JPH0551218A - Production of ferrite powder by spray roasting and its device - Google Patents

Production of ferrite powder by spray roasting and its device

Info

Publication number
JPH0551218A
JPH0551218A JP3235691A JP23569191A JPH0551218A JP H0551218 A JPH0551218 A JP H0551218A JP 3235691 A JP3235691 A JP 3235691A JP 23569191 A JP23569191 A JP 23569191A JP H0551218 A JPH0551218 A JP H0551218A
Authority
JP
Japan
Prior art keywords
roasting
spray
ferrite powder
quencher
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3235691A
Other languages
Japanese (ja)
Other versions
JP2962891B2 (en
Inventor
Kenji Kawahito
健二 川人
Katsunari Matsuzaki
捷成 松崎
Tatsunori Sunakawa
辰則 砂川
Junji Omori
惇二 大森
Yoshitaka Yamana
芳隆 山名
Shoichi Osada
昭一 長田
Yoshiaki Kinoshita
芳明 木下
Masakazu Ishikawa
雅一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Corp
Nittetsu Kakoki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nittetsu Kakoki KK filed Critical Nippon Steel Corp
Priority to JP3235691A priority Critical patent/JP2962891B2/en
Publication of JPH0551218A publication Critical patent/JPH0551218A/en
Application granted granted Critical
Publication of JP2962891B2 publication Critical patent/JP2962891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a multliple oxide low in impurities, with the composition stabilized and having almost the same metallic elements as the raw material in one stage from the multicomponent raw material contg. a high-vapor pressure substance by spray roasting. CONSTITUTION:A liq. mixture of metal chlorides is spray-roasted to produce a ferrite powder consisting of multiple oxide fine particles, and the deviation of the Zn content of the powder is reduced. In this case, the particle size of the sprayed liq. droplets is controlled to <=200mum, and the droplets are cooled to <=400 deg.C within 10sec immediately after spray roasting to obtain the powder. The powder is held above the dew point and recovered. Consequently, the composition adjusting stage after roasting which has been carried out is omitted, the load of the dechlorination stage is reduced, the process is simplified, the cost is drastically reduced, and the quality is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は噴霧焙焼法によるフェラ
イト粉体の製造方法及びその装置に関し、更に詳しく
は、フェライトを構成する金属の塩化物を含む溶液を噴
霧焙焼して一気にフェライト粉体を製造する方法及びそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ferrite powder by a spray roasting method and an apparatus therefor, and more specifically, a solution containing a chloride of a metal constituting ferrite is spray roasted to obtain a ferrite powder at a stretch. The present invention relates to a method of manufacturing a body and an apparatus thereof.

【0002】[0002]

【従来の技術】従来、噴霧焙焼法を用いて複合酸化物の
製造法としては、金属の硝酸塩、塩化物あるいはアルコ
キシドなどの化合物の混合水溶液、あるいは混合有機溶
液を燃焼火炎中に直接噴霧して熱分解焙焼する方法があ
る。さらには、蒸気圧の比較的高い原料物質を含む複合
酸化物にあっては、蒸気圧の低い原料のみ所定のモル比
で混合してから、酸化焙焼し、蒸気圧の高いものについ
ては、後から酸化物粉体の形で添加混合して焼成し、所
定の組成の複合酸化物とする方法として特開昭55−1
44421号公報が知られている。また、特開平1−1
92708号公報で知られているように、還元性物質を
殆ど、または全く含有しない高温度の高速ガス流と、原
料金属塩化物の混合溶液を噴霧混合して、急速に所定の
焙焼温度に保つと共に、原料並びに分解生成物の流れを
熱ガス流と並流的に同伴させつゝ金属塩化物混合物の分
解を行う、いわゆる並流焙焼によって、一工程で原料の
金属元素比とほぼ同じ金属元素比をもつ、不純物の少な
く、且つ組成の安定した複合酸化物を得ることの出来る
噴霧焙焼法や流動層を用いる方法などが提案されてい
る。
2. Description of the Related Art Conventionally, as a method for producing a complex oxide by using a spray roasting method, a mixed aqueous solution of a compound such as metal nitrate, chloride or alkoxide, or a mixed organic solution is directly sprayed into a combustion flame. There is a method of pyrolyzing and roasting. Furthermore, in a complex oxide containing a raw material having a relatively high vapor pressure, only raw materials having a low vapor pressure are mixed at a predetermined molar ratio, and then oxidatively roasted. As a method of adding and mixing in the form of an oxide powder and firing the mixture to form a composite oxide having a predetermined composition, the method is disclosed in JP-A-55-1.
Japanese Patent No. 44421 is known. In addition, JP-A 1-1
As is known from Japanese Patent No. 92708, a high-temperature high-speed gas stream containing little or no reducing substance and a mixed solution of a raw material metal chloride are spray-mixed to rapidly reach a predetermined roasting temperature. The so-called co-current roasting, in which the raw material and the decomposition products are entrained in parallel with the hot gas flow to decompose the metal chloride mixture while maintaining the same, the metal element ratio of the raw material is almost the same in one step. There have been proposed methods such as a spray roasting method and a method using a fluidized bed, which can obtain a composite oxide having a metal element ratio, a small amount of impurities, and a stable composition.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
特開昭55−144421号公報にあっては、焙焼と混
合、再度の焙焼と工程が増える上、噴霧焙焼の特徴であ
る分子状態での混合での処理が可能な利点が失われるこ
と、更には、直接火炎中に水溶液を噴霧する方法は、燃
焼炎が急冷されるため、微細な炭素粒子の生成による不
純物の増大、炭化物の生成、火炎の不安定に起因する生
成物の品質の不均一性等の欠点がある。また、特開平1
−192708号公報にあっては、焙焼時の液滴粒径が
成分偏差に与える影響及び、焙焼後の粉体の熱履歴を充
分フォロ−していないため、高蒸気圧物質の再塩化や吸
着塩化水素による塩化のため亜鉛の偏差が大きくなると
いう欠点がある。
However, in the above-mentioned JP-A-55-144421, the roasting and mixing, the re-roasting and the number of steps are increased, and the molecular state characteristic of spray roasting is increased. However, the method of spraying the aqueous solution directly into the flame causes the combustion flame to be rapidly cooled, resulting in an increase in impurities due to the formation of fine carbon particles and the formation of carbides. There are drawbacks such as non-uniformity of product quality due to generation and instability of flame. In addition, JP-A-1
In Japanese Patent Laid-Open No. 192708, re-chlorination of a high vapor pressure substance is performed because the influence of the droplet size during roasting on the component deviation and the heat history of the powder after roasting are not sufficiently followed. Also, there is a drawback that the deviation of zinc becomes large due to chlorination by adsorbed hydrogen chloride.

【0004】[0004]

【課題を解決するための手段】本発明はこのような欠点
に対して、高蒸気圧物質を含む多成分の原料を用いて
も、一工程で噴霧焙焼後速やかにクエンチすることで、
高温塩素系ガス中での亜鉛スピネルの再塩化を減少さ
せ、回収粉中のZnO偏差を小さくすることが出来る噴
霧焙焼法及び装置を提供せんとするものである。本発明
の要旨とするところは、(1)金属塩化物の混合液を噴
霧焙焼によって複合酸化物微粒子からなるフェライト粉
体中のZnの偏差を少なくする方法において、噴霧液滴
粒径を200μm以下とし、かつ、噴霧焙焼後、直ちに
10秒以内で400℃以下に冷却すると共に、冷却後焙
焼粉を露点以上に保持しながら回収する噴霧焙焼法によ
るフェライト粉体の製造方法、(2)金属塩化物の混合
液を噴霧焙焼によって複合酸化物微粒子からなるフェラ
イト粉体中のZnの偏差を少なくするフェライト粉体の
製造装置において、焙焼炉本体の頂部に火炎バ−ナ−を
設け、該火炎バ−ナ−を囲繞する原料噴霧ノズルを噴霧
液滴粒径を200μm以下で噴霧可能なノズルとし、該
焙焼炉本体の下部に連設したクエンチャ−を配設し、該
クエンチャ−頂部には噴霧焙焼後、直ちに急冷可能なク
エンチャ−ノズルを焙焼炉の出側、円周方向に配設した
噴霧焙焼によるフェライト粉体の製造装置、並びに焙焼
炉本体と該焙焼炉本体に近接して配設したクエンチャ−
を下部で連結し、該クエンチャ−下部には噴霧焙焼後直
ちに急冷可能なクエンチャ−ノズルを円周方向に配設し
た噴霧焙焼によるフェライト粉体の製造装置にある。
In order to solve the above drawbacks, the present invention provides rapid quenching after spray roasting in one step even if a multi-component raw material containing a high vapor pressure substance is used.
An object of the present invention is to provide a spray roasting method and apparatus capable of reducing re-chlorination of zinc spinel in a high temperature chlorine gas and reducing ZnO deviation in recovered powder. The gist of the present invention resides in (1) a method of reducing deviation of Zn in a ferrite powder composed of fine composite oxide particles by spray roasting a mixed solution of a metal chloride, and a spray droplet diameter of 200 μm. The method for producing a ferrite powder by the spray roasting method, in which the temperature is set to the following, and immediately after the spray roasting, the roasted powder is cooled to 400 ° C. or lower within 10 seconds and the roasted powder after cooling is collected while keeping the dew point or higher, ( 2) In a ferrite powder manufacturing apparatus for reducing deviation of Zn in ferrite powder composed of fine composite oxide particles by spray roasting a mixed solution of metal chlorides, a flame burner is provided at the top of the roasting furnace main body. Is provided, the raw material spray nozzle surrounding the flame burner is a nozzle capable of spraying with a spray droplet diameter of 200 μm or less, and a quencher arranged continuously at the bottom of the roasting furnace main body is provided, Quencher After spray roasting, a quencher nozzle that can be rapidly cooled immediately after spray roasting is arranged on the exit side of the roasting furnace, in a circumferential direction, and is an apparatus for producing ferrite powder by spray roasting, as well as the roasting furnace body and the roasting furnace. Quencher placed close to the furnace body
In the apparatus for producing ferrite powder by spray roasting, a quencher nozzle that can be rapidly cooled immediately after spray roasting is arranged in the circumferential direction.

【0005】以下、本発明について図面に従って詳細に
説明する。図1は本発明及び従来技術における焙焼時の
粒子の熱履歴概念図である。すなわち、Fe23,Mn
O,ZnOを主体とする三元系複合酸化物によるフェラ
イト焼結体の製造工程において、塩化鉄、塩化亜鉛及び
塩化マンガンを含有する混合水溶液を焙焼する場合にお
いて、その焙焼時における時間と粒子温度の関係を示し
たものである。この図からもわかるように、噴霧液滴粒
径が大きいと、粒子温度732℃以上のZnCl2沸点
以上での乾燥時間が長くなり、亜鉛スピネル反応が進む
前にZnCl2ガスとして飛散し、これまた亜鉛偏差が
増大することになる。また、並流焙焼法において、高温
塩素及び塩化水素ガス中に長時間、回収粉が存在すると
亜鉛スピネルが再塩化し、そのために亜鉛偏差が増大す
る。更には、焙焼後冷却した後吸着塩化水素が露点以下
で水和されると、急速に亜鉛を塩化物化することが確認
された。このことが従来の例えば並流焙焼法並びにル
スナ−法において、明確に表れている。すなわち、ル
スナ−法にあっては、本発明法と比較して噴霧液滴
粒径の大きいものを使用しているものであって、この場
合には粒子温度732℃以上のZnCl2沸点以上での
時間t3が長くなり、粒子温度800℃での亜鉛スピネ
ル完結域に到達する前にZnCl2ガスが粉体である酸
化鉄、酸化マンガンと反応することなく飛散してしま
い、更に焙焼後冷却過程においても、時間t3を長くと
るとその間に亜鉛スピネルが再塩化し、結局亜鉛偏差が
極めて増大することになる。また、更に従来の並流焙焼
法においても同様であって、本発明法と比較するに、
噴霧液滴粒径が大きいことからZnCl2のガス化域及
び亜鉛スピネル反応の完結するまでの滞留時間が長く、
そのために、亜鉛スピネル完結域に到達する前にZnC
2がガスとして飛散し、また冷却後も亜鉛スピネルが
再塩化し、ルスナ−法に比べ亜鉛偏差は少ないものの亜
鉛偏差の増大を招くことになる。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a conceptual diagram of the thermal history of particles during roasting in the present invention and the prior art. That is, Fe 2 O 3 , Mn
In the manufacturing process of a ferrite sintered body using a ternary complex oxide mainly containing O and ZnO, when roasting a mixed aqueous solution containing iron chloride, zinc chloride and manganese chloride, the time during roasting and It shows the relationship of particle temperature. As can be seen from this figure, if the atomized droplet size is large, the drying time at the ZnCl 2 boiling point or higher at a particle temperature of 732 ° C. or more becomes long, and the ZnSpin 2 gas scatters before the zinc spinel reaction proceeds. In addition, the zinc deviation increases. Further, in the co-flow roasting method, when the recovered powder is present in the high temperature chlorine and hydrogen chloride gas for a long time, the zinc spinel is re-salted, which increases the zinc deviation. Further, it was confirmed that, when the adsorbed hydrogen chloride was hydrated below the dew point after roasting and cooling, it rapidly chlorinated zinc. This is clearly shown in the conventional co-flow roasting method and Rusner method. That is, in the Lusner method, one having a larger atomized droplet diameter than that of the method of the present invention is used. In this case, at a particle temperature of 732 ° C. or higher and a ZnCl 2 boiling point or higher, The time t 3 becomes longer and the ZnCl 2 gas scatters without reacting with the powdered iron oxide and manganese oxide before reaching the zinc spinel completion region at the particle temperature of 800 ° C., and after further roasting Even in the cooling process, if the time t 3 is increased, the zinc spinel is re-chlorinated during that time, and eventually the zinc deviation greatly increases. Further, the same is true in the conventional cocurrent roasting method, and in comparison with the method of the present invention,
Since the atomized droplet size is large, the residence time until the completion of the ZnCl 2 gasification zone and the zinc spinel reaction is long,
Therefore, before reaching the zinc spinel complete region, ZnC
L 2 scatters as a gas, and zinc spinel is re-chlorinated even after cooling, which leads to an increase in zinc deviation although the zinc deviation is smaller than in the Lusner method.

【0006】そこで、これらの亜鉛偏差の増大を防止す
るためにも、噴霧液滴粒径を小さくする必要があるこ
と、及び焙焼後直ちに冷却すること、並びに回収粉を露
点温度以上に保持する必要がある。そしてこれらの条件
を達成するために、先ず第一に噴霧液滴粒径について図
2に示す。図2は最大粒子径と液組成のZnO偏差との
関係を示す曲線図である。この図に示すように、最大粒
子径200μmを超えると急激に液組成のZnO偏差が
増大することがわかる。従って、偏差を小さくするため
には噴霧液滴最大粒子径を200μm以下とする必要が
あることを確認した。次に、本発明の最大の特徴とする
噴霧焙焼後の冷却時間について図3に示す。すなわち、
図3は噴霧焙焼からクエンチまでの時間と液組成のZn
O偏差との関係を示す直線図である。この図に示すよう
に、噴霧焙焼からクエンチまでの時間が長くなればなる
程、それに比例して液組成のZnO偏差の増大すること
がわかる。従って、噴霧焙焼後速やかに400℃以下に
冷却する必要がある。この時間は60秒以下、好ましく
は10秒で冷却完了することが必須である。更に回収粉
を露点温度以上に保持することが必要である。
Therefore, in order to prevent an increase in these zinc deviations, it is necessary to reduce the spray droplet size, cool immediately after roasting, and keep the recovered powder at a dew point temperature or higher. There is a need. In order to achieve these conditions, first, FIG. 2 shows the atomized droplet size. FIG. 2 is a curve diagram showing the relationship between the maximum particle size and the ZnO deviation of the liquid composition. As shown in this figure, it can be seen that the ZnO deviation of the liquid composition rapidly increases when the maximum particle diameter exceeds 200 μm. Therefore, in order to reduce the deviation, it was confirmed that the maximum particle size of spray droplets needs to be 200 μm or less. Next, FIG. 3 shows the cooling time after spray roasting, which is the greatest feature of the present invention. That is,
Figure 3 shows the time from spray roasting to quenching and the composition of Zn.
It is a linear diagram which shows the relationship with O deviation. As shown in this figure, it can be seen that the longer the time from spray roasting to quenching, the greater the ZnO deviation of the liquid composition increases in proportion thereto. Therefore, it is necessary to immediately cool to 400 ° C. or lower after spray roasting. It is essential that the cooling is completed within 60 seconds, preferably 10 seconds. Further, it is necessary to keep the recovered powder at a dew point temperature or higher.

【0007】これらの条件を達成するために用いられる
装置の一例について図4に示す。符号1は焙焼炉本体で
あり、通常竪長円筒型の耐火物を内張りした炉が好適で
ある。2はクエンチャ−であって、焙焼炉本体1と連結
された構造となっており、焙焼後の直ちに冷却可能な構
造を構成している。一方原料塩化物の混合液を原料噴霧
ノズル3を焙焼炉本体1の炉頂部円周方向に火炎バ−ナ
−4を囲繞するように配設している。このように火炎バ
−ナ−4と原料噴霧ノズル3を並流的に配設することに
よって、火炎バ−ナ−に直接原料噴霧ノズルからの水溶
液が噴霧されることはなく、そのため燃焼炎が急冷され
ることはなく、火炎バ−ナ−の周囲から並流的に原料混
合液が燃焼中の火炎と混合することになる。これにより
混合を良くするための高速のガス流が得られ、また、原
料塩化物の混合液は噴霧ノズル3から炉内に高速高温ガ
ス中に噴霧される。この際の噴霧液滴最大粒径は上記の
ように200μm以下、好ましくは5〜150μmの範
囲である。また、液滴の粒径は常温における値である。
An example of a device used to achieve these conditions is shown in FIG. Reference numeral 1 is a roasting furnace main body, and a furnace having a vertical cylindrical refractory lined therein is suitable. A quencher 2 is connected to the roasting furnace main body 1 and has a structure capable of being immediately cooled after roasting. On the other hand, a mixed solution of a raw material chloride is arranged by a raw material spray nozzle 3 so as to surround a flame burner-4 in the circumferential direction of the top of the roasting furnace main body 1. By thus arranging the flame burner 4 and the raw material spray nozzle 3 in a co-current manner, the aqueous solution from the raw material spray nozzle is not directly sprayed to the flame burner, so that the combustion flame is generated. It is not rapidly cooled, and the raw material mixed liquid is mixed with the burning flame in a cocurrent manner from around the flame burner. As a result, a high-speed gas flow for improving mixing is obtained, and the mixed liquid of the raw material chloride is sprayed from the spray nozzle 3 into the high-speed high-temperature gas in the furnace. The maximum particle size of the sprayed droplets at this time is 200 μm or less as described above, and preferably in the range of 5 to 150 μm. The particle size of the liquid droplet is a value at room temperature.

【0008】噴霧された混合液は高温の旋回気流と急速
に混合し、蒸発潜熱と分解熱等によって、総合的に所定
の反応温度に保持され、金属塩の分解が行なわれる。こ
の際の反応温度は600〜1000℃好ましくは750
〜900℃で行われる。600℃未満ではフェライトを
目的とするスピネル構造への結晶化が進み難くなること
及び滞留時間を長くしなければならず、長くすれば亜鉛
スピネルが再塩化して、亜鉛偏差が増大する。また、1
000℃を超えると原料に揮発性の物質が含まれると
き、気化が速く、気相で分解して生成する微細粒子の再
結合が遅れて、最終生成物の組成変動や、分子レベルで
の結合性が劣って問題がある。
The sprayed mixed liquid is rapidly mixed with a high-temperature swirling airflow, and is kept at a predetermined reaction temperature comprehensively by the latent heat of vaporization and the heat of decomposition, whereby the metal salt is decomposed. The reaction temperature at this time is 600 to 1000 ° C., preferably 750.
It is performed at ˜900 ° C. If the temperature is lower than 600 ° C., it becomes difficult to crystallize ferrite into a spinel structure for the purpose and the residence time must be lengthened. If it is lengthened, zinc spinel will be re-chlorinated and the zinc deviation will increase. Also, 1
When the temperature exceeds 000 ° C, when the raw material contains a volatile substance, vaporization is fast, and the recombination of fine particles generated by decomposing in the gas phase is delayed, resulting in composition fluctuation of the final product and binding at the molecular level. There is a problem with poor sex.

【0009】一方、滞留時間は前述のように、出来るだ
け短い方が良く、10秒以下好ましくは0.1〜5秒が
良い。このようにして焙焼炉で金属塩の分解が行われた
生成微粒子と高温ガスの混合物はクエンチャ−2で焙焼
炉と同様、クエンチャ−2の頂部円周方向にクエンチャ
−ノズル5を囲繞するように配設し、該クエンチャ−ノ
ズル5から水が噴出されて冷却され、サイクロン、電気
集塵機(図示せず)で生成微粒子がガスと分離され捕集
される。この際、クエンチャ−2においては、冷却後吸
着塩化水素が露点以下で水和されると、急速に亜鉛を塩
化物化することになる。これを回避するため、クエンチ
ャ−2内は露点温度以上に保持され、また、塩化水素は
常法により回収され回収酸として使用される。
On the other hand, the residence time is preferably as short as possible, as described above, 10 seconds or less, preferably 0.1 to 5 seconds. In this way, the mixture of the fine particles produced by the decomposition of the metal salt in the roasting furnace and the high temperature gas surrounds the quencher nozzle 5 in the top circumferential direction of the quencher-2 in the quencher-2 as in the roasting furnace. Water is ejected from the quencher nozzle 5 to be cooled, and the produced fine particles are separated from the gas by a cyclone and an electric dust collector (not shown) to be collected. At this time, in Quencher-2, if the adsorbed hydrogen chloride is hydrated below the dew point after cooling, zinc will be rapidly converted to chloride. In order to avoid this, the inside of the quencher-2 is maintained at a dew point temperature or higher, and hydrogen chloride is recovered by a conventional method and used as a recovered acid.

【0010】本発明の更に他の実施装置を図5に示す。
図5は基本的には図4と同じである。すなわち、図4と
同様、符号1は焙焼炉本体を示し、竪長円筒型の耐火物
を内張りした炉を用い、この焙焼炉本体1と並列的に近
接してクエンチャ−2を配設し、このクエンチャ−2
は、その下部で通路6を介して焙焼炉本体1の下部に連
結され、該クエンチャ−2下部には噴霧焙焼後直ちに急
冷可能なクエンチャ−ノズル5がクエンチャ−2の円周
方向に配設された構造からなる。一方原料である塩化物
混合液を噴霧する原料噴霧ノズル3は、焙焼炉本体1の
炉頂部円周方向に火炎バ−ナ−4を囲繞するように配設
されていることは図4と同じである。このように火炎バ
−ナ−4と原料噴霧ノズル3を並流的に配設することに
よって、火炎バ−ナ−に直接原料噴霧ノズルからの水溶
液が噴霧されることがないように構成されている。ま
た、焙焼された後の生成微粒子は熱ガスと分離され、微
粒子は下部から排出され、一方熱ガスは通路6を経てク
エンチャ−2の下部円周方向に配設されているクエンチ
ャ−ノズル5によって水が噴出されて直ちに冷却され、
上方より塩化水素として回収される。
Still another embodiment of the present invention is shown in FIG.
FIG. 5 is basically the same as FIG. That is, as in FIG. 4, reference numeral 1 indicates a roasting furnace main body, a furnace in which a vertical cylindrical refractory is lined is used, and a quencher-2 is arranged in parallel with the roasting furnace main body 1 in parallel. This quencher-2
Is connected to the lower part of the roasting furnace main body 1 through a passage 6 at the lower part thereof, and a quencher nozzle 5 capable of rapid cooling immediately after spray roasting is arranged in the circumferential direction of the quencher-2 at the lower part of the quencher-2. It consists of an established structure. On the other hand, as shown in FIG. 4, the raw material spray nozzle 3 for spraying the chloride mixed liquid as the raw material is arranged so as to surround the flame burner 4 in the circumferential direction of the furnace top portion of the roasting furnace main body 1. Is the same. By arranging the flame burner 4 and the raw material spray nozzle 3 in parallel in this manner, the aqueous solution from the raw material spray nozzle is not sprayed directly to the flame burner. There is. Further, the produced fine particles after roasting are separated from the hot gas, and the fine particles are discharged from the lower part, while the hot gas passes through the passage 6 and the quencher nozzle 5 arranged in the lower circumferential direction of the quencher-2. The water spurts out and is immediately cooled,
It is recovered as hydrogen chloride from above.

【0011】[0011]

【作用】本発明においては、噴霧焙焼後図1に示すよう
な亜鉛スピネル完結域温度である800℃から時間t1
という冷速(t1<t2<t3)で速やかにクエンチする
ことで高温塩素系ガス中での亜鉛スピネルの再塩化を減
少させることが出来、従って回収粉中のZnO偏差を極
めて小さくすることが出来る。また、噴霧液滴最大粒径
を従来の並流法並びにルスナ−法に比較して小さくする
ことで、ZnCl2のガス化域である粒子温度732℃
以上で、かつスピネル反応が完結するまでの滞留時間が
図1に示すt11の如く(t11<t22<t33)極めて短く
なり、ZnCl2ガスとしての亜鉛の分離量を減少させ
ることが出来、従って回収粉中のZnO偏差がクエンチ
速度と同様に極めて小さくすることが出来る。更には、
クエンチ後の露点域以上の温度に粉体を保持することに
よって、露点未満での塩化水素の水和された亜鉛が再度
塩化物化することを防止出来、従って、HClの吸着量
の少ない金属酸化物の回収が可能となるものである。
According to the present invention, the time from 800 ° C. is zinc spinel complete region temperature as shown in the spray roasting after Figure 1 t 1
By rapidly quenching at a low cooling rate (t 1 <t 2 <t 3 ), re-chlorination of zinc spinel in high temperature chlorine gas can be reduced, and therefore ZnO deviation in the recovered powder can be made extremely small. You can Further, by making the maximum diameter of atomized droplets smaller than those of the conventional co-current method and Lusner method, the particle temperature of 732 ° C. which is the gasification region of ZnCl 2
Or more, and residence time to the spinel reaction is complete is as t 11 shown in FIG. 1 (t 11 <t 22 < t 33) becomes extremely short, making it possible to reduce the amount of separation zinc as ZnCl 2 gas Therefore, the deviation of ZnO in the recovered powder can be made extremely small similarly to the quench rate. Furthermore,
By keeping the powder at a temperature above the dew point after quenching, it is possible to prevent the hydrated zinc of hydrogen chloride below the dew point from being re-chlorinated, and therefore a metal oxide with a low HCl adsorption amount. Will be recovered.

【0012】[0012]

【実施例】【Example】

実施例1 図4〜5に示す焙焼炉を用いて、原料混合液として24
%濃度のFeCl2を熱回収塔にて濃縮して40%とし
たFeCl2とMnCl2及びZnCl2を、酸化物換算
でFe23:MnO:ZnO=68.4:27.8:
3.8(wt%)に調整した水溶液を噴霧用空気を用い
て常温における液滴最大粒径50μm〜150μmの溶
液として噴霧した。焙焼温度を800℃とし、400℃
までのクエンチ時間を2秒、10秒、及び比較例として
60秒、4時間とした。その結果を図3に示すがクエン
チ時間60秒、4時間の比較例は本発明法に比べて、亜
鉛の偏差が極めて増大し、特に4時間置いた粉中には亜
鉛はほとんど存在しなかった。クエンチ後の電気収塵器
(EP)から得られた複合酸化物の組成を分析した結
果、その組成はFe23:MnO:ZnO=68.1:
27.7:4.2(wt%)なるものを得た。 実施例2 実施例1と同様の製造および原料混合液を用いて、噴霧
液滴最大径127μm、165μm、273μmと変え
て噴霧し、800℃焙焼温度で焙焼後直ちに2〜8秒で
400℃までクエンチした後の回収粉中ZnOの液組成
との偏差を調べたその結果を図2に示すが最大粒子径の
増大に伴い、亜鉛の偏差が増大し、特に、200μmを
超える273μmの場合の偏差は急激に増大し、三元系
複合酸化物の組成を維持することはできず実用化されな
い製品とされた。 実施例3 実施例1と同様の装置及び原料混合液を用いて、噴霧液
滴最大径200μmの間のものを噴霧し、800℃焙焼
温度で焙焼後直ちに2〜8秒で400℃までクエンチし
た後の回収粉をサイクロン、電気収塵機のいずれかで結
露点以上及び370℃で捕集、及び常温捕集を行い、そ
の結果HClの吸着量については、結露点以上の370
℃捕集の場合は0.25%と少なく常温捕集の場合は
0.95%の残留HClが見られた。
Example 1 Using the roasting furnace shown in FIGS.
FeCl 2 and MnCl 2 and ZnCl 2 were concentrated to 40% by concentrating FeCl 2 at a concentration of 40% in a heat recovery tower, and Fe 2 O 3 : MnO: ZnO = 68.4: 27.8:
The aqueous solution adjusted to 3.8 (wt%) was sprayed as a solution having a maximum droplet size of 50 μm to 150 μm at room temperature using spray air. Roasting temperature is 800 ℃, 400 ℃
To 2 seconds and 10 seconds, and as a comparative example, 60 seconds and 4 hours. The results are shown in FIG. 3. In the comparative example having a quench time of 60 seconds and 4 hours, the deviation of zinc was significantly increased as compared with the method of the present invention, and particularly, zinc was hardly present in the powder left for 4 hours. .. As a result of analyzing the composition of the composite oxide obtained from the electric dust collector (EP) after quenching, the composition was Fe 2 O 3 : MnO: ZnO = 68.1:
27.7: 4.2 (wt%) was obtained. Example 2 Using the same production and raw material mixture as in Example 1, the maximum spray droplet diameters were changed to 127 μm, 165 μm, and 273 μm, and spraying was performed, and immediately after roasting at 800 ° C. roasting temperature, 400 in 2 to 8 seconds. The deviation of ZnO from the liquid composition in the recovered powder after quenching to ℃ was investigated and the results are shown in Fig. 2. The deviation of zinc increases with the increase of the maximum particle size, especially in the case of 273 μm exceeding 200 μm. The deviation of No. 2 increased sharply, and the composition of the ternary complex oxide could not be maintained, and the product was not put to practical use. Example 3 Using a device and a raw material mixture similar to those in Example 1, a spray droplet having a maximum diameter of 200 μm was sprayed, and immediately after roasting at 800 ° C. roasting temperature, 2 to 8 seconds up to 400 ° C. The recovered powder after quenching was collected by a cyclone or an electric dust collector at a dew point or higher and at 370 ° C., and at room temperature. As a result, the amount of HCl adsorbed was 370 or higher than the dew point.
In the case of collection at ° C, it was as small as 0.25%, and in the case of collection at room temperature, residual HCl of 0.95% was observed.

【0013】[0013]

【発明の効果】以上述べたように、従来の並流法に比較
して、特に亜鉛を含む高蒸気圧物質の液組成に対する回
収粉の偏差が極めて少なくなり、かつ残留塩化水素、塩
化物も減少することも出来、そのために、従来行われて
いる焙焼後の成分調整工程や、脱Cl工程の負荷軽減、
更には工程の省略が可能となり、大幅なコストダウンと
共に品質の向上が可能となり、実用上の効果は極めて顕
著である。
As described above, compared with the conventional co-current method, the deviation of the recovered powder from the liquid composition of the high vapor pressure substance containing zinc is extremely small, and the residual hydrogen chloride and chloride are also reduced. It is also possible to reduce the load, and for that reason, the load of the conventional component adjustment process after roasting and dechlorination process is reduced,
Furthermore, the steps can be omitted, the cost can be greatly reduced, and the quality can be improved, and the practical effect is extremely remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び従来技術における焙焼時の粒子の熱
履歴概念図、
FIG. 1 is a conceptual diagram of thermal history of particles during roasting according to the present invention and the prior art,

【図2】最大粒子径と液組成のZnO偏差との関係を示
す曲線図、
FIG. 2 is a curve diagram showing the relationship between the maximum particle size and the ZnO deviation of the liquid composition,

【図3】噴霧焙焼からクエンチまでの時間と液組成のZ
nO偏差との関係を示す直線図
[Fig. 3] Time from spray roasting to quench and Z of liquid composition
Linear diagram showing the relationship with nO deviation

【図4】本発明の一例を示す実施装置、FIG. 4 is an implementation device showing an example of the present invention,

【図5】本発明の更に他の一例を示す実施装置である。FIG. 5 is an implementation device showing yet another example of the present invention.

【符号の説明】[Explanation of symbols]

1 焙焼炉本体、 2 クエンチャ−、 3 原料噴霧ノズル、 4 火炎バ−ナ−、 5 クエンチャ−ノズル、 6 通路。 1 roasting furnace main body, 2 quencher, 3 raw material spray nozzle, 4 flame burner, 5 quencher nozzle, 6 passages.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 砂川 辰則 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 大森 惇二 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 山名 芳隆 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 長田 昭一 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 木下 芳明 東京都日野市平山1−8−12 (72)発明者 石川 雅一 千葉県船橋市大穴南5−14−14 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tatsunori Sunagawa Inventor Tatsunori Sunagawa 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd. Technology Development Division (72) Inoue Souji 2-6 Otemachi, Chiyoda-ku, Tokyo -3 In Nippon Steel Co., Ltd. (72) Inventor Yoshitaka Yamana 1 Kimitsu, Kimitsu City, Chiba Prefecture In Japan Kimitsu Steel Co., Ltd. (72) Inventor, Shoichi Nagata 1 Kimitsu, Kimitsu City, Chiba Made in Japan (72) Inventor Yoshiaki Kinoshita 1-8-12 Hirayama, Hino-shi, Tokyo (72) Inventor Masakazu Ishikawa 5-14-14 Oananami Minami, Funabashi-shi, Chiba

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属塩化物の混合液を噴霧焙焼によって
複合酸化物微粒子からなるフェライト粉体中のZnの偏
差を少なくする方法において、噴霧液滴粒径を200μ
m以下とし、かつ、噴霧焙焼後直ちに10秒以内で40
0℃以下に冷却すると共に、冷却後焙焼粉を露点以上に
保持しながら回収することを特徴とする噴霧焙焼法によ
るフェライト粉体の製造方法。
1. A method of reducing the deviation of Zn in a ferrite powder composed of fine composite oxide particles by spray roasting a mixed solution of metal chlorides to obtain a spray droplet diameter of 200 μm.
m or less and 40 within 10 seconds immediately after spray roasting
A method for producing a ferrite powder by a spray roasting method, which comprises cooling to 0 ° C. or lower and recovering the roasted powder after cooling while maintaining the dew point or higher.
【請求項2】 金属塩化物の混合液を噴霧焙焼によって
複合酸化物微粒子からなるフェライト粉体中のZnの偏
差を少なくするフェライト粉体の製造装置において、焙
焼炉本体の頂部に火炎バ−ナ−を設け、該火炎バ−ナ−
を囲繞する原料噴霧ノズルを噴霧液滴粒径を200μm
以下で噴霧可能なノズルとし、該焙焼炉本体の下部に連
設したクエンチャ−を配設し、該クエンチャ−頂部には
噴霧焙焼後直ちに急冷可能なクエンチャ−ノズルを焙焼
炉の出側、円周方向に配設したことを特徴とする噴霧焙
焼法によるフェライト粉体の製造装置。
2. In a ferrite powder manufacturing apparatus for reducing deviation of Zn in ferrite powder composed of fine composite oxide particles by spray roasting a mixed solution of metal chlorides, a flame burner is provided at the top of a roasting furnace main body. -A burner is provided and the flame burner
The raw material spray nozzle surrounding the
A nozzle that can be sprayed below is provided with a quencher that is continuously provided at the bottom of the roasting furnace body. An apparatus for producing a ferrite powder by a spray roasting method, which is arranged in a circumferential direction.
【請求項3】 金属塩化物の混合液を噴霧焙焼によって
複合酸化物微粒子からなるフェライト粉体中のZnの偏
差を少なくするフェライト粉体の製造装置において、焙
焼炉本体の頂部に火炎バ−ナ−を設け、該火炎バ−ナ−
を囲繞する原料噴霧ノズルを噴霧液滴粒径を200μm
以下で噴霧可能なノズルとし、該焙焼炉本体と該焙焼炉
本体に近接して配設したクエンチャ−を下部で連結し、
該クエンチャ−下部には噴霧焙焼後直ちに急冷可能なク
エンチャ−ノズルを円周方向に配設したことを特徴とす
る噴霧焙焼法によるフェライト粉体の製造装置。
3. A ferrite powder manufacturing apparatus for reducing deviation of Zn in ferrite powder composed of fine composite oxide particles by spray roasting a mixed solution of metal chlorides, and a flame burner is provided at the top of a roasting furnace main body. -A burner is provided and the flame burner
The raw material spray nozzle surrounding the
The nozzle capable of spraying below, the roasting furnace main body and the quencher arranged in proximity to the roasting furnace main body are connected at the bottom,
An apparatus for producing ferrite powder by a spray roasting method, characterized in that a quencher nozzle capable of rapid cooling immediately after spray roasting is arranged in the lower part of the quencher in the circumferential direction.
JP3235691A 1991-08-23 1991-08-23 Method and apparatus for producing ferrite powder by spray roasting method Expired - Fee Related JP2962891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3235691A JP2962891B2 (en) 1991-08-23 1991-08-23 Method and apparatus for producing ferrite powder by spray roasting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3235691A JP2962891B2 (en) 1991-08-23 1991-08-23 Method and apparatus for producing ferrite powder by spray roasting method

Publications (2)

Publication Number Publication Date
JPH0551218A true JPH0551218A (en) 1993-03-02
JP2962891B2 JP2962891B2 (en) 1999-10-12

Family

ID=16989794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3235691A Expired - Fee Related JP2962891B2 (en) 1991-08-23 1991-08-23 Method and apparatus for producing ferrite powder by spray roasting method

Country Status (1)

Country Link
JP (1) JP2962891B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169146A (en) * 1986-01-22 1987-07-25 Fuji Photo Film Co Ltd Radiograph information reader
EP0850881A1 (en) * 1996-12-27 1998-07-01 Ruthner, Michael Johann, Dipl.Ing. Dr.mont. Process and apparatus for the preparation of iron oxides from solutions containing hydrochloric acid iron oxide chloride

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169146A (en) * 1986-01-22 1987-07-25 Fuji Photo Film Co Ltd Radiograph information reader
EP0850881A1 (en) * 1996-12-27 1998-07-01 Ruthner, Michael Johann, Dipl.Ing. Dr.mont. Process and apparatus for the preparation of iron oxides from solutions containing hydrochloric acid iron oxide chloride
US5911967A (en) * 1996-12-27 1999-06-15 Ruthner; Michael J. Process and apparatus for production of ferric oxide from iron chloride solutions

Also Published As

Publication number Publication date
JP2962891B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US3378335A (en) Preparation of mixed metal oxides by thermal decomposition of metal salts
US2296522A (en) Process of reducing metallic oxides
US9656879B2 (en) Method for treating titanium-containing feedstock
EP1664208B1 (en) Zinc oxide powder aggregates present in circular, ellipsoidal, linear and branched form
US3403001A (en) Process and apparatus for the production of metal oxides
US3510291A (en) Vapor phase conversion of molybdenum or tungsten compound to form the oxide or metal
JP3170094B2 (en) Method for producing titanium oxide
US4486400A (en) Vanadium oxide synthesis
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
EP0319857B1 (en) Method for producing titanium fluoride
JP2925733B2 (en) Method for preparing alkali chromates from chromium minerals
US3148027A (en) Vapor phase process for producing metal oxides
US3419351A (en) Vapor phase process for the conversion of metal halides into their oxides
JP2962891B2 (en) Method and apparatus for producing ferrite powder by spray roasting method
KR910001307B1 (en) Process for producing cemplex oxide to be used for producing ferrite
KR100868981B1 (en) Process and device for recovery of metal oxides
US4055621A (en) Process for obtaining titanium tetrachloride, chlorine and iron oxide from ilmenite
EP0208567A2 (en) Method and apparatus for preparing high-purity metallic silicon
US1884993A (en) Production of metallic magnesium
JPH06144834A (en) Production of electrically conductive zinc oxide
CN102808091A (en) Method for preparing high-purity titanium
US3560152A (en) Vapor phase production of titanium dioxide pigments
JPWO2020107074A5 (en)
JP3032098B2 (en) Soft ferrite raw material powder and method and apparatus for producing the same
JPS63259035A (en) Treatment of material containing by-product zn

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

LAPS Cancellation because of no payment of annual fees