JPH0551041B2 - - Google Patents

Info

Publication number
JPH0551041B2
JPH0551041B2 JP60018963A JP1896385A JPH0551041B2 JP H0551041 B2 JPH0551041 B2 JP H0551041B2 JP 60018963 A JP60018963 A JP 60018963A JP 1896385 A JP1896385 A JP 1896385A JP H0551041 B2 JPH0551041 B2 JP H0551041B2
Authority
JP
Japan
Prior art keywords
cylinder head
alloy
fiber
reinforced metal
metal body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60018963A
Other languages
Japanese (ja)
Other versions
JPS61178506A (en
Inventor
Yoshio Fuwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1896385A priority Critical patent/JPS61178506A/en
Publication of JPS61178506A publication Critical patent/JPS61178506A/en
Publication of JPH0551041B2 publication Critical patent/JPH0551041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/0085Materials for constructing engines or their parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/22Valve-seats not provided for in preceding subgroups of this group; Fixing of valve-seats
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/16Fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は内燃機関のシリンダヘツド、更に詳し
くはバルブシートリングレス軽合金シリンダヘツ
ドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cylinder head for an internal combustion engine, and more particularly to a valve seat ringless light alloy cylinder head.

〔従来の技術〕[Conventional technology]

従来、軽合金シリンダヘツドではバブルとのシ
ール性及び耐摩耗性を確保するために、主として
耐摩耗性の良好な鉄系のバルブシートリングをバ
ルブとの当接部に圧入している。このようにバル
ブシートリングを装着する方式では、シリンダヘ
ツドのシートリング用の下穴加工、シートリング
加工及び該リングの圧入工程に多大なコストと時
間を費やしているだけでなく、熱伝導性が良好で
ないためバルブの冷却効果も低く高温となるた
め、バルブシートやバルブには高価な耐熱・耐摩
耗性材料を用いることが必要となりコスト高とな
るため、内燃機関の高性能化の障害にもなつてい
た。
Conventionally, in light alloy cylinder heads, in order to ensure bubble sealing and wear resistance, an iron-based valve seat ring, which has good wear resistance, is press-fitted into the abutment area with the valve. This method of installing valve seat rings not only requires a great deal of cost and time in drilling the pilot hole for the seat ring in the cylinder head, processing the seat ring, and press-fitting the ring, but also has poor thermal conductivity. Because the valves are not in good condition, the cooling effect of the valves is low and the temperatures reach high temperatures, so it is necessary to use expensive heat-resistant and wear-resistant materials for the valve seats and valves, which increases costs and is an obstacle to improving the performance of internal combustion engines. I was getting used to it.

そこで、鋳鉄製シリンダヘツドでみられるよう
にバルブシートリングを廃止することが考えられ
るが、低温側のインテークバルブシートにおいて
も局部的には排気に近い温度となるため、通常の
Al合金やMg合金では耐熱強度や高温耐摩耗性が
不足するとか、また燃焼生成物等の析出物のかみ
こみに弱い等のほか耐食性が不足する等の問題が
ある。
Therefore, it may be possible to eliminate the valve seat ring as seen in cast iron cylinder heads, but since the intake valve seat on the low temperature side locally reaches a temperature close to that of the exhaust gas,
Al alloys and Mg alloys have problems such as insufficient heat-resistant strength and high-temperature wear resistance, and are susceptible to entrapment of precipitates such as combustion products, as well as insufficient corrosion resistance.

そのため、Al合金やMg合金のシリンダヘツド
のバルブ当り面部に直接、溶射やクラツデイング
やアロイング等により、耐熱・耐摩耗性等に優れ
た材料を表面被覆することが検討されている。
Therefore, it is being considered to directly coat the valve contact surface of the Al alloy or Mg alloy cylinder head with a material that has excellent heat resistance and wear resistance by thermal spraying, cladding, alloying, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記したように耐熱・耐摩耗性
材料を被覆しても、運転中の熱サイクルによる熱
歪に対し、基材との熱膨張差、弾性率の差及び基
材の剛性不足等により被覆材の剥離が生じやすい
という問題を有していた。
However, even if the material is coated with a heat-resistant and wear-resistant material as described above, thermal distortion due to thermal cycles during operation may occur due to differences in thermal expansion with the base material, differences in elastic modulus, and lack of rigidity of the base material. The problem was that the material was likely to peel off.

本発明は上記従来技術における問題点を解決す
るためのものであり、その目的とするところはバ
ルブシート相当部が耐熱・耐摩耗性に優れ、かつ
該部位に剥離が生じないシリンダヘツドを提供す
ることにある。
The present invention is intended to solve the above-mentioned problems in the prior art, and its purpose is to provide a cylinder head in which the portion corresponding to the valve seat has excellent heat resistance and wear resistance, and does not cause peeling at this portion. There is a particular thing.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち本発明のシリンダヘツドは、内燃機関
のAl合金又はMg合金製シリンダヘツドのバルブ
シート相当部を、該相当部の使用時の温度又は応
力の分布に応じて強化繊維の種類、サイズ、体積
率、配向等の性状を段階的又は連続的に変化させ
た繊維強化金属体とし、且つ該繊維強化金属体上
のバルブ当り面部に耐摩耗性被覆層が形成されて
おり、 インテーク側バルブ当り面部の前記摩耗性被覆
層は、Al合金又はMg合金を基材としてなる均一
な組成であり、 エキーゾースト側バルブ当り面部の前記摩耗性
被覆層は、Fe、Ni、Co及びCu基材合金のうちの
いずれか1種よりなる均一な組成であることを特
徴とする。
In other words, in the cylinder head of the present invention, a portion corresponding to the valve seat of a cylinder head made of Al alloy or Mg alloy for an internal combustion engine is modified according to the type, size, and volume ratio of reinforcing fibers depending on the temperature or stress distribution during use of the corresponding portion. , a fiber-reinforced metal body whose properties such as orientation are changed stepwise or continuously, and a wear-resistant coating layer is formed on the valve contact surface on the fiber-reinforced metal body, and a wear-resistant coating layer is formed on the valve contact surface on the intake side. The abrasive coating layer has a uniform composition made of Al alloy or Mg alloy as a base material, and the abrasive coating layer on the exhaust side valve contact surface is made of any one of Fe, Ni, Co, and Cu base alloys. It is characterized by a uniform composition consisting of one of the following.

本発明に用いることのできる強化繊維としては
例えば金属繊維、セラミツク繊維、ガラス繊維
等、鋳造時の高温に耐え且つ充分な機械的特性を
有するものであれば特に限定されない。例えば金
属繊維としてはSCr20、SCM40、SUS410等のス
チール若しくは鋳鉄等の鉄系繊維、及びNi系、
Co系、Ti系、Cu系等の合金繊維が挙げられ、
又、セラミツク繊維としてはSiO2、Al2O3、SiC
等からなる繊維が挙げられる。これらの繊維は長
繊維の形態でも短繊維の形態でも使用することが
できる。又、繊維の径や長さも種々のものが使用
できるが、長繊維であれば径5〜300μ、短繊維
であれば径0.05〜20μ、長さ10〜500μのものが好
ましい。
The reinforcing fibers that can be used in the present invention are not particularly limited as long as they can withstand high temperatures during casting and have sufficient mechanical properties, such as metal fibers, ceramic fibers, and glass fibers. For example, metal fibers include steel such as SCr20, SCM40, and SUS410, iron-based fibers such as cast iron, and Ni-based fibers.
Examples include alloy fibers such as Co-based, Ti-based, Cu-based, etc.
In addition, ceramic fibers include SiO 2 , Al 2 O 3 , and SiC.
Examples include fibers consisting of. These fibers can be used in the form of long fibers or short fibers. Further, various fiber diameters and lengths can be used, but long fibers preferably have a diameter of 5 to 300 μm, and short fibers preferably have a diameter of 0.05 to 20 μm and a length of 10 to 500 μm.

上記繊維の種類によつて特性は異なる。例えば
金属繊維はセラミツク繊維などの非金属繊維に比
べて母材金属との濡れ性に優れており、又、コス
トも安い。反対に強度特性などはセラミツク繊維
の方が優れている。又、バルブシート相当部もそ
の場所によつて使用時の温度や応力は一様ではな
い。
The characteristics vary depending on the type of fiber. For example, metal fibers have better wettability with base metals than non-metallic fibers such as ceramic fibers, and are also cheaper. On the other hand, ceramic fibers are superior in terms of strength and other properties. Furthermore, the temperature and stress during use of the valve seat portion are not uniform depending on the location.

したがつて、バルブシート相当部を繊維強化金
属体(FRM)で形成するにあたつては、上記繊
維の性状例えば種類、サイズ、体積率、配向等を
段階的又は連続的に変化させて最適に配置すると
よい。
Therefore, when forming the portion corresponding to the valve seat with a fiber-reinforced metal body (FRM), the properties of the above-mentioned fibers, such as type, size, volume ratio, orientation, etc., should be changed stepwise or continuously to find the optimal one. It is recommended to place it in

例えば、より高温となるバルブとの当り面に近
い側にセラミツク繊維を使用し、反対側に金属繊
維を使用することにより、又は上記各繊維の体積
率をバルブとの当り面側ほど高くすることによ
り、又はバルブとの当り面に近い側は長繊維を使
用し、遠い側は短繊維を使用することにより、母
材のAl合金又はMg合金と被覆層の材料との熱膨
張率の差により発生する熱歪を強化繊維によつて
徐々に矯正することができる。更に最適配置とす
ることによりバルブシート相当部の剛性が向上す
るため被覆層の剥離や亀裂を防止することができ
る。
For example, by using ceramic fibers on the side closer to the contact surface with the valve, which is hotter, and using metal fibers on the opposite side, or by increasing the volume percentage of each of the above fibers closer to the contact surface with the valve. or by using long fibers on the side closer to the contact surface with the valve and short fibers on the side farther away, due to the difference in thermal expansion coefficient between the base material Al alloy or Mg alloy and the material of the coating layer. The thermal distortion that occurs can be gradually corrected by reinforcing fibers. Furthermore, by optimizing the arrangement, the rigidity of the portion corresponding to the valve seat is improved, so peeling and cracking of the coating layer can be prevented.

本発明においてFRM基材に用いることのでき
る軽合金としては、従来この種の目的に用いられ
ていたものを使用することができる。例えば
AC4Cアルミニウム合金、AZ91マグネシウム合
金等が挙げられる。所望により、更に耐熱性、耐
摩耗性の優れた合金例えばADT4などを使用して
もよい。
As light alloys that can be used for the FRM base material in the present invention, those that have been conventionally used for this type of purpose can be used. for example
Examples include AC4C aluminum alloy and AZ91 magnesium alloy. If desired, an alloy with excellent heat resistance and wear resistance, such as ADT4, may be used.

FRM部の形成方法としては例えば長繊維状の
強化繊維を同心円状に巻いた成形体、又は網目状
に配向させた成形体をシリンダヘツド用鋳型(シ
エル型)のバルブシート相当部に配置し、軽合金
を注湯して上記成形体に含浸させ、シリンダヘツ
ド本体と一体的に鋳造するのが好ましい。
A method for forming the FRM part is, for example, by placing a molded product made of long reinforcing fibers concentrically wound or oriented in a mesh pattern in a portion corresponding to the valve seat of a cylinder head mold (shell type). Preferably, the molded body is impregnated with a light alloy and then cast integrally with the cylinder head body.

又、別の方法としては短繊維状の強化繊維を適
当な結合剤を用いて所定形状に成形し、例えば
Al合金又はMg合金を用いるダイカスト鋳造によ
り環状のFRM部材を製造した後、前記方法と同
様にしてシリンダ本体に鋳込む方法が挙げられ
る。
Another method is to mold short reinforcing fibers into a predetermined shape using a suitable binder, for example.
One method is to manufacture an annular FRM member by die casting using an Al alloy or a Mg alloy, and then cast it into a cylinder body in the same manner as the above method.

バルブ当り面部に形成する耐摩耗性被覆層に用
いる材料としては、比較的低温のインテーク側バ
ルブ当り面部には、Al合金又はMg合金を基材と
する耐摩耗性被覆材を使用する。この耐摩耗性被
覆材は通常のFe系合金などに比べて耐熱性に劣
るものの熱伝導性が良く、且つバルブシート相当
部を構成するAl合金又はMg合金FRMとの接合
性が良いという特長を有している。温度条件の厳
しいインテーク側バルブ当り面部には、Al合金
又はMg合金以外の合金を含む前記耐摩耗性被覆
材、例えばAl合金又はMg合金に加えてFe、Ni、
Co及びCu基材合金のうちのいずれか1種を所定
比率で含むAl合金又はMg合金を基材とする耐摩
耗性被覆材を使用して耐摩耗性被覆層を形成する
ことが好ましい。他方、温度の高いエキーゾース
ト側バルブ当り面部には、Fe、Ni、Co及びCu基
材合金のうちのいずれか1種よりなる耐摩耗性被
覆材を使用して耐摩耗性被覆層を形成する。耐摩
耗性被覆層の厚さは、合金の種類や使用条件を考
慮して適宜選択する。
As for the material used for the wear-resistant coating layer formed on the valve contact surface, a wear-resistant coating material based on Al alloy or Mg alloy is used for the intake valve contact surface, which is relatively low temperature. Although this wear-resistant coating material has inferior heat resistance compared to ordinary Fe-based alloys, it has good thermal conductivity and has good bonding properties with the Al alloy or Mg alloy FRM that constitutes the valve seat portion. have. The abrasion-resistant coating material containing an alloy other than Al alloy or Mg alloy, for example, Fe, Ni, or
It is preferable to form the wear-resistant coating layer using a wear-resistant coating material based on an Al alloy or a Mg alloy containing any one of Co and Cu-based alloys in a predetermined ratio. On the other hand, a wear-resistant coating layer is formed on the high-temperature exhaust side valve contact surface using a wear-resistant coating material made of any one of Fe, Ni, Co, and Cu-based alloys. The thickness of the wear-resistant coating layer is appropriately selected in consideration of the type of alloy and usage conditions.

〔実施例〕〔Example〕

以下の実施例において本発明を更に詳細に説明
する。なお、本発明は下記実施例に限定されるも
のではない。
The invention will be explained in further detail in the following examples. Note that the present invention is not limited to the following examples.

実施例 1 第1図は本発明のシリンダヘツド1の一実施例
を示す。図中、2はアルミナ−シリカ系長繊維強
化金属体、3はステンレス鋼長繊維強化金属体、
4は耐摩耗性被覆層、5はバルブ当り面部であ
る。製造方法を以下に述べる。始めに、平均径
20μmのアルミナ−シリカ系(Al2O3−5重量%
SiO2)長繊維と平均径50μmのステンレス鋼
(SUS)長繊維を同心円状に束ねて各々環状体6
及び7に成形し、2段に積み重ねて第2図に示す
繊維成形体8とした後、シリンダヘツド用鋳型の
インテーク及びエキゾーストバルブシート部にア
ルミナ−シリカ系長繊維6をバルブシート当り面
側に向けて配置し、Al合金(AC4C)の溶湯を用
いて吸引鋳造して、バルブシート部をアルミナ−
シリカ系長繊維6及びステンレス鋼長繊維7を
各々体積率15%及び20%で含むFRMとし、次い
で熱処理及び機械加工を施して第3図に示すシリ
ンダヘツド粗材9を得た。
Embodiment 1 FIG. 1 shows an embodiment of a cylinder head 1 of the present invention. In the figure, 2 is an alumina-silica long fiber reinforced metal body, 3 is a stainless steel long fiber reinforced metal body,
4 is a wear-resistant coating layer, and 5 is a valve contact surface. The manufacturing method will be described below. First, the average diameter
20 μm alumina-silica (Al 2 O 3 -5% by weight
SiO 2 ) Long fibers and stainless steel (SUS) long fibers with an average diameter of 50 μm are bundled concentrically to form annular bodies 6
and 7 and stacked in two stages to form the fiber molded body 8 shown in Fig. 2. After that, alumina-silica long fibers 6 were placed on the intake and exhaust valve seat portions of the cylinder head mold on the side facing the valve seat. The valve seat is made of alumina by suction casting using molten Al alloy (AC 4 C).
An FRM containing silica-based long fibers 6 and stainless steel long fibers 7 at a volume percentage of 15% and 20%, respectively, was then heat-treated and machined to obtain a cylinder head rough material 9 shown in FIG. 3.

次にシリンダヘツド粗材9のアルミナ−シリカ
系長繊維強化金属2のインテーク側バルブ当り面
部に耐摩耗性被覆材として重量比でAl−17%Si
−4.5%Cu(以下%は重量%)よりなる合金粉末を
基材とし、これにCo基材の金属間化合物粉末Co
−30%Mo−8%Cr−2%Siを2%添加混合して
なるペーストを所定量塗布した後レーザービーム
により局部加熱して半溶融状態で液相焼結し、エ
アブローで急冷して第1図に示す耐摩耗性被覆層
4を形成した。又、エキゾースト側バルブ当り面
部にCo−10%Cr−5%W−1%Mo−0.5%、V
−1.5%Cからなる粉末のペーストを用いて同様
の方法で耐摩耗性被覆層4を形成した。次いで機
械加工により耐摩耗性被覆層4上にバルブ当り面
部5を形成して本発明のシリンダヘツド1を得
た。
Next, the alumina-silica-based long fiber reinforced metal 2 of the cylinder head rough material 9 was coated with Al-17%Si by weight as a wear-resistant coating on the intake-side valve contact surface.
An alloy powder consisting of −4.5% Cu (hereinafter % is weight %) is used as a base material, and an intermetallic compound powder Co
After applying a predetermined amount of paste made by adding and mixing 2% of -30% Mo, 8% Cr, and 2% Si, it is locally heated with a laser beam to perform liquid phase sintering in a semi-molten state, and then quenched with air blow. A wear-resistant coating layer 4 shown in FIG. 1 was formed. Also, Co-10% Cr-5% W-1% Mo-0.5%, V on the exhaust side valve contact surface.
A wear-resistant coating layer 4 was formed in the same manner using a powder paste containing -1.5% C. Next, a valve contact surface 5 was formed on the wear-resistant coating layer 4 by machining to obtain the cylinder head 1 of the present invention.

実施例 2 実施例1で用いたアルミナ−シリカ系長繊維6
を用いて体積率の異なる3種の環状体10,1
1,12を成形し、3段に積み重ねて第4図に示
す繊維成形体8を得た。繊維成形体8の体積率は
バルブ当り面部に近い方からインテーク側は各々
15%、11%、7%、エキーゾースト側は各々20
%、15%、10%である。次いで、実施例1と同様
にして第5図に示すシリンダヘツド1′を得た。
第5図はインテーク側を示し、図中、13は体積
率15%、14は体積率11%、15は体積率7%の
アルミナ−シリカ系長繊維強化金属体である。
Example 2 Alumina-silica long fiber 6 used in Example 1
Three types of annular bodies with different volume fractions 10,1
1 and 12 were molded and stacked in three tiers to obtain a fiber molded body 8 shown in FIG. The volume ratio of the fiber molded body 8 varies from the side closer to the valve contact surface to the intake side.
15%, 11%, 7%, 20 each on the exhaust side
%, 15%, and 10%. Next, in the same manner as in Example 1, a cylinder head 1' shown in FIG. 5 was obtained.
FIG. 5 shows the intake side, and in the figure, numeral 13 is an alumina-silica long fiber reinforced metal body having a volume fraction of 15%, 14 a volume fraction of 11%, and 15 a volume fraction of 7%.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明のシリンダヘツドはバルブ
シート相当部を繊維強化金属体で形成するにあた
り、該繊維の性状を段階的又は連続的に変化させ
て形成し、且つバルブ当り面部に、使用時のイン
テーク側とエキーゾースト側との条件の相違を考
慮して最適に耐摩耗性被覆層が形成されているた
め、当り面基材部の高温強度、剛性を高め、又、
熱膨張を抑制し、バルブシート周辺の熱歪を減少
させ当り面部位の耐摩耗性被覆材の接合強度を向
上させて該被覆材の剥離を防止することができ
る。更に、インテーク側バルブ当り面部及びエキ
ーゾースト側バルブ当り面部に形成された耐摩耗
性被覆層は組成が均一なので、耐摩耗性被覆層が
健在な間は耐摩耗特性は一定であり、それ故、耐
摩耗性被覆層の摩損に伴う耐摩耗特性の変化がな
く、安定した耐摩耗特性が得られる。また、バル
ブシート部の熱伝導性が良くなるため、バルブシ
ートの温度が低下し、バルブシート部の高温強
度、硬さ、耐摩耗性、耐食性等に余裕ができバル
ブ径を大きく設計できるため、更に高負荷に耐
え、高性能化が容易となる。又は、耐摩耗性被覆
材に低コスト材を用いることもできる。又、相手
のバルブの熱もバルブシートを通してよく冷却さ
れるためバルブ温度が低下し、バルブの高温強
度、硬さ、耐摩耗性、耐食性等にも余裕ができ、
バルブシート同様に低コスト化又は高性能化が容
易となる。
As mentioned above, in the cylinder head of the present invention, when forming the valve seat equivalent part from a fiber-reinforced metal body, the properties of the fibers are changed stepwise or continuously. The wear-resistant coating layer is optimally formed taking into account the differences in conditions between the intake side and the exhaust side, increasing the high-temperature strength and rigidity of the contact surface base material, and
Thermal expansion can be suppressed, thermal strain around the valve seat can be reduced, and the bonding strength of the wear-resistant coating material on the contact surface can be improved, thereby preventing peeling of the coating material. Furthermore, since the wear-resistant coating layer formed on the intake-side valve contact surface and the exhaust-side valve contact surface has a uniform composition, the wear-resistant properties remain constant as long as the wear-resistant coating layer is in good condition. There is no change in wear resistance due to abrasion of the abrasive coating layer, and stable wear resistance can be obtained. In addition, since the thermal conductivity of the valve seat part improves, the temperature of the valve seat decreases, and the valve seat part has margins in high temperature strength, hardness, wear resistance, corrosion resistance, etc., and the valve diameter can be designed larger. Furthermore, it can withstand high loads and can easily improve performance. Alternatively, lower cost materials can be used for the wear resistant coating. In addition, the heat of the other valve is well cooled through the valve seat, which lowers the valve temperature and increases the valve's high-temperature strength, hardness, wear resistance, corrosion resistance, etc.
As with valve seats, it is easy to reduce costs or improve performance.

更に、シリンダヘツドのバルブシート周辺の肉
厚を薄くすることができ、軽量化につながるとと
もに、冷却水による冷却効果が高まり、高性能化
が容易となるほか、冷却水を削減でき、軽量化と
暖気ウオーミングアツプ時間の短縮につながる。
Furthermore, the wall thickness around the valve seat of the cylinder head can be reduced, leading to weight reduction, and the cooling effect of cooling water is increased, making it easier to improve performance. This leads to a reduction in warm-up time.

更に、本発明は、バルブシートリングの部品点
数を削減することができ、バルブシートリングの
圧入の必要がないのでそのためのシリンダヘツド
下穴及びシートリング単体の高精度加工等も必要
なくなつた。
Furthermore, the present invention can reduce the number of parts for the valve seat ring, and since there is no need to press-fit the valve seat ring, there is no need for high-precision machining of the cylinder head prepared hole and the seat ring alone.

又、強化繊維の性状を段階的又は連続的に変化
させるため種々の変形が可能であり、要求特性の
変化にも迅速に対応することができる等の種々の
効果を奏する。
Further, since the properties of the reinforcing fibers are changed stepwise or continuously, various deformations are possible, and various effects such as being able to quickly respond to changes in required properties are achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシリンダヘツドの一実施例の
部分断面図、第2図は第1図のシリンダヘツドの
製造に用いた繊維成形体の斜視図、第3図は第1
図のシリンダヘツドの耐摩耗性被覆層形成前の状
態を示す部分断面図、第4図は繊維成形体の別の
例を示す斜視図、第5図は本発明のシリンダヘツ
ドの別の実施例の部分断面図である。 図中、1,1′……シリンダヘツド、2……ア
ルミナ−シリカ系長繊維強化金属体、3……ステ
ンレス鋼長繊維強化金属体、4……耐摩耗性被覆
層、5……バルブ当り面部、6,7,10,1
1,12……環状体、8……繊維成形体、9……
シリンダヘツド粗材、13,14,15……各々
体積率15%、11%、7%のアルミナ−シリカ系長
繊維強化金属体。
FIG. 1 is a partial sectional view of one embodiment of the cylinder head of the present invention, FIG. 2 is a perspective view of a fiber molded product used in manufacturing the cylinder head of FIG. 1, and FIG.
FIG. 4 is a perspective view showing another example of the fiber molded product; FIG. 5 is another embodiment of the cylinder head of the present invention. FIG. In the figure, 1, 1'... Cylinder head, 2... Alumina-silica long fiber reinforced metal body, 3... Stainless steel long fiber reinforced metal body, 4... Wear-resistant coating layer, 5... Per valve. Surface part, 6, 7, 10, 1
1, 12... annular body, 8... fiber molded body, 9...
Cylinder head rough material, 13, 14, 15... Alumina-silica long fiber reinforced metal bodies with volume percentages of 15%, 11%, and 7%, respectively.

Claims (1)

【特許請求の範囲】 1 内燃機関のAl合金又はMg合金製シリンダヘ
ツドのバルブシート相当部を、該相当部の使用時
の温度又は応力の分布に応じて強化繊維の種類、
サイズ、体積率、配向等の性状を段階的又は連続
的に変化させた繊維強化金属体とし、且つ該繊維
強化金属体上のバルブ当り面部に耐摩耗性被覆層
が形成されており、 インテーク側バルブ当り面部の前記摩耗性被覆
層は、Al合金又はMg合金を基材としてなる均一
な組成であり、 エキーゾースト側バルブ当り面部の前記摩耗性
被覆層は、Fe、Ni、Co及びCu基材合金のうちの
いずれか1種よりなる均一な組成であることを特
徴とするシリンダヘツド。 2 繊維強化金属体が、強化繊維の成形体をバル
ブシート相当部に配置し、注湯してシリンダヘツ
ドと一体的に鋳造されてなることを特徴とする特
許請求の範囲第1項記載のシリンダヘツド。 3 繊維強化金属体が、別体として製造された繊
維強化金属体をバルブシート相当部に配置し、注
湯してシリンダヘツドに一体的に鋳込まれてなる
ことを特徴とする特許請求の範囲第1項記載のシ
リンダヘツド。
[Scope of Claims] 1. A portion corresponding to the valve seat of a cylinder head made of Al alloy or Mg alloy of an internal combustion engine is treated with the type of reinforcing fiber, depending on the temperature or stress distribution when the corresponding portion is used.
It is a fiber-reinforced metal body whose properties such as size, volume ratio, and orientation are changed stepwise or continuously, and a wear-resistant coating layer is formed on the valve contact surface on the fiber-reinforced metal body, and the intake side The abrasive coating layer on the valve contact surface has a uniform composition based on Al alloy or Mg alloy, and the abrasive coating layer on the valve contact surface on the exhaust side has a base alloy of Fe, Ni, Co, and Cu. A cylinder head characterized by having a uniform composition consisting of any one of the following. 2. The cylinder according to claim 1, wherein the fiber-reinforced metal body is formed by placing a molded body of reinforcing fibers in a portion corresponding to the valve seat, pouring hot water into the cylinder head, and casting the body integrally with the cylinder head. Head. 3. Claims characterized in that the fiber-reinforced metal body is formed by placing a separately manufactured fiber-reinforced metal body in a portion corresponding to the valve seat, pouring hot water into the cylinder head, and integrally casting the fiber-reinforced metal body into the cylinder head. Cylinder head according to item 1.
JP1896385A 1985-02-02 1985-02-02 Cylinder head Granted JPS61178506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1896385A JPS61178506A (en) 1985-02-02 1985-02-02 Cylinder head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1896385A JPS61178506A (en) 1985-02-02 1985-02-02 Cylinder head

Publications (2)

Publication Number Publication Date
JPS61178506A JPS61178506A (en) 1986-08-11
JPH0551041B2 true JPH0551041B2 (en) 1993-07-30

Family

ID=11986301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1896385A Granted JPS61178506A (en) 1985-02-02 1985-02-02 Cylinder head

Country Status (1)

Country Link
JP (1) JPS61178506A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776214A (en) * 1980-10-31 1982-05-13 Nippon Kokan Kk <Nkk> Exhaust valve of diesel engine and manufacture therefor
JPS59224409A (en) * 1983-06-01 1984-12-17 Toyota Motor Corp Cylinder head of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776214A (en) * 1980-10-31 1982-05-13 Nippon Kokan Kk <Nkk> Exhaust valve of diesel engine and manufacture therefor
JPS59224409A (en) * 1983-06-01 1984-12-17 Toyota Motor Corp Cylinder head of internal-combustion engine

Also Published As

Publication number Publication date
JPS61178506A (en) 1986-08-11

Similar Documents

Publication Publication Date Title
Gérard Application of thermal spraying in the automobile industry
JP5859440B2 (en) Steel pistons for internal combustion engines
JPH0250173B2 (en)
EP0898642B1 (en) A movable wall member in the form of an exhaust valve spindle or a piston in an internal combustion engine
JP2004301124A (en) Composite lightweight engine poppet valve
JPH1122424A (en) Tappet for engine excellent in abrasion resistance and its manufacture
JPS58215291A (en) Aluminum base material with cured padding layer
JP2007529667A (en) Piston for internal combustion engine, method for producing piston and use of copper alloy in piston production
US11498126B2 (en) Method for producing a component, in particular vehicle component, and correspondingly produced component
US20050241434A1 (en) Use of a transmission component of a metal matrix composite (MMC) material
JPH0551041B2 (en)
NL2001869C2 (en) Cylinder head with valve seat and method for manufacturing them.
JPS6176742A (en) Valve-seatless light alloy cylinder head
JPH0552401B2 (en)
KR19990009039A (en) Engine tappet with excellent wear resistance and its manufacturing method
JPH04231656A (en) Piston made of light metal
JP2006132416A (en) Internal combustion engine and method of manufacturing its combustion chamber component part
Maki et al. Development of a high-performance TiA1 exhaust valve
JPS6187946A (en) Valve seat ringless light alloy cylinder head
JPS6187947A (en) Valve seat ringless light alloy cylinder head
JPH08232618A (en) Insert molding method for engine valve seat
JPS61169606A (en) Valve guide insertless light alloy cylinder head
Maki et al. Development of a high-performance TiAl exhaust valve
JPH0586964A (en) Cooling structure for cylinder
JPS6176744A (en) Valve-seatless light alloy cylinder head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees