anisotropic electrical conductivity

Country Status (1)

Country Link
JP (1) JPH0551330A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079163A (en) * 2003-08-28 2005-03-24 Asahi Kasei Corp Semiconductor device
JP2006273723A (en) * 2005-03-28 2006-10-12 National Institute Of Advanced Industrial & Technology Zeolite including molecular assembly of one dimensionally arranged 1,2,4,5-tetra-substituted benzene or straight line-formed polynuclear aromatic hydrocarbon obtained by ring fusion of 2-5 benzene rings, and method for producing the same
US20120153687A1 (en) * 2010-06-08 2012-06-21 Yohei Kume Bed, and combining method and separating method of bed
US8474075B2 (en) 2009-03-31 2013-07-02 Panasonic Corporation Bed
WO2014006912A1 (en) 2012-07-05 2014-01-09 パナソニック株式会社 Movable head
US8677523B2 (en) 2010-06-21 2014-03-25 Panasonic Corporation Bed and wheelchair
US8718859B2 (en) 2009-07-30 2014-05-06 Panasonic Corporation Traveling vehicle and bed
EP2881098A1 (en) 2013-11-29 2015-06-10 Panasonic Intellectual Property Management Co., Ltd. Combination bed
US9414981B2 (en) 2011-03-16 2016-08-16 Panasonic Intellectual Property Management Co., Ltd. Bed and separating method of the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079163A (en) * 2003-08-28 2005-03-24 Asahi Kasei Corp Semiconductor device
JP4634020B2 (en) * 2003-08-28 2011-02-16 旭化成株式会社 Semiconductor layer for vertical field effect transistor, vertical field effect transistor
JP2006273723A (en) * 2005-03-28 2006-10-12 National Institute Of Advanced Industrial & Technology Zeolite including molecular assembly of one dimensionally arranged 1,2,4,5-tetra-substituted benzene or straight line-formed polynuclear aromatic hydrocarbon obtained by ring fusion of 2-5 benzene rings, and method for producing the same
JP4534017B2 (en) * 2005-03-28 2010-09-01 独立行政法人産業技術総合研究所 One-dimensional array of 1,2,4,5-tetra-substituted benzene or a polynuclear aromatic hydrocarbon molecularly encapsulated zeolite having a linear shape in which 2 to 5 benzene rings are condensed and a method for producing the same
US8474075B2 (en) 2009-03-31 2013-07-02 Panasonic Corporation Bed
US8718859B2 (en) 2009-07-30 2014-05-06 Panasonic Corporation Traveling vehicle and bed
US20120153687A1 (en) * 2010-06-08 2012-06-21 Yohei Kume Bed, and combining method and separating method of bed
US8677523B2 (en) 2010-06-21 2014-03-25 Panasonic Corporation Bed and wheelchair
US9414981B2 (en) 2011-03-16 2016-08-16 Panasonic Intellectual Property Management Co., Ltd. Bed and separating method of the same
WO2014006912A1 (en) 2012-07-05 2014-01-09 パナソニック株式会社 Movable head
US9004508B2 (en) 2012-07-05 2015-04-14 Panasonic Corporation Movable bed
EP2881098A1 (en) 2013-11-29 2015-06-10 Panasonic Intellectual Property Management Co., Ltd. Combination bed

Similar Documents

Publication Publication Date Title
Minakata et al. Highly ordered and conducting thin film of pentacene doped with iodine vapor
Rong et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells
US5399502A (en) Method of manufacturing of electrolumineschent devices
Sessolo et al. Photovoltaic devices employing vacuum-deposited perovskite layers
KR101868126B1 (en) High energy density electrostatic capacitor
Minakata et al. Electrical properties of highly ordered and amorphous thin films of pentacene doped with iodine
JPH0551330A (en) Organic thin film having anisotropic electrical conductivity
Socol et al. Organic heterostructures obtained on ZnO/Ag/ZnO electrode
JPH05313210A (en) Thin-film laminated device
KR20150079533A (en) Preparing method of reduced graphene oxide film, reduced graphene oxide film prepared by the same, and graphene electrode including the reduced graphene oxide film
Hwang et al. Sputtered PbI2 with Post‐Processing for Perovskite Solar Cells
US5151478A (en) Highly conducting organic polymer thin film coatings
Miao et al. From 1D to 3D: Fabrication of CH3NH3PbI3 Perovskite Solar Cell Thin Films from (Pyrrolidinium) PbI3 via Organic Cation Exchange Approach
Burghard et al. Perylene-derivative Langmuir-Blodgett films for use as ultrathin charge-transport barriers
JPH0581921A (en) Electric conductive organic thin film
KR101823523B1 (en) Graphene quantum-dot thin film, preparing method of the same, and thin film transistor using the same
Kato et al. Preparation of RhO2 thin films by reactive sputtering and their characterizations
JP2864427B2 (en) Highly oriented organic thin film
JPH05274919A (en) Conductive organic thin film
JP2914518B2 (en) Oriented conductive organic thin film
Yudasaka et al. Highly oriented thin films of hepta‐(tetrathiafulvalene) pentaiodide formed by double‐source evaporation of tetrathiafulvalene and iodine
Liu et al. Synthesis and characterization of aluminum–polyaniline thin films and membranes
JPH02259725A (en) Liquid crystal display device
KR20210053538A (en) Preparation method of transition metal chalcogenide thin film, and photo diode comprising transition metal chalcogenide thin film prepared by the method
JP3074209B2 (en) Thin film laminated device with substrate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112