JPH0551046B2 - - Google Patents

Info

Publication number
JPH0551046B2
JPH0551046B2 JP59223144A JP22314484A JPH0551046B2 JP H0551046 B2 JPH0551046 B2 JP H0551046B2 JP 59223144 A JP59223144 A JP 59223144A JP 22314484 A JP22314484 A JP 22314484A JP H0551046 B2 JPH0551046 B2 JP H0551046B2
Authority
JP
Japan
Prior art keywords
surge tank
passage
intake
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59223144A
Other languages
Japanese (ja)
Other versions
JPS61101618A (en
Inventor
Mitsuo Hitomi
Fumio Hitase
Yasuhiro Yuzuriha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59223144A priority Critical patent/JPS61101618A/en
Publication of JPS61101618A publication Critical patent/JPS61101618A/en
Publication of JPH0551046B2 publication Critical patent/JPH0551046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • F02B27/0221Resonance charging combined with oscillating pipe charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンの吸気装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an engine intake system.

(従来技術) エンジンの吸気装置に関し、実開昭56−74819
号公報に記載されている如く、各気筒の吸気側に
通じたサージタンク(レゾナンスチヤンバ)の上
流の通路長さを通路長さ可変部によりエンジン運
転状態に応じて変え、吸気の慣性効果を有効に利
用して過給をしようとする考え方は一般に知られ
ている。
(Prior art) Regarding the intake system of the engine, Utility Model No. 56-74819
As described in the publication, the length of the passage upstream of the surge tank (resonance chamber) leading to the intake side of each cylinder is changed according to the engine operating condition using a passage length variable section, thereby reducing the inertial effect of the intake air. The idea of effectively utilizing energy for supercharging is generally known.

ところで、各気筒の吸気側と上記通路長さ可変
部の上流側開放端との間にサージタンクがある
と、エンジンの高回転域では、このサージタンク
をそのまま吸気圧力波の反転に利用して吸気慣性
過給効果を得ることが考えられるが、エンジンの
低回転域側では、サージタンクの上流側での通路
長さを変えてもサージタンク内での吸気圧力波の
減衰が生じて通路長さ可変による吸気慣性効果の
有効利用が充分に図れない。
By the way, if there is a surge tank between the intake side of each cylinder and the upstream open end of the variable passage length section, this surge tank can be used as it is to reverse the intake pressure wave in the high speed range of the engine. It is possible to obtain an intake inertia supercharging effect, but in the low engine speed range, even if you change the passage length on the upstream side of the surge tank, the intake pressure wave in the surge tank will attenuate, causing the passage length to decrease. The intake inertia effect cannot be fully utilized by varying the height.

(発明の目的) 本発明は、サージタンクの容積を可変にすると
いう考え方をとつて、高回転域ではサージタンク
下流での吸気の反転を利用するとともに低回転域
ではサージタンク上流側の通路部を吸気慣性過給
に利用する際のサージタンク内での吸気圧力波の
減衰を極力抑えることができるようにしようとす
るものである。
(Purpose of the Invention) The present invention takes the idea of making the volume of the surge tank variable, and utilizes the reversal of intake air downstream of the surge tank in the high rotation range, and at the same time utilizes the passage on the upstream side of the surge tank in the low rotation range. The aim is to minimize the attenuation of intake pressure waves within the surge tank when the pump is used for intake inertia supercharging.

(発明の構成) 本発明においては、各気筒の吸気ポートがサー
ジタンクに連通し、このサージタンク上流にサー
ジタンクに吸気を導く通路長さが変更可能な通路
部を有し、エンジンの運転状態に応じて上記通路
部の通路長さを変え吸気ポートと前記通路部との
間で吸気の慣性過給を行なうようにしたエンジン
の吸気装置において、サージタンクの実質的容積
を変更する変更手段と、この変更手段を制御して
エンジン回転数が低い側においてサージタンクの
実質的容積を小さくする制御手段とを設け、サー
ジタンク上流側の通路部を吸気慣性過給に利用す
るとき、サージタンク内での吸気圧力波の減衰を
小さくするようにしている。
(Structure of the Invention) In the present invention, the intake port of each cylinder communicates with the surge tank, and upstream of the surge tank there is a passage section whose length can be changed to guide intake air to the surge tank, and the engine operating state In an engine intake system in which the passage length of the passage portion is changed according to the passage length to perform inertial supercharging of intake air between an intake port and the passage portion, the change means for changing the substantial volume of the surge tank; , a control means for controlling this changing means to reduce the substantial volume of the surge tank on the side where the engine speed is low, and when the passage section on the upstream side of the surge tank is used for intake inertia supercharging, the inside of the surge tank is This is to reduce the attenuation of the intake pressure wave.

(実施例) 以下、本発明の実施例を図面に基いて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図および第2図に示すエンジンの吸気装置
において、1は4気筒のエンジン本体であり、各
気筒2の吸気ポート3とサージタンク4とがそれ
ぞれタンク下流通路5にて連通し、サージタンク
4とその上流のレゾナンスチヤンバ6とがスロツ
トルバルブ7を介装したタンク上流通路8にて連
通している。このタンク上流通路8は、スロツト
ルバルブ7の上流側で通路長さの短い短通路9と
通路長さの長い長通路10とに分岐してレゾナン
スチヤンバ6に接続されていて、短通路9にその
通路を開閉する開閉バルブ11が介装されてい
る。
In the engine intake system shown in FIGS. 1 and 2, 1 is a four-cylinder engine main body, and an intake port 3 of each cylinder 2 and a surge tank 4 communicate with each other through a tank downstream passage 5. 4 and a resonance chamber 6 upstream thereof communicate through a tank upstream passage 8 in which a throttle valve 7 is interposed. This tank upstream passage 8 branches into a short passage 9 with a short passage length and a long passage 10 with a long passage length on the upstream side of the throttle valve 7, and is connected to the resonance chamber 6. An opening/closing valve 11 is interposed in the passageway 9 to open and close the passage.

そうして、サージタンク4には、タンク下流通
路5とタンク上流通路8との連通状態を常時確保
してタンクの実質的容積を変更可能な容積変更バ
ルブ12が設けられている。つまり、この容積変
更バルブ12は、サージタンク4に対し、バルブ
回転軸の片側にタンク下流通路5とタンク上流通
路8の開口が臨むように支持され、バルブ本体の
周縁がサージタンク4の内面に当接してサージタ
ンク全容積を二分し、上記両通路9,10が連通
しているサージタンク容積を縮小する閉位置と、
バルブ本体の周縁がサージタンク4の内面から離
れてサージタンク全容積が上記両通路9,10に
対して連通する開位置との間で回動をするように
なされている。
The surge tank 4 is provided with a volume change valve 12 that can change the substantial volume of the tank by always ensuring communication between the tank downstream passage 5 and the tank upstream passage 8. That is, this volume change valve 12 is supported with respect to the surge tank 4 so that the openings of the tank downstream passage 5 and the tank upstream passage 8 face on one side of the valve rotation axis, and the peripheral edge of the valve body faces the inner surface of the surge tank 4. a closed position in which the surge tank total volume is divided into two by coming into contact with the surge tank, thereby reducing the volume of the surge tank in which both the passages 9 and 10 communicate with each other;
The valve body is configured to rotate between an open position where the peripheral edge of the valve body is separated from the inner surface of the surge tank 4 and the entire volume of the surge tank is communicated with both the passages 9 and 10.

そして、上記開閉バルブ11および容積変更バ
ルブ12には、それぞれバルブを回動せしめるア
クチユエータ13,14が取り付けられていて、
この両アクチユエータ13,14にエンジン回転
数を検出するエンジン回転数センサ15からの信
号を受けて作動制御信号を出力する制御手段16
が接続されている。なお、第1図および第2図に
おいて、17は排気通路18が接続された排気ポ
ート、19は吸気ポート3を開閉する吸気バル
ブ、20は排気ポート17を開閉する排気バル
ブ、21は気筒2に嵌挿されたピストンである。
Actuators 13 and 14 are attached to the opening/closing valve 11 and the volume change valve 12, respectively, for rotating the valves.
Control means 16 receives a signal from an engine rotation speed sensor 15 that detects the engine rotation speed and outputs an operation control signal to both actuators 13 and 14.
is connected. In FIGS. 1 and 2, 17 is an exhaust port connected to the exhaust passage 18, 19 is an intake valve that opens and closes the intake port 3, 20 is an exhaust valve that opens and closes the exhaust port 17, and 21 is an exhaust port connected to the cylinder 2. It is a fitted piston.

次に、上記開閉バルブ11および容積変更バル
ブ12の作動について、つまりは、制御手段16
の作動について説明する。
Next, regarding the operation of the on-off valve 11 and the volume change valve 12, in other words, the control means 16
The operation of this will be explained.

まず、制御手段16は、第3図a,bに示す如
く低エンジン回転数Nlを境としてそれよりもエ
ンジン回転数が低いとき閉となり、高いとき開と
なる信号を開閉バルブ11のアクチユエータ13
に出力し、高エンジン回転数Nhを境としてそれ
よりもエンジン回転数が低いとき閉となり、高い
とき開となる信号を容積変更バルブ12のアクチ
ユエータ14に出力する。
First, the control means 16 sends a signal to the actuator 13 of the opening/closing valve 11, which closes when the engine speed is lower than the low engine speed Nl and opens when the engine speed is higher, as shown in FIGS. 3a and 3b.
A signal is output to the actuator 14 of the volume change valve 12, which closes when the engine speed is lower than the high engine speed Nh and opens when the engine speed is higher than the high engine speed Nh.

上記エンジン回転数Nl、Nhは次のように定め
られている。すなわち、吸気圧力波の伝播による
動的効果についてみるに、開閉バルブ11が閉の
ときは、ピストン21の下降運動により生じた負
圧波は吸気ポート3からタンク下流通路5、サー
ジタンク4、タンク上流通路8の長通路10を経
て、その長通路10のレゾナンスチヤンバ6での
開口を開放端として反転し、正圧波となつて吸気
ポート3へ戻る。従つて、吸気バルブ19前の圧
力は負圧波と正圧波の合成圧となり、この吸気バ
ルブ前圧力と気筒内圧力とが一致するタイミング
で吸気バルブが閉じられると吸気の充填効率が高
くなり、エンジン出力に関し最大トルクが得られ
る。この長通路10を用いる場合のトルク特性は
第3図eに1点鎖線で示されている。これに対
し、開閉バルブ11が開のときには、吸気圧力波
は短通路9を伝播してレゾナンスチヤンバ6の開
口位置で反転するから伝播距離が長通路10の場
合に比べて短くなる。つまり、正圧波が吸気ポー
トへ戻つてくる周期が短くなり(周波数が高くな
る)、第3図eに短破線で示す如く最大トルクが
得られるエンジン回転数は長通路10を用いる場
合に比べて高回転側にずれてくる。そこで、上記
開閉バルブ11の開閉の切換えを行なうエンジン
回転数Nlは、長通路10を用いる場合よりも短
通路9を用いる場合の方がトルクが高くなるとき
のエンジン回転数(1点鎖線と短破線の交点)に
設定されている。
The engine speeds Nl and Nh are determined as follows. That is, looking at the dynamic effect of the propagation of intake pressure waves, when the on-off valve 11 is closed, the negative pressure waves generated by the downward movement of the piston 21 flow from the intake port 3 to the tank downstream passage 5, the surge tank 4, and the tank top. It passes through the long path 10 of the flow path 8, reverses itself with the opening of the long path 10 at the resonance chamber 6 as an open end, and returns to the intake port 3 as a positive pressure wave. Therefore, the pressure in front of the intake valve 19 is a composite pressure of a negative pressure wave and a positive pressure wave, and if the intake valve is closed at a timing when the pressure in front of the intake valve and the cylinder pressure match, the intake air filling efficiency becomes high, and the engine Maximum torque can be obtained in terms of output. The torque characteristics when this long path 10 is used are shown by the dashed-dotted line in FIG. 3e. On the other hand, when the on-off valve 11 is open, the intake pressure wave propagates through the short path 9 and is reversed at the opening position of the resonance chamber 6, so that the propagation distance is shorter than in the case of the long path 10. In other words, the period in which the positive pressure wave returns to the intake port becomes shorter (the frequency becomes higher), and the engine speed at which maximum torque is obtained is lower than when using the long passage 10, as shown by the short dashed line in Figure 3e. It shifts to the high rotation side. Therefore, the engine speed Nl at which the on-off valve 11 is switched between open and close is the engine speed Nl at which the torque is higher when the short passage 9 is used than when the long passage 10 is used (the dashed line and the short (the intersection of the dashed lines).

一方、エンジン回転数が高くなつてくると、吸
気ポート3とタンク下流通路5のサージタンク4
に対する開口部(圧力波を反転させる開放端とな
る)との間での吸気圧力波の伝播による動的効果
が吸気充填効率、つまり、トルクに大きく影響し
てくる。そして、容積変更バルブ12にてサージ
タンク4の実質的容積を小さくした場合と大きく
した場合での動的効果をみれば、上記実質的容積
小のときは、サージタンク4がタンク下流通路5
の開口部を開放端として機能せしめる効果(圧力
波を反転させる効率)が小さく、圧力波の反転が
不十分となり、一方、実質的容積大のときは上記
開口部が開放端として有効に作用し、圧力波の反
転性が高くなる。従つて、実質的容積小と大のと
きのトルク特性をそれぞれ第3図eに長破線と2
点鎖線で示す如く、実質的容積大の方がエンジン
回転数の高い側で高トルクを呈し、一方、実質的
容積小のときはエンジン回転数の低い側で実質的
容積大のときよりもトルクが高くなる。そこで、
上記容積変更バルブ12の開閉の切換えを行なう
エンジン回転数Nhは、実質的容積小のときより
も大のときの方がトルクが高くなるエンジン回転
数(長破線と2点鎖線の交点)に設定されてい
る。
On the other hand, as the engine speed increases, the intake port 3 and the surge tank 4 in the tank downstream passage 5
The dynamic effect of the propagation of the intake pressure wave between the opening (which becomes the open end that reverses the pressure wave) greatly affects the intake air filling efficiency, that is, the torque. Looking at the dynamic effects when the substantial volume of the surge tank 4 is made small and large by the volume change valve 12, when the substantial volume is small, the surge tank 4 is
The effect of making the opening function as an open end (the efficiency of reversing pressure waves) is small, and the reversal of pressure waves becomes insufficient.On the other hand, when the volume is substantially large, the opening does not function effectively as an open end. , the reversibility of the pressure wave increases. Therefore, the torque characteristics when the actual volume is small and large are shown by the long dashed line and 2 in Fig. 3e, respectively.
As shown by the dotted chain line, the larger the actual volume, the higher the torque at higher engine speeds, while the smaller the actual volume, the lower the engine speed, the higher the torque. becomes higher. Therefore,
The engine speed Nh at which the volume change valve 12 is switched between opening and closing is set to an engine speed (the intersection of the long dashed line and the two-dot chain line) at which the torque is higher when the actual volume is large than when the volume is small. has been done.

従つて、上記実施例においては、エンジン回転
数が低いときは開閉バルブ11および容積変更バ
ルブ12は共に閉で、第3図c,dに示す如くサ
ージタンク上流長さが長く、サージタンク実質的
容積が小の構成となる。そして、このときは、サ
ージタンク4は吸気圧力波を伝播する通路として
の機能が強くなり、吸気圧力波はサージタンク4
をほとんど減衰することなく伝播していき、長通
路10のレゾナンスチヤンバ6に対する開口部を
開放端として慣性過給が行なわれ、このときのト
ルク特性は第3図eの1点鎖線に対応したものに
なる。
Therefore, in the above embodiment, when the engine speed is low, both the open/close valve 11 and the volume change valve 12 are closed, and as shown in FIG. 3c and d, the upstream length of the surge tank is long, and the surge tank is substantially The structure has a small volume. At this time, the function of the surge tank 4 as a passage for propagating the intake pressure waves becomes stronger, and the intake pressure waves are transmitted to the surge tank 4.
is propagated with almost no attenuation, and inertia supercharging is performed with the opening of the long path 10 to the resonance chamber 6 as an open end, and the torque characteristics at this time correspond to the dashed-dotted line in Fig. 3e. Become something.

次に、エンジン回転数Nlを越えると開閉バル
ブ11が開き、サージタンク4の上流長さが短
く、サージタンク4の実質的容積は小の構成とな
る。このときは、吸気圧力波は短通路9のレゾナ
ンスチヤンバ6に対する開口部を開放端として反
転して慣性過給を行なうことになり、トルク特性
は第3図eの短破線に対応したものとなる。そし
て、エンジン回転数が高くなつて、タンク下流通
路5のサージタンク4に対する開口部を開放端と
する動的効果が高くなると、トルク特性は第3図
eの長破線に対応したものになる。
Next, when the engine speed exceeds Nl, the on-off valve 11 opens, the upstream length of the surge tank 4 is short, and the substantial volume of the surge tank 4 is small. At this time, the intake pressure wave is reversed with the opening of the short passage 9 relative to the resonance chamber 6 as an open end to perform inertial supercharging, and the torque characteristic corresponds to the short broken line in Fig. 3e. Become. Then, as the engine speed increases and the dynamic effect of making the opening of the tank downstream passage 5 relative to the surge tank 4 into an open end increases, the torque characteristic corresponds to the long broken line in FIG. 3e.

そうして、エンジン回転数がNhを越えると、
開閉バルブ11と容積変更バルブ12が共に開の
状態となつて、サージタンク上流長さが短く、サ
ージタンク実質的容積が大の構成となる。このと
きは、サージタンク実質的容積が大であるからタ
ンク下流通路5のサージタンク4に対する開口部
を開放端とする動的効果が有効に働き、トルク特
性は第3図eの2点鎖線に対応したものとなる。
Then, when the engine speed exceeds Nh,
Both the on-off valve 11 and the volume change valve 12 are in an open state, resulting in a configuration in which the upstream length of the surge tank is short and the substantial volume of the surge tank is large. At this time, since the substantial volume of the surge tank is large, the dynamic effect of making the opening of the tank downstream passage 5 relative to the surge tank 4 into an open end works effectively, and the torque characteristics are as shown by the two-dot chain line in Fig. 3e. It will be compatible.

結局、実施例でのエンジン出力のトルクは、第
3図eに実線で示す如くエンジン回転数が高くな
るにつれて、長通路10のレゾナンスチヤンバ6
に対する開口部を開放端とする慣性過給、短通路
9の同開口部を開放端とする慣性過給、タンク下
流通路5のサージタンク4に対する開口部を開放
端とする慣性過給を順次有効に使つていくものと
なり、特に、上記長通路10および短通路9を慣
性過給に用いるエンジン低回転側において、サー
ジタンクでの圧力波の減衰を招くことがほとんど
なくなる。
As a result, the engine output torque in the embodiment increases as the engine speed increases, as shown by the solid line in FIG.
Inertial supercharging with the opening to the surge tank 4 as the open end, inertia supercharging with the opening of the short passage 9 as the open end, and inertial supercharging with the opening of the tank downstream passage 5 to the surge tank 4 as the open end. Particularly on the low-speed side of the engine where the long passage 10 and short passage 9 are used for inertial supercharging, there is almost no attenuation of pressure waves in the surge tank.

なお、実施例では、サージタンクの実質的容積
をバルブの開閉により変更するようにしたが、ベ
ローズなど他の手段を用いて実質的容積の変更を
行なうようにしてもよい。
In the embodiment, the substantial volume of the surge tank is changed by opening and closing the valve, but the substantial volume may be changed using other means such as a bellows.

(発明の効果) 本発明によれば、サージタンク上流の通路部を
吸気の慣性過給に利用するにあたり、エンジン回
転数が低い側でサージタンクの実質的容積が小さ
くなるから、サージタンクでの吸気圧力波の減衰
が抑えられて慣性過給効果が高くなり、エンジン
出力の向上が図れる。
(Effects of the Invention) According to the present invention, when the passage section upstream of the surge tank is used for inertial supercharging of intake air, the substantial volume of the surge tank becomes smaller on the side where the engine speed is lower. Attenuation of the intake pressure wave is suppressed, increasing the inertial supercharging effect and improving engine output.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係るもので、第1図は
各気筒を平面図的に表わしたエンジンの吸気装置
の模式的構成図、第2図は気筒を縦断面で表わし
た同吸気装置の模式的構成図、第3図は開閉バル
ブの開閉、容積可変バルブの開閉、サージタンク
上流長さ、サージタンク実質的容積およびエンジ
ンの出力トルクのエンジン回転数に対する関係を
示す特性図である。 1……エンジン本体、2……気筒、3……吸気
ポート、4……サージタンク、5……タンク下流
通路、6……レゾナンスチヤンバ、8……タンク
上流通路、9……短通路、10……長通路、11
……開閉バルブ、12……容積変更バルブ、15
……エンジン回転数センサ、16……制御手段。
The drawings relate to embodiments of the present invention, and FIG. 1 is a schematic diagram of the intake system of an engine showing each cylinder in a plan view, and FIG. 2 is a diagram of the same intake system showing the cylinders in longitudinal section. The schematic configuration diagram, FIG. 3, is a characteristic diagram showing the relationship between the opening and closing of the on-off valve, the opening and closing of the variable volume valve, the upstream length of the surge tank, the substantial volume of the surge tank, and the engine output torque with respect to the engine rotation speed. 1... Engine body, 2... Cylinder, 3... Intake port, 4... Surge tank, 5... Tank downstream passage, 6... Resonance chamber, 8... Tank upstream passage, 9... Short passage. , 10...long passage, 11
...Opening/closing valve, 12...Volume change valve, 15
...Engine speed sensor, 16...Control means.

Claims (1)

【特許請求の範囲】[Claims] 1 各気筒の吸気ポートがサージタンクに連通
し、このサージタンク上流にサージタンクに吸気
を導く通路長さが変更可能な通路部を有し、エン
ジンの運転状態に応じて上記通路部の通路長さを
変え吸気ポートと前記通路部との間で吸気の慣性
過給を行なうエンジンの吸気装置において、上記
サージタンクの実質的容積を変更する変更手段
と、この変更手段を制御してエンジン回転数が低
い側において上記サージタンクの実質的容積を小
さくする制御手段とを備えていることを特徴とす
るエンジンの吸気装置。
1. The intake port of each cylinder communicates with a surge tank, and upstream of this surge tank there is a passage section that guides intake air to the surge tank, the length of which can be changed, and the passage length of the passage section can be changed according to the operating condition of the engine. In an engine intake system that performs inertial supercharging of intake air between an intake port and the passage section by changing the surge tank, the change means changes the substantial volume of the surge tank, and the change means is controlled to change the engine rotational speed. and control means for reducing the substantial volume of the surge tank on the side where the surge tank is lower.
JP59223144A 1984-10-24 1984-10-24 Suction device of engine Granted JPS61101618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59223144A JPS61101618A (en) 1984-10-24 1984-10-24 Suction device of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59223144A JPS61101618A (en) 1984-10-24 1984-10-24 Suction device of engine

Publications (2)

Publication Number Publication Date
JPS61101618A JPS61101618A (en) 1986-05-20
JPH0551046B2 true JPH0551046B2 (en) 1993-07-30

Family

ID=16793474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59223144A Granted JPS61101618A (en) 1984-10-24 1984-10-24 Suction device of engine

Country Status (1)

Country Link
JP (1) JPS61101618A (en)

Also Published As

Publication number Publication date
JPS61101618A (en) 1986-05-20

Similar Documents

Publication Publication Date Title
JPH0353452B2 (en)
JPH02207135A (en) Exhaust device for internal combustion engine
US4889082A (en) Intake system for multiple-cylinder engine
JPS6263127A (en) Suction device for engine
JPH0551046B2 (en)
JPS6256325B2 (en)
JP2507971Y2 (en) Engine intake system
JPH0380966B2 (en)
JPH0568612B2 (en)
JPH01316A (en) engine intake system
JPH0823294B2 (en) Engine intake system
JPH0740658Y2 (en) Engine intake system
JPH0320497Y2 (en)
JPH0364688B2 (en)
JPH0583738B2 (en)
JPH044442B2 (en)
JPS60156929A (en) Suction device for engine
JPH0830418B2 (en) Engine intake system
JPH0635835B2 (en) Internal combustion engine intake system
JPH01219315A (en) Variable air intake device for internal combustion engine
JPS6282228A (en) Suction device for multicylinder engine
JPH0380967B2 (en)
JPH0745811B2 (en) Engine intake system
JPH0361006B2 (en)
JPS61218721A (en) Intake device of engine