JPH05506227A - Polymers as contrast agents for magnetic resonance imaging - Google Patents

Polymers as contrast agents for magnetic resonance imaging

Info

Publication number
JPH05506227A
JPH05506227A JP91507878A JP50787891A JPH05506227A JP H05506227 A JPH05506227 A JP H05506227A JP 91507878 A JP91507878 A JP 91507878A JP 50787891 A JP50787891 A JP 50787891A JP H05506227 A JPH05506227 A JP H05506227A
Authority
JP
Japan
Prior art keywords
contrast agent
patient
acid
polymer
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP91507878A
Other languages
Japanese (ja)
Inventor
ウンガー,イヴァン シー.
Original Assignee
イマルクス ファーマシューティカル コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イマルクス ファーマシューティカル コーポレーション filed Critical イマルクス ファーマシューティカル コーポレーション
Publication of JPH05506227A publication Critical patent/JPH05506227A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/103Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA
    • A61K49/105Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA the metal complex being Gd-DTPA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1803Semi-solid preparations, e.g. ointments, gels, hydrogels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1806Suspensions, emulsions, colloids, dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1863Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being a polysaccharide or derivative thereof, e.g. chitosan, chitin, cellulose, pectin, starch

Abstract

The invention relates to a contrast medium for magnetic resonance imaging comprising, or consisting of, an aqueous solution of suspension of a biocompatible non-crosslinked polymer. The polymer may be synthetic and may further comprise a biocompatible gas. <MATH>

Description

【発明の詳細な説明】 磁気共鳴画像用造影剤としてのポリマー本発明は磁気共鳴画像の分野に関し、更 に詳細には磁気共鳴画像用造影剤としてのポリマー又はポリマーと造影剤及び/ 又はガスとの組合せの用途に関する。[Detailed description of the invention] Polymers as Contrast Agents for Magnetic Resonance Imaging The present invention relates to the field of magnetic resonance imaging, and further relates to the field of magnetic resonance imaging. In detail, polymers or polymers and contrast agents and/or polymers as contrast agents for magnetic resonance imaging. Or related to use in combination with gas.

先行技術の説明 ヒトにおいて疾患を診断するために種々の画像診断技術が用いられている。使用 された最初の画像診断技術の1つがX*であった。Description of prior art Various diagnostic imaging techniques are used to diagnose diseases in humans. use One of the first diagnostic imaging techniques developed was X*.

X線では生じた患者の身体の画像は異なった身体組織の密度を反映する。この画 像診断技術の診断用途を改良するためには造影剤を使用して消化管とその周辺組 織間のような種々の組織間の密度を増大させる。具体的にはバリウム及びヨード 造影剤が食道、胃、腸及び直腸を可視化するためにX線消化管研究用に広く用い られる。同様に、これらの造影剤は消化管の可視化を改良するためにまた消化管 とそれに隣接した血管やリンパ腺のような組織間のコントラストを得るためにX 線コンピューター断層撮影研究用に用いられる。このような消化管用造影剤は食 道、胃、腸及び直腸の内部の密度を高め、消化管系を周辺組織から区別する。With X-rays, the resulting image of a patient's body reflects the density of different body tissues. This picture In order to improve the diagnostic applications of diagnostic imaging techniques, contrast agents have been used to visualize the gastrointestinal tract and its surrounding structures. Increases the density between various tissues such as interwovens. Specifically barium and iodine Contrast agents are widely used in X-ray gastrointestinal studies to visualize the esophagus, stomach, intestines and rectum. It will be done. Similarly, these contrast agents can also be used to improve visualization of the gastrointestinal tract. and adjacent tissues such as blood vessels and lymph glands. used for line computed tomography studies. These gastrointestinal contrast agents are edible. Increases the density of the interior of the tract, stomach, intestines and rectum and distinguishes the gastrointestinal system from surrounding tissues.

磁気共鳴画像法(MHI)はX線と異なり電離放射線を使用しない比較的新しい 画像診断技術である。コンピューター断層撮影法のようにMRIは身体の断層像 を得ることができるが、MRIは更にいかなるスキャン面(即ち軸、冠、縦又は 直交面)の画像をも得ることができる利点を育する。都合の悪いことに、特に腹 部及び骨盤領域における身体の診断法としてのMRIの完全な有用性は有効な消 化管用造影剤が存在しないことによって妨げられている。そのような薬剤がない と、腸、例えば隣接の軟部組織とリンパ腺を区別するためにMRIを用いること はしばしば困難である。もし良好な造影剤が利用できた場合には画像診断剤とし てMRIの全体の有用性が改良し、消化管領域におけるこの種の診断精度が非常 に高められる。Magnetic resonance imaging (MHI) is a relatively new technique that, unlike X-rays, does not use ionizing radiation. It is an image diagnostic technology. Like computed tomography, MRI is a cross-sectional image of the body. However, MRI can also be used in any scan plane (i.e. axial, coronal, longitudinal or It also has the advantage of being able to obtain images in the orthogonal plane. Unfortunately, especially when it comes to stomach The full utility of MRI as a diagnostic method of the body in the abdominal and pelvic regions is limited by effective This is hampered by the absence of contrast media. there is no such drug and the use of MRI to differentiate between the intestine, e.g. adjacent soft tissue and lymph glands. is often difficult. If a good contrast agent is available, it can be used as an imaging diagnostic agent. The overall utility of MRI has improved, and the accuracy of this type of diagnosis in the gastrointestinal region has greatly improved. It is raised to

MRIは身体の画像を得るために磁場、高周波エネルギー及び磁場勾配を使用す る。組織間のコントラスト又は信号強度の差違は主に組織のTI及びT2緩和値 及びプロトン密度(実際上は遊離水含量)を反映する。造影剤の使用によって患 者の領域の信号強度を変化させるために数種の可能な方法か有効である。例えば 造影剤はT1、T2あるいはプロトン密度を変化させるために計画することがで きる。MRI uses magnetic fields, radiofrequency energy, and magnetic field gradients to obtain images of the body. Ru. Differences in contrast or signal intensity between tissues are mainly due to tissue TI and T2 relaxation values. and proton density (actually free water content). Disease caused by the use of contrast media Several possible methods are available for varying the signal strength in the area of the user. for example Contrast agents can be designed to vary T1, T2 or proton density. Wear.

Cd−DTPAのような常磁性造影剤は縦緩和を生じTIを短縮させる。これは T1強調像の信号強度を増加させる。亜鉄酸塩のような超常磁性造影剤は主とし てT2の短縮を生じ、12強調像の信号強度を低下させる横緩和に作用する。造 影剤はまたプロトン密度を変えることによって、詳しくは信号強度を生じる有効 な遊離水の量を減少させることによって作用することができる。Paramagnetic contrast agents such as Cd-DTPA cause longitudinal relaxation and shorten the TI. this is Increase the signal intensity of T1-weighted images. Superparamagnetic contrast agents such as ferrite are mainly This causes a shortening of T2 and acts on transverse relaxation that reduces the signal intensity of the 12-weighted image. Construction Contrast agents can also be used to increase the signal intensity by changing the proton density. can act by reducing the amount of free water.

自然内容物のルーメンと比較して信号強度を増大する薬剤は陽性造影剤と呼ばれ る。これらの多くはMRI用造影剤として試験されている。これらは脂肪及び油 を含み(Newhouse等、RadiologY 142(P): 246  (1982))、短いTI、長いT2及び高プロトン固1r密度並びに水プロト ンのTIを短縮させることによって信号を増大する種々の常磁性薬剤の結果とし て信号を増強する。このような常磁性薬剤の具体例としてはG d −D T  P A (Kornmesser等、Magn、 Re5on。Agents that increase the signal intensity compared to the lumen's natural contents are called positive contrast agents. Ru. Many of these have been tested as contrast agents for MRI. These are fats and oils (Newhouse et al., RadiologY 142(P): 246 (1982)), short TI, long T2 and high proton solid 1r density and water proton As a result of various paramagnetic agents increasing the signal by shortening the TI of the to strengthen the signal. A specific example of such a paramagnetic drug is G d - D T P A (Kornmesser et al., Magn, Re5on.

Imaging、 6 : 124(1988)、Lan1ado等、AJR1 50: 817 (1988))。Imaging, 6: 124 (1988), Lan1ado et al., AJR1 50:817 (1988)).

G d−DOTA (Hahn等、Magn、 Re5on、Imaging、  6 : 78(198g))、Gd−オキサレー) (Runge、 V、  M、等、RadiologY、 147 : 789(1983)) 、Cr  −E D TA (Runge、 V、 M、等、Physjol、 Chem 、 Phys。G d-DOTA (Hahn et al., Magn, Re5on, Imaging, 6: 78 (198g)), Gd-oxale) (Runge, V, M, et al., RadiologY, 147: 789 (1983)), Cr. -E D TA (Runge, V, M, etc., Physjol, Chem , Phys.

Mad、 NMR,16: 113(1984)) 、 Cr −トリス−アセ チルアセトネートCCIanton等、Radiology、 149 : 2 38 (1983))、塩化第二鉄(Young等、CT、 5 : 543  (1981)) 、グルコン酸第−鉄(C1anton等、RadiologY 、 153 : 159 (1984))、クエン酸鉄アンモニウム及び硫酸第 一鉄(Wesbey等、RadiologY、 149 : 175(1983 )、Tschalakoff等、AJR,148: 703 (1987))並 びに鉄複合体(Wesbey等、Magn。Mad, NMR, 16: 113 (1984)), Cr-tris-acetate Tylacetonate CCIanton et al., Radiology, 149: 2 38 (1983)), ferric chloride (Young et al., CT, 5:543) (1981)), ferrous gluconate (C1anton et al., Radiolog Y , 153: 159 (1984)), ferrous ammonium citrate and ferrous sulfate. Ittetsu (Wesbey et al., RadiologY, 149: 175 (1983 ), Tschalakoff et al., AJR, 148: 703 (1987)) and iron complexes (Wesbey et al., Magn.

Re5on、Imaging、 3 : 57 (1985) 、 Willi ams等、Radiology、 161 :315 (1986))がある。Re5on, Imaging, 3: 57 (1985), Willi ams et al., Radiology, 161:315 (1986)).

一方信号強度をルーメンから低下させる薬剤は陰性造影剤と呼ばれる。具体例と してはT2短縮により信号を減衰させる粒子酸化鉄(Hahn等、Radiol ogY、 164 : 37 (1987)、Widder等、AJR149:  839(1987))並びにプロトン密度の変化により作用するガス発生物質 (We]nreb等、J、 Comput、 As5ist、 Tomogr、  8 : 835 (1984))及びパーフ′ルオロカーボン(Mattre y等、AJR,148: 1259 (1987))がある。全ての常磁性物質 は十分に高い濃度ではT2短縮により信号強度の低下を生じることができること も認識すべきである。On the other hand, agents that reduce the signal intensity from the lumen are called negative contrast agents. Specific examples and Particle iron oxide (Hahn et al., Radiol. ogY, 164:37 (1987), Widder et al., AJR149: 839 (1987)) and gas-generating substances that act by changing proton density. (We] nreb et al., J, Comput, As5ist, Tomogr, 8:835 (1984)) and perfluorocarbon (Mattre y et al., AJR, 148: 1259 (1987)). all paramagnetic substances can cause a decrease in signal intensity due to T2 shortening at sufficiently high concentrations. should also be recognized.

存在するMHI造影剤は全て経口消化管用薬剤として使用する場合多くの制限を 受ける。陽性造影剤は固有の螺動運動及び呼吸又は心臓血管作用により加えられ る運動から生じる画像ノイズを増加する。Gd−DTPAのような陽性造影剤は 更に信号強度が薬剤濃度並びに使用されるパルス系列による複雑さを受けやすい 。もし十分に高い濃度の常磁性薬剤が使用されない限り、消化管からの造影剤の 吸収は特に小腸の遠位部の画像の解釈を複雑にする( Kornmesser等 、Magn、 Re5on、 Imaging、 6 : 124 (1988 )) o陰性造影剤は比較的にはパルス系列の変動に敏感でなく、より一致した コントラストを得る。しかしながら高濃度では亜鉄酸塩のような微粒子物は腸液 の吸収が起こり超常磁性物質が濃縮される結腸において特に明白な磁化人工物の 原因となることができる。陰性造影剤は代表的には脂肪より優れたコントラスト を示すが、T1強調像については陽性造影剤は正常組織に対して優れたコントラ ストを示す。最も病的な組織は正常組織より長いTI及びT2を示すので、71 強調像については暗<12強調像については明るくなる。これは理想的な造影剤 が71強調像については明る<72強調像については暗くならねばならないこと を示す。消化管に関して用いられる現在入手し得るMRI造影剤はいずれもこれ らの二重基準にかなっていない。All existing MHI contrast agents have many limitations when used as oral gastrointestinal drugs. receive. Positive contrast agents are applied by intrinsic helical motion and respiratory or cardiovascular effects. increases image noise resulting from motion. Positive contrast agents such as Gd-DTPA Additionally, signal strength is subject to complications due to drug concentration as well as the pulse sequence used. . Contrast from the gastrointestinal tract can be removed unless a sufficiently high concentration of paramagnetic agent is used. Absorption complicates the interpretation of images, especially of the distal part of the small intestine (Kornmesser et al. , Magn, Re5on, Imaging, 6: 124 (1988 )) O-negative contrast agents are relatively insensitive to variations in the pulse sequence and are more consistent. Get contrast. However, at high concentrations, particulates such as ferrite can Magnetization artifacts are particularly evident in the colon, where absorption of ions occurs and superparamagnetic substances are concentrated. can be the cause. Negative contrast agents typically provide better contrast than fat However, in T1-weighted images, positive contrast agents have excellent contrast to normal tissues. Indicates a strike. 71 as most pathological tissues exhibit longer TI and T2 than normal tissues. The emphasized image becomes dark<12 The emphasized image becomes bright. This is an ideal contrast agent is brighter for the 71-enhanced image and must be darker for the 72-enhanced image. shows. All currently available MRI contrast agents used for the gastrointestinal tract are They do not live up to their double standards.

存在する造影剤に関して毒性がもう1つの問題点である。いずれの薬剤にもいく らか毒性があり毒性は一般的に用量が関係する。亜鉄酸塩に関しては経口投与後 嘔吐並びに血清鉄の一過性の上昇の症状がしばしば生じる。常磁性造影剤Gd− DTPAは錯化剤ジエチレントリアミンペンタ酢酸と結合したガドリニウムの有 機金属錯体である。カップリングしないとMeltガドリニウムイオンは非常に 毒性である。胃が酸を分泌し腸がアルカリを遊離する胃腸管の特性は胃腸に使用 している間これらのpH変化の結果として遊離ガドリニウムの錯体からの脱カッ プリング及び分離の可能性を高める。確かに常磁性か超常磁性の消化管用造影剤 の用量を最少にすることは毒性作用のあらゆる可能性を最少にするために重要で ある。Toxicity is another issue with the contrast agents present. go to any drug However, toxicity is generally dose-related. For ferrite, after oral administration Symptoms of vomiting and transient increases in serum iron often occur. Paramagnetic contrast agent Gd- DTPA is a compound of gadolinium combined with the complexing agent diethylenetriaminepentaacetic acid. It is a machine metal complex. Without coupling, Melt gadolinium ion is very It is toxic. The characteristics of the gastrointestinal tract, where the stomach secretes acid and the intestines release alkali, are used for the gastrointestinal tract. As a result of these pH changes, the free gadolinium is decupapped from the complex Increases the possibility of pulling and separation. Definitely paramagnetic or superparamagnetic contrast agent for the gastrointestinal tract It is important to minimize the dose of be.

特に消化管の画像診断ばかりでなく血管系を介するような身体の他の領域の画像 診断においても磁気共鳴画像法に有効な新規及び/又は良好な造影剤が必要とさ れる。本発明はこの重要な目的に関するものである。Imaging, especially of the gastrointestinal tract, but also of other areas of the body, such as through the vascular system Diagnosis also requires new and/or good contrast agents that are effective for magnetic resonance imaging. It will be done. The present invention is directed toward this important objective.

くとも1種の生物適合性ポリマーの水溶液からなる。場合によっては造影剤は更 に造影剤、特に常磁性、超常磁性及び/又はプロトン密度造影剤と混合させてな る。ポリマー又はポリマーと造影剤との混合物はまた所望により生物適合性ガス 、好ましくは空気、酸素、二酸化炭素、窒素、キセノン、ネオン及び/又はアル ゴンのようなガスからなる。It consists of an aqueous solution of at least one biocompatible polymer. In some cases, the contrast agent may be should not be mixed with contrast agents, especially paramagnetic, superparamagnetic and/or proton density contrast agents. Ru. The polymer or mixture of polymer and contrast agent may also optionally contain a biocompatible gas. , preferably air, oxygen, carbon dioxide, nitrogen, xenon, neon and/or alkali Consists of gas like gon.

本発明はまた患者の体内領域の画像、特に患者の消化管領域の画像を得る方法に 関し、該方法は(f)前述の造影剤の1種以上を患者に投与し、(ii)領域の 可視像を得るために磁気共鳴画像法を用いて患者を走査することからなる。The present invention also relates to a method of obtaining images of regions within a patient's body, particularly of the gastrointestinal tract region of a patient. (f) administering to the patient one or more of the contrast agents described above; (ii) It consists of scanning the patient using magnetic resonance imaging to obtain visible images.

最終的には本発明は患者、特に患者の消化管領域の疾患組織の存在の診断方法を 包含し、該方法は(j)前述の造影剤の】種以上を患者に投与し、(ii)領域 のあらゆる疾患組織の可視像を得るために磁気共鳴画像法を用いて患者を走査す ることからなる。Ultimately, the present invention provides a method for diagnosing the presence of diseased tissue in a patient, particularly in the gastrointestinal region of the patient. (j) administering to the patient at least one of the aforementioned contrast agents; (ii) The patient is scanned using magnetic resonance imaging to obtain visible images of any diseased tissue. It consists of things.

本発明のこれらの及び他の態様は下記の詳細な説明から下記図面と合わせて更に 明らかになる。These and other aspects of the invention will be further described from the detailed description below, taken in conjunction with the drawings below. It becomes clear.

図面の簡単な説明 図1は本発明による造影剤の図解である:図2はポリエチレングリコール%(W /W)に対する緩和速度(1/秒)のグラフであり、ここでポリエチレングリコ ールポリマーはCd−DTPA造影剤を存在させてもさせなくても水溶液である :図3はデキストロース%(W/W)に対する緩和速度(1/秒)のグラフであ り、ここでデキストロースポリマーはGd−DTPA造影剤を存在させてもさせ なくても水溶液である:図4は亜鉄酸塩濃度(ミクロモル)に対するl/T2( 1/秒)のグラフであり、ここで亜鉄酸塩濃度剤はセルロースポリマーを存在さ せてもさせなくても水溶液である(またセルロースポリマーは二酸化炭素ガスを 存在させるかまたはさせない)。Brief description of the drawing Figure 1 is a diagrammatic representation of the contrast agent according to the invention: Figure 2 shows polyethylene glycol% (W /W) versus relaxation rate (1/sec), where polyethylene glyco The polymer is an aqueous solution with or without the presence of Cd-DTPA contrast agent. : Figure 3 is a graph of relaxation rate (1/sec) against dextrose % (W/W). In this case, the dextrose polymer can be used even in the presence of Gd-DTPA contrast agent. Even without it, it is an aqueous solution: Figure 4 shows the relationship between l/T2 ( 1/sec), where the ferrite concentration agent is present in the presence of cellulose polymer. It is an aqueous solution whether or not it is exposed to water (cellulose polymers also absorb carbon dioxide gas). present or not present).

望によりポリマーは架橋されてもよい。しかしながらポリマーは架サツカライド を含む。そのようなポリサッカライドとしては例えばアラビナン、フルクタン、 フカン、ガラクタン、ガラクツロナン、デキストラン、パスツラン、キチン、ア ガロース、ケラタン、フンドロイチン、デルマタン、ヒアルロン酸及びアルギン 酸及び種々の他のホモポリマー又は次のアルドース、ケトース、酸又はアミン: エリスロース、トレオース、リボース、アラビノース、キシロース、リキソース 、アロース、アルドロース、グルコース、マンノース、クツロン酸、マンヌロン 酸、グルコサミン、ガラクトサミン及びニューラミン酸の1種以上を含有するよ うなヘテロポリマーを含む。The polymer may be crosslinked if desired. However, the polymer is a cross-saccharide. including. Examples of such polysaccharides include arabinan, fructan, Fucan, galactan, galacturonan, dextran, pastulan, chitin, aluminum Gallose, keratan, fundroitin, dermatan, hyaluronic acid and algin Acids and various other homopolymers or the following aldoses, ketoses, acids or amines: Erythrose, threose, ribose, arabinose, xylose, lyxose , allose, aldrose, glucose, mannose, cuturonic acid, mannuron acid, glucosamine, galactosamine, and neuramic acid. Contains a heteropolymer.

高い水結合能力を示すポリマーであるポリエチレングリコール(PEG)は本発 明に用いるのに特に好適である。高い水結合能力と付随する溶液中遊離水の量の 減少の結果として、PEG及び類似ポリマーは溶液のプロトン密度を変えるよう に作用する。更にその上、PEGは溶液からタンパク質の分別沈殿に用いられ、 これは一部にはこのポリマーによって生じる排除容量作用によるものと思われ、 これによってタンパク質はポリマーによって占有される溶液の領域から排除され 、ポリマーの個々の分子間の水室間、即ちポリマー外空間、が濃縮される。この 排除及び濃縮作用は図1に図解的に示され、ポリマーは曲線で表わされ、造影剤 は黒丸点で表わされる。Polyethylene glycol (PEG), a polymer that exhibits high water-binding ability, was developed from this invention. It is particularly suitable for use in the light. High water binding capacity and concomitant amount of free water in solution As a result of the reduction, PEG and similar polymers tend to change the proton density of the solution. It acts on Furthermore, PEG can be used for fractional precipitation of proteins from solution; This may be due in part to the excluded capacity effect produced by this polymer; This excludes the protein from the area of solution occupied by the polymer. , the water spaces between the individual molecules of the polymer, ie the extra-polymer spaces, are concentrated. this The exclusion and concentration effects are shown diagrammatically in Figure 1, where the polymer is represented by a curve and the contrast agent is represented by a black dot.

PEGはイオン錯体に対して限られた能力を示すので、常磁性薬剤の前動な濃度 及び緩和率はポリマーが存在しないときよりもポリマーとの混合物のときにより 高くなるように濃縮されるGd−DTPAのような小常磁性キレートを生じる。PEG exhibits limited capacity for ionic complexation, so pre-dynamic concentrations of paramagnetic drugs and the relaxation rate is higher in the mixture with the polymer than in its absence. This results in small paramagnetic chelates such as Gd-DTPA that are highly concentrated.

これらの及び他の理由のためにPEG及び関連ポリマーは本発明の特に好ましい ポリマーである。For these and other reasons, PEG and related polymers are particularly preferred in the present invention. It is a polymer.

診断効能のために他の好ましいポリマーとしてはポリガラクツロン酸及びデキス トランを含む。Other preferred polymers for diagnostic efficacy include polygalacturonic acid and dextrin. Including Tran.

本発明のポリマーは磁気共鳴画像用造影剤として単独で水溶液と影剤間に存在し 、そのような会合はいわゆる混合物の範囲内にあると考えられる。The polymer of the present invention can be used alone as a contrast agent for magnetic resonance imaging between an aqueous solution and a contrast agent. , such associations are considered to be within the scope of so-called mixtures.

多数の造影剤が当業者に周知であり、例えば常磁性、超常磁性及ドロキソベンジ ルエチレンージアミンジ酢酸(HBED) 、N、N’ロノナンーN、N’、N ’−)り酢酸(NOTA)、l、4,8゜11−テトラアザシクロテトラデカン −N、N’、N”、N” −テトラ酢酸(TETA)及びクリプタンド(即ち巨 大環状錯体)を含む。更に好ましい錯化剤はDTPA、DOTA、DO3A及び クリブタンであり、DTPAか最も好ましい。好ましいタンパク質性巨大分子と してはアルブミン、コラーゲン、ポリアルギニン、ポリリジン、ポリヒスチジン 、γ−グロブリン及びβ−グロブリンからなる。更に好ましいタンパク質性巨大 分子はアルブミン、ポリアルDOTASG(1(I)−DO3A又はGd(I[ I)−クリブタン、特に亜鉄酸コバルト及び亜鉄酸ニッケルのようなフェロ又は フェリ磁気影剤の場合共にそのようなガスはしばしば造影剤の効能を増大するス としては空気、酸素、二酸化炭素、窒素、キセノン、ネオン及び剤に使用するこ とができる。しかしながらポリマーは少なくとも約1重量%の濃度で存在させる ことが好ましく、約5重量%と約50重量%のあいだが更に好ましく、一般的に は約40重量%が最も好ましい。当業者が認めるようにこれらのパラメーターの 範囲内で最適ポリマー濃度がポリマーの分子量、その水結合能力、並びに使用さ れる個々のポリマーの他の特性によって影響されることは当然である。また、常 磁性及びプロトン密度造影剤の場合、造影剤は少なくとも約0.1ミリモルの濃 度で存在させることが好ましく、更に好ましくは約0.5ミリモルと約2ミリモ ルのあいだであり、最も好ましくは約1ミリモルである。超常磁性薬剤の場合、 濃度は少なくとも約1ミクロモルであることが好ましく、更に好ましくは約5ミ クロモルと約50ミクロモルのあいだであり、最も好ましくは約10ミクロモル である。ガスを使用する場合、少なくとも約20psiを投与約1分前に溶液に 送気することが好ましく、更に好ましくは約30pSj と約50psiのあい だであり、最も好ましくは約40psiである。A large number of contrast agents are well known to those skilled in the art, such as paramagnetic, superparamagnetic and droxobenzi. ethylene diamine diacetic acid (HBED), N, N' lononane-N, N', N '-) diacetic acid (NOTA), l, 4,8゜11-tetraazacyclotetradecane -N, N', N'', N''-tetraacetic acid (TETA) and cryptand (i.e. macrocyclic complexes). More preferred complexing agents are DTPA, DOTA, DO3A and Cributane, most preferably DTPA. Preferred proteinaceous macromolecules and Albumin, collagen, polyarginine, polylysine, polyhistidine , γ-globulin and β-globulin. More preferred proteinaceous giant The molecule is albumin, polyal DOTASG(1(I)-DO3A or Gd(I[ I) - ferro or cributane, especially cobalt ferrite and nickel ferrite; In the case of ferrimagnetic contrast agents, such gases are often used to increase the efficacy of the contrast agent. Can be used for air, oxygen, carbon dioxide, nitrogen, xenon, neon and other agents. I can do it. However, the polymer is present at a concentration of at least about 1% by weight. preferably between about 5% and about 50% by weight, and generally between about 5% and about 50% by weight. is most preferably about 40% by weight. of these parameters as recognized by those skilled in the art. The optimum polymer concentration within the range depends on the molecular weight of the polymer, its water binding capacity, and the Of course, this will be influenced by other properties of the particular polymer used. Also, always For magnetic and proton density contrast agents, the contrast agent has a concentration of at least about 0.1 mmol. preferably about 0.5 mmol and about 2 mmol, more preferably about 0.5 mmol and about 2 mmol and most preferably about 1 mmol. For superparamagnetic drugs, Preferably the concentration is at least about 1 micromolar, more preferably about 5 micromolar. between chromol and about 50 micromolar, most preferably about 10 micromolar It is. If gas is used, apply at least about 20 psi to the solution about 1 minute before dosing. It is preferable to supply air, more preferably between about 30 pSj and about 50 psi. and most preferably about 40 psi.

本発明は一般的に患者を画像診断するのに、詳細には患者の疾患組織の存在を診 断するのに有効である。本発明の画像診断方法は本発明の造影剤を患者に投与し 、次いで患者の体内領域及び/又はその領域のあらゆる疾患組織の可視像を得る ために磁気共鳴画像法を用いて患者を走査することによって行なわれる。患者の 領域は患者全体又は患者の特定範囲又は部分を意味する。造影剤は消化管領域の 画像を得るのに特に有効であるが、血管系を画像診断したり当業者に容易に明ら かな他の方法に更に広く使用することもできる。本明細書で用いられる消化系領 域又は消化管とは食道、胃、小及び大腸及び直腸によって定義される患者の領域 を含む。本明細書で用いられる血管系とは体内又は体内の臓器又は一部の血管を 示す。患者はあらゆる種類の哺乳動物であるかヒトが最も好ましい。The present invention is useful for diagnosing images of patients in general, and specifically for diagnosing the presence of diseased tissue in patients. It is effective for cutting off The image diagnosis method of the present invention involves administering the contrast agent of the present invention to a patient. , then obtain a visible image of the patient's body region and/or any diseased tissue in that region. This is done by scanning the patient using magnetic resonance imaging. patient's Region refers to the entire patient or a specific area or portion of the patient. The contrast agent is used in the gastrointestinal region. It is particularly useful for obtaining images of the vasculature, but is not readily apparent to those skilled in the art. It can also be used more widely in other methods. Digestive system areas used herein The gastrointestinal tract is the area of the patient defined by the esophagus, stomach, small and large intestines, and rectum. including. The vascular system as used herein refers to the body or organs or part of the blood vessels within the body. show. Most preferably, the patient is a mammal of any kind or human.

当業者か認めるように投与は脈管内、経口、直腸等に種々の方法で種々の投与剤 形を用いて行なうことかできる。走査される領域が消化管領域である場合、本発 明の造影剤の投与は経口又は直腸に行なわれることが好ましい。投与されるf効 な用量及び個々の投与法は年令、体重及び個々の哺乳動物及び走査されるその領 域及び使用される本発明の個々の造影剤によって異なるであろう。代表的には用 量はより低いレベルで開始し、所望のコントラストが増強されるまで増加される 。生物適合性ポリマーの種々の組合わせは造影剤の緩和現象を改変し、粘度、浸 透度又は口あたり(経口投与材料の場合)のような特性を変えるために用いられ る。本発明の方法を行なう場合、造影剤は単独で又は他の診断用、治療用又は池 の薬剤と混合し−て用いることができる。このような他の薬剤としては香味剤又 は着色剤のような賦形剤を含む。更に所望により本発明の造影剤はリポソーム又 は他の送達賦形剤で被包化することができる。As will be recognized by those skilled in the art, administration can be accomplished by a variety of methods including intravascular, oral, rectal, etc. It can be done using shapes. If the region scanned is the gastrointestinal region, this Preferably, the bright contrast agent is administered orally or rectally. f-effect administered The appropriate dose and individual administration method will depend on the age, weight and individual mammal and its territory being scanned. will vary depending on the area and the particular contrast agent of the invention used. Typically used The amount starts at a lower level and is increased until the desired contrast is enhanced. . Various combinations of biocompatible polymers can modify the relaxation phenomenon of contrast agents and improve viscosity, penetration, and used to alter properties such as transparency or mouthfeel (in the case of orally administered materials). Ru. When carrying out the method of the invention, the contrast agent may be used alone or with other diagnostic, therapeutic or combined agents. It can be used in combination with other drugs. Other such agents include flavoring agents or contains excipients such as colorants. Furthermore, if desired, the contrast agent of the present invention may be used in liposomes or can be encapsulated with other delivery vehicles.

ポリマー又はポリマーと造影剤及び/又はガス混合物は所望により使用前にオー トクレーブにかけて滅菌することができる。If desired, the polymer or polymer and contrast agent and/or gas mixture may be heated in an oven before use. It can be sterilized by tococlaving.

使用される磁気共鳴画像技術は常法であり、例えばり、 M、 KeanM、  A、 Sm4th、 Magnetic Re5onance 【maging  : Pr1nciples andApplications (Wjlli am and Wilkins、 Baltjmore 1986)に記載され る。考えられるMRI技術としては核磁気共鳴(NMR)及び電子スピン共鳴( ESR)があるかこれらに限定されない。好ましい画像診断法はNMRである。The magnetic resonance imaging techniques used are conventional, for example: M, KeanM, A, Sm4th, Magnetic Re5onance [maging : Pr1nciples and Applications (Wjlli am and Wilkins, Baltjmore 1986). Ru. Possible MRI techniques include nuclear magnetic resonance (NMR) and electron spin resonance ( ESR) or are not limited to these. A preferred imaging modality is NMR.

当業者に明らかなように、磁気共鳴画像に使用する場合、ポリマー又はポリマー と造影剤及び/又はガスとの混合物は、用いられるポリマーの種類、ポリマーの 分子量、ポリマーの濃度、ポリマーと混合する造影剤の種類、選択されるMRI 法の81類及びMRI画像診断に用いられるパルス系列の詳細に依存して、TI  、T2又はプロトン密度造影剤として操作され、そのような操作のメカニズム 全てか本発明の範囲内にあると考えられる。As will be clear to those skilled in the art, when used in magnetic resonance imaging, polymers or The mixture of contrast agent and/or gas depends on the type of polymer used, the polymer Molecular weight, concentration of polymer, type of contrast agent mixed with polymer, selected MRI Depending on Chapter 81 of the Act and the details of the pulse sequence used for MRI imaging, the TI , operated as a T2 or proton density contrast agent, and the mechanism of such operation All are considered to be within the scope of this invention.

本発明の造影剤は磁気共鳴画像、特に消化管領域の画像診断においてコントラス ト増強薬剤として非常に有効であることを示した。The contrast agent of the present invention improves contrast in magnetic resonance imaging, especially in image diagnosis of the gastrointestinal region. It was shown to be very effective as a potentiating agent.

ポリマー単独を使用するか、本発明によるポリマーと造影剤を混合することによ って、同じか又は多くの場合、良好な程度のコントラスト増強効果を得るために 全濃度の低い造影剤が用いられる。これは毒性の可能性のある造影剤の大量使用 を避けることによって毒性の点ばかりでなく、しばしば更に高価な価格の従来の 造影剤を用いないので価格の点でも利点がある。更にその上、超常磁性粒子によ る陰性造影剤の場合には、低用量の造影剤を使用する能力により磁化人工物が減 少される。本発明の明細書に記載されるこれらの及び他の利点は本発明の開示を 読みとることにより当業者に容易に明らかになるであろう。By using the polymer alone or by mixing the polymer according to the invention with a contrast agent. Therefore, in order to obtain the same or, in many cases, a good degree of contrast enhancement effect, A contrast agent with a low total concentration is used. This involves the use of large amounts of potentially toxic contrast media. By avoiding conventional Since no contrast agent is used, there is also an advantage in terms of cost. Furthermore, superparamagnetic particles In the case of negative contrast agents, the ability to use lower doses of contrast agent reduces magnetization artifacts. It will be less. These and other advantages described in the specification of the invention make the disclosure of the invention It will be readily apparent to those skilled in the art upon reading.

本発明は更に下記実施例に記載される。これらの実施例は添付の請求の範囲の範 囲を制限するものとして解釈すべきではない。The invention is further described in the Examples below. These examples are within the scope of the appended claims. should not be construed as limiting.

分子量約8000を育するポリマーポリエチレングリコール(PEG)を種々の 濃度(W/W ;重量)まで水に溶解した。次いでいくらかのPEG水溶液に造 影剤Gd−DTPAをGd−DTPAの最終濃度が1mMになるように加えた。Polyethylene glycol (PEG), a polymer with a molecular weight of approximately 8,000, is used in various It was dissolved in water to a concentration (W/W; weight). Then some PEG is added to the aqueous solution. A contrast agent Gd-DTPA was added so that the final concentration of Gd-DTPA was 1 mM.

次いでPEG及びPEGとG d −DTPA溶液の緩和率(1/TI及び1/ T2)をToshiba MR−50A O,5Tesla(T)全身スキャナ を用いて試験管内で試験した。結果を表1及び図2に示す。結果が示すようにP EGの存在下では水及びGd−DTPA両方の緩和率は増加する。Next, the relaxation rates of PEG and PEG and G d -DTPA solutions (1/TI and 1/ T2) with Toshiba MR-50A O,5 Tesla (T) whole body scanner It was tested in vitro using The results are shown in Table 1 and FIG. 2. As the results show, P In the presence of EG, the relaxation rates of both water and Gd-DTPA increase.

最良には緩和速度は単に加算され、即ち実測緩和速度は個々の成分の緩和速度の 合計であることが予想される。しかしながら表1及び図2の検査は水中40%C w/w)REG 8000のT1緩和速度か1.35±0.0410.57であ り、水中1mMGd−DTPAの緩和速度が4.68±0.0910.5Tであ ることを測定したことを示す。速度か単に加算されるならば40%(w/w)P EG8000溶液中1mMGd−DTPAの実測緩和速度はおよそ4.68+1 .35=6.0310.5Tであることが予想される。しかしながら驚くことに 表1及び図2の結果はpEG/水/Gd−DTPA!合物の緩和速度が実際には 12.81±0.7210.5 Tであることを示す。TI及びT2両緩和速度 の合計としてポリマー/Gd−DTPA混合物の緩和速度はPEG溶液及びGd −DTPA溶液単独の緩和速度の合計より大きいことが認められた。At best, the relaxation rates are simply added together, i.e. the measured relaxation rate is the sum of the relaxation rates of the individual components. It is expected that the total will be However, the tests in Table 1 and Figure 2 indicate that 40%C in water w/w) The T1 relaxation rate of REG 8000 is 1.35±0.0410.57. The relaxation rate of 1mMGd-DTPA in water is 4.68±0.0910.5T. Indicates that the measurement was made. 40% (w/w) P if velocity is simply added The measured relaxation rate of 1mM Gd-DTPA in EG8000 solution is approximately 4.68+1 .. It is expected that 35=6.0310.5T. However, surprisingly The results in Table 1 and Figure 2 are pEG/water/Gd-DTPA! The relaxation rate of the compound is actually 12.81±0.7210.5T. Both TI and T2 relaxation rates The relaxation rate of the polymer/Gd-DTPA mixture as the sum of the PEG solution and Gd - It was observed that the relaxation rate was greater than the sum of the relaxation rates of the DTPA solution alone.

前述の結果はGd−DTPAの前動濃度がポリマーに結合されない水中で増大す るように直接PE0分子の周囲からGd−DTPAが排除される結果として生じ るものであると解釈される。しかしながら本発明は操作のいかなる理論によって も制限されるものではない。The above results indicate that the prekinetic concentration of Gd-DTPA increases in water where it is not bound to a polymer. This occurs as a result of the removal of Gd-DTPA from directly around the PE0 molecule, as shown in It is interpreted that However, the invention is not limited by any theory of operation. is not restricted either.

表1 1 [DM Gd−DTPA(D不在及び存在下PEG3000/水混合物の0 .57i:おける緩和率 試料 1 /TI(1/秒)1 /T2(1/秒)水 0.21 f O,04 0,65+ 0.0410%PEG/水 0.41 f O,030,85:t : 0.0320%PEG/水 0.64 f O,021,12+ 0.06 30%PEG/水 0.96 + 0.02 1.57 + 0.0540%P EG/水 1.35 f O,042,25+ 0.081 mM Gd−DT PA/ 水 4.68 f O,185,flt5 + 0.031O%PEG /水/ I mM Gd−DTPA 5.58 =!= 0.23 6.86  =!= 0.0220%PEG/水/1mMGd−DTPA 7.19±0.5 3 8.69f0.0730%PEG/水/ 1111MGd−DTPA 9. 42 :i: 0.58 12.11 + 0.084096 PEG/水/1 mMGd−DTPA I2.81+0.72 17.62+0.15実施例2 ポリマーデキストロースをPEGの代わりに使用した以外は実質的に実施例1を 繰り返した。結果を図3に示す。結果が示すようにデキストロースの存在下では 水及びGd−DTPA両方の緩和率か増大する。Table 1 1 [DM Gd-DTPA (0 of PEG3000/water mixture in the absence and presence of D .. 57i: Relaxation rate at Sample 1 / TI (1/sec) 1 / T2 (1/sec) Water 0.21 f O,04 0,65 + 0.0410% PEG/water 0.41 f O,030,85:t : 0.0320% PEG/water 0.64 f O,021,12+0.06 30% PEG/water 0.96 + 0.02 1.57 + 0.0540%P EG/water 1.35 f O,042,25 + 0.081 mM Gd-DT PA/Water 4.68 f O, 185, flt5 + 0.031O% PEG /Water/ImM Gd-DTPA 5.58=! = 0.23 6.86 =! = 0.0220% PEG/water/1mMGd-DTPA 7.19±0.5 3 8.69f0.0730% PEG/water/1111MGd-DTPA 9. 42:i: 0.58 12.11 + 0.084096 PEG/water/1 mMGd-DTPA I2.81+0.72 17.62+0.15 Example 2 Substantially the same as Example 1 except that polymer dextrose was used in place of PEG. repeated. The results are shown in Figure 3. In the presence of dextrose as the results show The relaxation rate of both water and Gd-DTPA increases.

また図3が示すようにPEGと同様にデキストロースとGd−DTPA溶液の緩 和率は個々の緩和速度の合計より大である。In addition, as shown in Figure 3, similar to PEG, dextrose and Gd-DTPA solution are The sum rate is greater than the sum of the individual relaxation rates.

実施例3 ImMGd−DTPA、30% (w/w)PEG8000及び10%(W/W )デキストロースの水溶液を調製しTIを報告した以外は実質的に実施例1を繰 り返した。Tl緩和速度11.67±1.09(1/秒)10.5Tを実測した 。Example 3 ImMGd-DTPA, 30% (w/w) PEG8000 and 10% (w/w ) Substantially repeat Example 1, except that an aqueous solution of dextrose was prepared and the TI was reported. I went back. The Tl relaxation rate was actually measured to be 11.67±1.09 (1/sec) 10.5T. .

えるために異種ポリマーが用いられることを示す。例えば実施例3に示されるよ うに1mMGd−DTPA及び30%PEGF3000及び10%デキストロー スの溶液はTl緩和速度11.67±1.09(1/秒)10.5Tを示す。比 較的には、1m!jGd−DTPA及び30%PEC;8000の溶液はTl緩 和速度9.42±0.58(1/秒)10.5Tを示し、1mMGd−DTPA 及び10%デキストロースの溶液はTl緩和速度2−33±0.0’2(1/秒 )10.57を示す。This shows that different polymers can be used to For example, as shown in Example 3. Sea urchin 1mM Gd-DTPA and 30% PEGF3000 and 10% dextrose The solution of S shows a Tl relaxation rate of 11.67±1.09 (1/sec) 10.5T. ratio Comparatively, 1m! jGd-DTPA and 30% PEC; 8000 solution It showed a sum velocity of 9.42 ± 0.58 (1/s) 10.5T, and 1mMGd-DTPA and a solution of 10% dextrose has a Tl relaxation rate of 2-33 ± 0.0'2 (1/s ) 10.57 is shown.

実施例4 胃腸管内で分解されない低毒性ポリマーである10%(W/W)セルロースを異 なった濃度の亜鉄酸塩造影剤を存在させて又はさせずにまた二酸化炭素を存在さ せて又はさせずに水溶液として使用する以外は実質的に実施例1を繰り返した。Example 4 10% (w/w) cellulose, a low toxicity polymer that does not degrade in the gastrointestinal tract, Carbon dioxide was also present with or without the presence of ferrite contrast agent at the same concentration. Example 1 was essentially repeated except that it was used as an aqueous solution with or without addition.

結果を表2及び図4に示す。結果が示すように、セルロースもまた有効なT2緩 和剤であり、セルロースのT2緩和率は二酸化炭素のようなガスと混合すること によって改良される。更に結果は混合ポリマー/亜鉄酸塩造影剤がガスと混合し てもしなくてもポリマーあるいは亜鉄酸塩単独と比較した場合、緩和率の点で優 れているように亜鉄酸塩の如き超常磁性造影剤とセルロースを混合することがで きることを示す。詳しくは結果から、ガス化後の10mM亜鉄酸塩と10%セル ロースを含有する試料のT2緩和率が水中亜鉄酸塩の40m1J分散液よりT2 緩和率が高いことを見ることができる。直接の結論は少なくとも4フアクターに よって投与される亜鉄酸塩の用量を減少し、更に同程度のコントラスト増強を得 ることが可能であることである。これは造影剤の毒性の可能性を減少させる点で 明確な利点である。The results are shown in Table 2 and FIG. 4. As the results show, cellulose is also an effective T2 relaxant. It is a Japanese additive, and the T2 relaxation rate of cellulose can be reduced by mixing it with a gas such as carbon dioxide. Improved by Furthermore, the results show that the mixed polymer/ferrite contrast agent mixes with the gas. superior in relaxation rate when compared to polymer or ferrite alone, with or without It is possible to mix cellulose with superparamagnetic contrast agents such as ferrite, as shown in Show that you can do it. For details, see the results for 10mM ferrite and 10% cells after gasification. The T2 relaxation rate of the sample containing loin was higher than that of a 40ml 1J dispersion of ferrite in water. It can be seen that the relaxation rate is high. The direct conclusion is at least 4 factors Therefore, the dose of ferrite administered can be reduced and still achieve the same degree of contrast enhancement. It is possible to This is in that it reduces the possibility of contrast agent toxicity. This is a clear advantage.

表2 水/亜鉄酸塩及びセルロース/水/亜鉄酸塩混合物の0.5Tにおける緩和率 +10mM 亜鉄酸塩 1.16±0.01 5.45±0.07+ 20mM  亜鉄酸塩 1.92±0.03 10.20±0.10+40mM 亜鉄酸塩  3.60±0.10 20.24±0.43水中10%セルロース −12, 76±0.08+ガスで加圧 0.76±0.01 15.95±0,05ガス +10− 亜鉄酸塩 1,98±0.03 22.82±0.62ガス+20m M 亜鉄酸塩 2.41±0.03 26.75±0.32ガス+40mM 亜 鉄酸塩 4.15±0.11 37.42±0.94測定され、1/T2は79 .41±3.20ミリモルー’ 5ec−’に測定された。Table 2 Relaxation rate of water/ferrite and cellulose/water/ferrite mixtures at 0.5T +10mM ferrite 1.16±0.01 5.45±0.07+20mM Ferrite 1.92±0.03 10.20±0.10+40mM Ferrite 3.60±0.10 20.24±0.43 10% cellulose in water -12, Pressurized with 76±0.08+ gas 0.76±0.01 15.95±0.05 gas +10- Ferrite 1,98±0.03 22.82±0.62 gas +20m M ferrite 2.41±0.03 26.75±0.32 gas + 40mM submersible Ferrate 4.15±0.11 37.42±0.94 measured, 1/T2 is 79 .. It was measured to be 41±3.20 mmol'5ec-'.

た。Ta.

7及び8に上昇させるのに十分な量で溶液に加える以外は実質的に実施例6の操 作を繰り返した。これらの種々のpHレベルにおける溶液の緩和率(1/TI及 びI/T2)をToshiba MRT −50Ao、 5Tesla(T)全 身スキャナを用いて試験管内で試験した。結果を以下の表3に示す。7 and 8, substantially the same procedure as in Example 6 except that they were added to the solution in sufficient quantities to raise the I repeated the work. The relaxation rate (1/TI and and I/T2) to Toshiba MRT-50Ao, 5 Tesla (T) It was tested in vitro using a body scanner. The results are shown in Table 3 below.

表3 種々のpHレベルの水/ポリガラクツロン酸/Mn(I[)混合物の0.5Tに おける緩和率 pH64,10±0.192 7.941±0.320pH73,73±0.2 15 6.29±0.240pH84,11±0.546 6.64±0.26 8本明細書に示され記載されたものに加えて種々の変更が上記記載から当業者に 明らかになるであろう。そのような変更もまた添付の請求の範囲の範囲内に属す るものである。Table 3 to 0.5 T of water/polygalacturonic acid/Mn(I[) mixtures at various pH levels. relaxation rate at pH64,10±0.192 7.941±0.320pH73,73±0.2 15 6.29±0.240pH84,11±0.546 6.64±0.26 8. Various modifications in addition to those shown and described herein will occur to those skilled in the art from the foregoing description. It will become clear. Such modifications also fall within the scope of the appended claims. It is something that

ポリマー ホリエチレングリコール%(W / W )デキストロース%(w / w ) 亜鉄酸塩濃度(ミクロモル) 図4 要約書 磁気共鳴画像法において使用される新規な造影剤を記載する。そのような造影剤 は生物適合性ポリマーを単独あるいは常磁性、超常磁性又はプロトン密度造影剤 の如き造影剤の一種以上との混合物からなる。更に、ポリマー又はポリマーと造 影剤との混合物は一種以上の生物適合性ガスと混合することもでき、得られる製 剤の緩和性を増加させる。polymer Polyethylene glycol% (W/W) Dextrose% (w/W) Ferrite concentration (micromolar) Figure 4 abstract A novel contrast agent used in magnetic resonance imaging is described. such contrast agents is a biocompatible polymer alone or a paramagnetic, superparamagnetic, or proton density contrast agent. It consists of a mixture with one or more contrast agents such as. Additionally, polymers or polymer-constructed The mixture with the contrast agent can also be mixed with one or more biocompatible gases and the resulting product Increases the relaxation properties of the agent.

国際調査報告 −惰内−^−tm11−.PCT/US91102429Per/US9110 2429 ArtUnlt 129 1、Oatms 1−3.8−8.12−16. and 25−30. dr awn to a contrast mediumcampr諒■a pol ymer and a method or using 5aid poly mer for magnetlメ@resonance imaging (MRI)、 classtfled in C1ass 4 24. tabd叫9゜If、 Oaims 4晶10,22−24.33.  and 34. drawn to古awn to a contrast m ed撃狽窒■ COmpri5ingparamagnetlc contrast agen ts、 optlonally chelaled to ≠獅凵@or a  broad class or chelatLng agents and a poly mer and a method or using 5≠奄п@polym er for magneLIc resonance imaging (MR[)、 cl asdfled in C1ass 12B、 su反1a唐刀@654CΔ。international search report -Inauchi-^-tm11-. PCT/US91102429Per/US9110 2429 ArtUnlt 129 1, Oatms 1-3.8-8.12-16. and 25-30. dr awn to a contrast mediumcampryo■a pol ymer and a method or using 5aid poly mer for magnetl@resonance imaging (MRI), classfled in C1ass 4 24. tabd shout 9゜If, Oaims 4 crystals 10, 22-24.33.  and 34. drawn to old awn to a contrast ed Gekiho Nit ■ Compri5ingparamagnetlc contrast agen ts, optionally chelated to ≠shio@or a broad class or chelatLng agents and a poly mer and a method or using 5≠奄п@polym er for magneLIc resonance imaging (MR[), cl asdfled in C1ass 12B, su anti-1a Karato @654CΔ.

IIl、 Claims 5,11,17−21.21. and 32. d rawn (o山1wn to a contrast m■р奄浮■ comp山−any blocompatable gas and any  polymer and a method or usi獅■@s♂1d polymer for magneLIc resonance imagi ng <MRI)、 dastlned in 0ass S24. 先腕1a ss 613゜ Examiner、One sk口led in the art could  readily practice the 1nven狽奄盾氏@or G roup 1 w1thout pracLldng Or Infringing the  1nvenLlo+1(s) or Groups ll−撃撃P.5ince  each or the compoSltlons represented above c onta−]■h diverse tngrecilen狽刀@each b  an lndependant Invention and each Is ca pable or supporting Its own@patent。IIl, Claims 5, 11, 17-21.21. and 32. d raw (o mountain 1wn to a contrast m■рAmuki■ comp mountain - any blocompatible gas and any polymer and a method or usi■@s♂1d polymer for magne LIc resonance imagi ng <MRI), dastlned in 0ass S24. Forearm 1a ss 613° Examiner, One led in the art could Readily practice the 1nven Mr. Jun Kana @or G roup 1 w1thout pracLldng Or Infringing the 1nvenLlo+1(s) or Groups ll-Gekkeki P. 5 ince each or the compoSltlons represented above c onta-]■h diverse tngrecilengotto@each b An lndependant Invention and each Is ca pable or supporting its own@patent.

Because these 1nventions are distinc t for the reasons glven abo魔■@and ha ve acqulred a 5eparate 5tatus in the ar t as shown by jhetr dl汀ment@classifi cation。Because these 1 innovations are distinct t for the reasons GLVEN ABO MA■@and ha ve accqulred a 5eparate 5tatus in the ar t as shown by jhetr dlment@classifi cation.

resLrjctjon for examination purposes  as Indicated Is proper。resLrjctjon for examination purposes As Indicated Is proper.

Claims (34)

【特許請求の範囲】[Claims] 1.生物適合性合成ポリマーの水溶液を造影剤と混合させてなる磁気共鳴画像用 造影剤。1. For magnetic resonance imaging made by mixing an aqueous solution of a biocompatible synthetic polymer with a contrast agent Contrast agent. 2.ポリマーがポリエチレン、ポリオキシエチレン、ポリプロピレン、プルロン 酸、プルロン酸アルコール、ポリビニル及びポリビニルピロリドンからなる群か ら選択される請求項1記載の造影剤。2. Polymer is polyethylene, polyoxyethylene, polypropylene, Pluron The group consisting of acids, pluronic acid alcohols, polyvinyl and polyvinylpyrrolidone The contrast agent according to claim 1, which is selected from the group consisting of: 3.ポリマーがポリエチレングリコールであるポリエチレンである請求項2記載 の造影剤。3. Claim 2, wherein the polymer is polyethylene which is polyethylene glycol. contrast agent. 4.造影剤が常磁性、超常磁性及びプロトン密度造影剤からなる群から選択され る請求項1記載の造影剤。4. the contrast agent is selected from the group consisting of paramagnetic, superparamagnetic and proton density contrast agents; The contrast agent according to claim 1. 5.造影剤が更に生物適合性ガスからなる請求項1記載の造影剤。5. The contrast agent of claim 1, wherein the contrast agent further comprises a biocompatible gas. 6.生物適合性合成非架橋ポリマーの水溶液からなる磁気共鳴画像用造影剤。6. A contrast agent for magnetic resonance imaging consisting of an aqueous solution of a biocompatible synthetic non-crosslinked polymer. 7.ポリマーがポリエチレン、ポリオキシエチレン、ポリプロピレン、プルロン 酸、プルロン酸アルコール、ポリビニル及びポリビニルピロリドンからなる群か ら選択される請求項6記載の造影剤。7. Polymer is polyethylene, polyoxyethylene, polypropylene, Pluron The group consisting of acids, pluronic acid alcohols, polyvinyl and polyvinylpyrrolidone The contrast agent according to claim 6, which is selected from the group consisting of: 8.ポリマーがポリエチレングリコールであるポリエチレンである請求項7記載 の造影剤。8. Claim 7, wherein the polymer is polyethylene which is polyethylene glycol. contrast agent. 9.造影剤が更に造影剤をポリマーと混和させてなる請求項6記載の造影剤。9. 7. The contrast agent according to claim 6, wherein the contrast agent further comprises a contrast agent mixed with a polymer. 10.造影剤が常磁性、超常磁性及びプロトン密度造影剤からなる群から選択さ れる請求項9記載の造影剤。10. The contrast agent is selected from the group consisting of paramagnetic, superparamagnetic and proton density contrast agents. The contrast agent according to claim 9. 11.造影剤が更に生物適合性ガスからなる請求項6記載の造影剤。11. 7. The contrast agent of claim 6, wherein the contrast agent further comprises a biocompatible gas. 12.実質的に少なくとも1種の生物適合性非架橋ポリマーの水溶液からなる磁 気共鳴画像用造影剤。12. a magnetic material consisting essentially of an aqueous solution of at least one biocompatible non-crosslinked polymer; Contrast agent for air resonance imaging. 13.ポリマーがポリエチレン、ポリオキシエチレン、ポリプロピレン、プルロ ン酸、プルロン酸アルコール、ポリビニル及びポリビニルピロリドンからなる群 から選択される請求項12記載の造影剤。13. The polymer is polyethylene, polyoxyethylene, polypropylene, Pluro a group consisting of phosphoric acid, pluronic acid alcohol, polyvinyl and polyvinylpyrrolidone 13. The contrast agent according to claim 12, which is selected from: 14.ポリマーがポリエチレングリコールであるポリエチレンである請求項13 記載の造影剤。14. Claim 13 wherein the polymer is polyethylene which is polyethylene glycol. Contrast agent as described. 15.非架橋ポリマーがアラビナン、フルクタン、フカン、ガラクタン、ガラク ツロナン、グルカン、マンナン、キシラン、レバン、フコイダン、カラゲーナン 、ガラクトカロロース、ペクチン酸、アミロース、プルラン、グリコーゲン、ア ミロペクチン、セルロース、カルボキシメチルセルロース、ヒドロキシプロピル メチルセルロース、デキストラン、パスツラン、キチン、アガロース、ケラタン 、コンドロイチン、デルマタン、ヒアルロン酸、アルギン酸及び他のホモポリマ ー又はエリスロース、トレオース、リボース、アラビノース、キシロース、リキ ソース、アロース、アルトロース、グルコース、マンノース、グロース、イドー ス、ガラクトース、タロース、エリスルロース、リプロース、キシルロース、プ シコース、フルクトース、ソルボース、タガトース、グルクロン酸、グルコン酸 、グルカリン酸、ガラクツロン酸、マンヌロン酸、グルコサミン、ガラクトサミ ン及びニューラミン酸からなる群から選択される少なくとも1種以上のアルドー ス、ケト−ス、酸又はアミンを含有するヘテロポリマーからなる群から選択され る請求項12記載の造影剤。15. Non-crosslinked polymers include arabinan, fructan, fucan, galactan, and galac. Turonan, glucan, mannan, xylan, levan, fucoidan, carrageenan , galactocarolose, pectic acid, amylose, pullulan, glycogen, aluminum mylopectin, cellulose, carboxymethyl cellulose, hydroxypropyl Methylcellulose, dextran, pastulan, chitin, agarose, keratan , chondroitin, dermatan, hyaluronic acid, alginic acid and other homopolymers - or erythrose, threose, ribose, arabinose, xylose, riki sauce, allose, altrose, glucose, mannose, growth, idoo galactose, talose, erythrulose, repulose, xylulose, protein Sicose, fructose, sorbose, tagatose, glucuronic acid, gluconic acid , glucaric acid, galacturonic acid, mannuronic acid, glucosamine, galactosamide at least one aldo selected from the group consisting of selected from the group consisting of heteropolymers containing gases, ketoses, acids or amines. The contrast agent according to claim 12. 16.非架橋ポリマーがポリガラクツロン酸及びデキストランからなる群から選 択される請求項15記載の造影剤。16. The non-crosslinked polymer is selected from the group consisting of polygalacturonic acid and dextran. The contrast agent according to claim 15, which is selected from the group consisting of: 17.本質的に少なくとも1種の生物適合性ポリマー及び少なくとも1種の生物 適合性ガスの水溶液からなる造影剤。17. essentially at least one biocompatible polymer and at least one organism A contrast agent consisting of an aqueous solution of a compatible gas. 18.ポリマーがポリエチレン、ポリオキシエチレン、ポリプロピレン、プルロ ン酸、プルロン酸アルコール、ポリビニル及びポリビニルピロリドンからなる群 から選択される請求項17記載の造影剤。18. The polymer is polyethylene, polyoxyethylene, polypropylene, Pluro a group consisting of phosphoric acid, pluronic acid alcohol, polyvinyl and polyvinylpyrrolidone 18. The contrast agent according to claim 17, which is selected from: 19.ポリマーがポリエチレングリコールであるポリエチレンである請求項18 記載の造影剤。19. Claim 18 wherein the polymer is polyethylene which is polyethylene glycol. Contrast agent as described. 20.ポリマーがアラビナン、フルクタン、フカン、ガラクタン、ガラクツロナ ン、グルカン、マンナン、キシラン、レバン、フコイダン、カラゲーナン、ガラ クトカロロース、ペクチン酸、アミロース、プルラン、グリコーゲン、アミロペ クチン、セルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチル セルロース、デキストラン、パスツラン、キチン、アガロース、ケラタン、コン ドロイチン、デルマタン、ヒアルロン酸、アルギン酸及び他のホモポリマー又は エリスロース、トレオース、リボース、アラビノース、キシロース、リキソース 、アロース、アルトロース、グルコース、マンノース、グロース、イドース、ガ ラクトース、タロース、エリスルロース、リブロース、キシルロース、プシコー ス、フルクトース、ソルボース、タガトース、グルクロン酸、グルコン酸、グル カリン酸、ガラクツロン酸、マンヌロン酸、グルコサミン、ガラクトサミン及び ニューラミン酸からなる群から選択される少なくとも1種以上のアルドース、ケ ト−ス、酸又はアミンを含有するヘテロポリマーからなる群から選択される請求 項17記載の造影剤。20. Polymers include arabinan, fructan, fucan, galactan, and galacturona N, glucan, mannan, xylan, levan, fucoidan, carrageenan, gala Tocarolose, pectic acid, amylose, pullulan, glycogen, amylope cutin, cellulose, carboxymethylcellulose, hydroxypropylmethyl Cellulose, dextran, pastulan, chitin, agarose, keratan, condensate Droitin, dermatan, hyaluronic acid, alginic acid and other homopolymers or Erythrose, threose, ribose, arabinose, xylose, lyxose , allose, altrose, glucose, mannose, glucose, idose, ga Lactose, talose, erythrulose, ribulose, xylulose, psicor fructose, sorbose, tagatose, glucuronic acid, gluconic acid, glucose Caricic acid, galacturonic acid, mannuronic acid, glucosamine, galactosamine and At least one aldose selected from the group consisting of neuramic acid, Claims selected from the group consisting of heteropolymers containing toses, acids or amines The contrast agent according to item 17. 21.ポリマーがポリガラクツロン酸及びデキストランからなる群から選択され る請求項20記載の造影剤。21. the polymer is selected from the group consisting of polygalacturonic acid and dextran; The contrast agent according to claim 20. 22.ポリガラクツロン酸及びデキストランからなる群から選択される少なくと も1種の生物適合性ポリマーの水溶液を造影剤と混合してなる造影剤。22. at least one selected from the group consisting of polygalacturonic acid and dextran; A contrast agent made by mixing an aqueous solution of one type of biocompatible polymer with a contrast agent. 23.ポリマーがポリガラクツロン酸である請求項22記載の造影剤。23. 23. A contrast agent according to claim 22, wherein the polymer is polygalacturonic acid. 24.造影剤がMn(II)である常磁性イオンである請求項22記載の造影剤 。24. The contrast agent according to claim 22, wherein the contrast agent is a paramagnetic ion of Mn(II). . 25.(i)請求項1記載の造影剤の診断的に有効な量を患者に投与し、(ii )領域の可視像を得るために磁気共鳴画像法を用いて患者を走査することからな る患者の体内領域の画像を得る方法。25. (i) administering to a patient a diagnostically effective amount of a contrast agent according to claim 1; ) from scanning the patient using magnetic resonance imaging to obtain a visible image of the area. method of obtaining images of areas inside a patient's body. 26.(i)請求項1記載の造影剤の診断的に有効な量を患者に投与し、(ii )患者のあらゆる疾患組織の可視像を得るために磁気共鳴画像法を用いて患者を 走査することからなる患者の疾患組織の存在の診断方法。26. (i) administering to a patient a diagnostically effective amount of a contrast agent according to claim 1; ) examine the patient using magnetic resonance imaging to obtain visible images of any diseased tissue in the patient. A method of diagnosing the presence of diseased tissue in a patient consisting of scanning. 27.(i)請求項6記載の造影剤の診断的に有効な量を患者に投与し、(ii )領域の可視像を得るために磁気共鳴画像法を用いて患者を走査することからな る患者の体内領域の画像を得る方法。27. (i) administering to a patient a diagnostically effective amount of the contrast agent of claim 6; (ii) ) from scanning the patient using magnetic resonance imaging to obtain a visible image of the area. method of obtaining images of areas inside a patient's body. 28.(i)請求項6記載の造影剤の診断的に有効な量を患者に投与し、(ii )患者のあらゆる疾患組織の可視像を得るために磁気共鳴画像法を用いて患者を 走査することからなる患者の疾患組織の存在の診断方法。28. (i) administering to a patient a diagnostically effective amount of the contrast agent of claim 6; (ii) ) examine the patient using magnetic resonance imaging to obtain visible images of any diseased tissue in the patient. A method of diagnosing the presence of diseased tissue in a patient consisting of scanning. 29.(i)請求項12記載の造影剤の診断的に有効な量を患者に投与し、(i i)領域の可視像を得るために磁気共鳴画像法を用いて患者を走査することから なる患者の体内領域の画像を得る方法。29. (i) administering to a patient a diagnostically effective amount of a contrast agent according to claim 12; i) from scanning the patient using magnetic resonance imaging to obtain a visible image of the area; A method of obtaining images of areas inside a patient's body. 30.(i)請求項12記載の造影剤の診断的に有効な量を患者に投与し、(i i)患者のあらゆる疾患組織の可視像を得るために磁気共鳴画像法を用いて患者 を走査することからなる患者の疾患組織の存在の診断方法。30. (i) administering to a patient a diagnostically effective amount of a contrast agent according to claim 12; i) examine the patient using magnetic resonance imaging to obtain visible images of any diseased tissue in the patient; A method of diagnosing the presence of diseased tissue in a patient. 31.(i)請求項17記載の造影剤の診断的に有効な量を患者に投与し、(i i)領域の可視像を得るために磁気共鳴画像法を用いて患者を走査することから なる患者の体内領域の画像を得る方法。31. (i) administering to a patient a diagnostically effective amount of the contrast agent of claim 17; i) from scanning the patient using magnetic resonance imaging to obtain a visible image of the area; A method of obtaining images of areas inside a patient's body. 32.(i)請求項17記載の造影剤の診断的に有効な量を患者に投与し、(i i)患者のあらゆる疾患組織の可視像を得るために磁気共鳴画像法を用いて患者 を走査することからなる患者の疾患組織の存在の診断方法。32. (i) administering to a patient a diagnostically effective amount of the contrast agent of claim 17; i) examine the patient using magnetic resonance imaging to obtain visible images of any diseased tissue in the patient; A method of diagnosing the presence of diseased tissue in a patient. 33.(i)請求項22記載の造影剤の診断的に有効な量を患者に投与し、(i i)領域の可視像を得るために磁気共鳴画像法を用いて患者を走査することから なる患者の体内領域の画像を得る方法。33. (i) administering to a patient a diagnostically effective amount of a contrast agent according to claim 22; i) from scanning the patient using magnetic resonance imaging to obtain a visible image of the area; A method of obtaining images of areas inside a patient's body. 34.(i)請求項22記載の造影剤の診断的に有効な量を患者に投与し、(i i)患者のあらゆる疾患組織の可視像を得るために磁気共鳴画像法を用いて患者 を走査することからなる患者の疾患組織の存在の診断方法。34. (i) administering to a patient a diagnostically effective amount of a contrast agent according to claim 22; i) examine the patient using magnetic resonance imaging to obtain visible images of any diseased tissue in the patient; A method of diagnosing the presence of diseased tissue in a patient.
JP91507878A 1990-04-10 1991-04-09 Polymers as contrast agents for magnetic resonance imaging Pending JPH05506227A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US50712590A 1990-04-10 1990-04-10
US507.125 1990-04-10
PCT/US1991/002429 WO1991015753A1 (en) 1990-04-10 1991-04-09 Polymers as contrast media for magnetic resonance imaging

Publications (1)

Publication Number Publication Date
JPH05506227A true JPH05506227A (en) 1993-09-16

Family

ID=24017359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP91507878A Pending JPH05506227A (en) 1990-04-10 1991-04-09 Polymers as contrast agents for magnetic resonance imaging

Country Status (8)

Country Link
EP (2) EP0526503B1 (en)
JP (1) JPH05506227A (en)
AT (2) ATE185489T1 (en)
DE (2) DE69126429T2 (en)
DK (1) DK0526503T3 (en)
ES (2) ES2103809T3 (en)
GR (1) GR3023806T3 (en)
WO (1) WO1991015753A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435940B2 (en) * 2006-05-17 2014-03-05 大塚製薬株式会社 Magnetic resonance contrast agent and magnetic resonance imaging method using polyethylene glycol

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368840A (en) * 1990-04-10 1994-11-29 Imarx Pharmaceutical Corp. Natural polymers as contrast media for magnetic resonance imaging
US5948387A (en) * 1990-06-01 1999-09-07 Imarx Pharmaceutical Corp. Contrast media for ultrasonic imaging
US5420176A (en) * 1990-06-01 1995-05-30 Imarx Pharmaceutical Corp. Contrast media for ultrasonic imaging
CA2081560A1 (en) * 1990-06-01 1991-12-02 Evan C. Unger Contrast media for ultrasonic imaging
DE4117782C2 (en) * 1991-05-28 1997-07-17 Diagnostikforschung Inst Nanocrystalline magnetic iron oxide particles, processes for their production and diagnostic and / or therapeutic agents
EP0614527A4 (en) * 1991-11-19 1998-06-03 Evan C Unger Gel particle contrast media for improved diagnostic imaging.
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5323780A (en) * 1992-08-07 1994-06-28 University Of Florida Research Foundation, Inc. Artifact-free imaging contrast agent
ES2199226T3 (en) * 1992-09-04 2004-02-16 The General Hospital Corporation BIOCOMPATIBLE POLYMERS CONTAINING DIAGNOSTIC OR THERAPEUTIC HALVES.
US5871710A (en) * 1992-09-04 1999-02-16 The General Hospital Corporation Graft co-polymer adducts of platinum (II) compounds
KR950703582A (en) * 1992-10-14 1995-09-20 조이스 이. 마임스 CHELATING POLYMERS
US5756688A (en) * 1992-10-14 1998-05-26 Sterling Winthrop Inc. MR imaging compositions and methods
AU5355094A (en) * 1992-10-14 1994-05-09 Sterling Winthrop Inc. Therapeutic and diagnostic imaging compositions and methods
US5817292A (en) * 1992-10-14 1998-10-06 Nycomed Imaging As MR imaging compositions and methods
US6753006B1 (en) 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US5665382A (en) * 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US5362478A (en) * 1993-03-26 1994-11-08 Vivorx Pharmaceuticals, Inc. Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell
US5650156A (en) * 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
US5605672A (en) * 1993-06-09 1997-02-25 The General Hospital Corporation Blood pool imaging composition and method of its use
DK0783325T3 (en) * 1994-09-27 2000-05-01 Nycomed Imaging As contrast agent
US20010003580A1 (en) 1998-01-14 2001-06-14 Poh K. Hui Preparation of a lipid blend and a phospholipid suspension containing the lipid blend
WO1999052564A1 (en) * 1998-04-09 1999-10-21 Nycomed Imaging A.S Method
DE19942278C2 (en) * 1999-09-04 2001-09-13 Messer Griesheim Gmbh Quantitative determination of the xenon content in liquids using NMR spectroscopy
US20070128118A1 (en) 2005-12-05 2007-06-07 Nitto Denko Corporation Polyglutamate-amino acid conjugates and methods
JP5341879B2 (en) 2007-05-09 2013-11-13 日東電工株式会社 Composition comprising hydrophobic compound and polyamino acid complex
KR101303567B1 (en) * 2011-03-08 2013-09-23 주식회사 인트론바이오테크놀로지 MRI contrast agent coated with carboxylated mannan and method for producing the same
ES2928401T3 (en) 2014-12-31 2022-11-17 Lantheus Medical Imaging Inc Compositions of lipid-encapsulated gas microspheres and related methods
EP3452108A4 (en) 2016-05-04 2019-12-25 Lantheus Medical Imaging, Inc. Methods and devices for preparation of ultrasound contrast agents
US9789210B1 (en) 2016-07-06 2017-10-17 Lantheus Medical Imaging, Inc. Methods for making ultrasound contrast agents

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4069306A (en) * 1974-03-14 1978-01-17 Pharmacia Aktiebolag X-ray contrast preparation containing a hydrophilic polymer containing amino groups
US4775522A (en) * 1983-03-04 1988-10-04 Children's Hospital Research Foundation, A Division Of Children's Hospital Medical Center NMR compositions for indirectly detecting a dissolved gas in an animal
US4586511A (en) * 1983-03-04 1986-05-06 Children's Hospital Medical Center Methods and compositions for detecting and imaging a gas in an animal by nuclear magnetic resonance
DE3316703A1 (en) * 1983-05-04 1984-11-08 Schering AG, 1000 Berlin und 4709 Bergkamen ORAL CONTRAST AGENT FOR MRI MRI AND THE PRODUCTION THEREOF
GB8408127D0 (en) * 1984-03-29 1984-05-10 Nyegaard & Co As Contrast agents
DE3577185D1 (en) * 1984-11-01 1990-05-23 Nycomed As PARAMAGNETIC CONTRAST AGENTS FOR USE IN "IN VIVO" NMR DIAGNOSTIC METHODS AND THE PRODUCTION THEREOF.
US4849210A (en) * 1985-05-08 1989-07-18 Molecular Biosystems, Inc. Magnetic resonance imaging of liver and spleen with superparamagnetic contrast agents
JPS62153229A (en) * 1985-12-27 1987-07-08 Nippon Oil Co Ltd Skin marker
US4871716A (en) * 1986-02-04 1989-10-03 University Of Florida Magnetically responsive, hydrophilic microspheres for incorporation of therapeutic substances and methods of preparation thereof
US4729892A (en) * 1986-03-21 1988-03-08 Ciba-Geigy Corporation Use of cross-linked hydrogel materials as image contrast agents in proton nuclear magnetic resonance tomography and tissue phantom kits containing such materials
US4933441A (en) * 1987-01-27 1990-06-12 Gibby Wendell A Contrast enhancing agents for magnetic resonance images
US4822594A (en) * 1987-01-27 1989-04-18 Gibby Wendell A Contrast enhancing agents for magnetic resonance images
DE3709851A1 (en) * 1987-03-24 1988-10-06 Silica Gel Gmbh Adsorptions Te NMR DIAGNOSTIC LIQUID COMPOSITIONS
US4838274A (en) * 1987-09-18 1989-06-13 Air Products And Chemicals, Inc. Perfluoro-crown ethers in fluorine magnetic resonance imaging
GB8813425D0 (en) * 1988-06-07 1988-07-13 Hall L D Magnetic resonance imaging
US4925648A (en) * 1988-07-29 1990-05-15 Immunomedics, Inc. Detection and treatment of infectious and inflammatory lesions
US4996041A (en) * 1988-08-19 1991-02-26 Toshiyuki Arai Method for introducing oxygen-17 into tissue for imaging in a magnetic resonance imaging system
GB8916780D0 (en) * 1989-07-21 1989-09-06 Nycomed As Compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435940B2 (en) * 2006-05-17 2014-03-05 大塚製薬株式会社 Magnetic resonance contrast agent and magnetic resonance imaging method using polyethylene glycol

Also Published As

Publication number Publication date
ES2138122T3 (en) 2000-01-01
DE69126429D1 (en) 1997-07-10
DE69131721D1 (en) 1999-11-18
EP0526503A4 (en) 1993-02-24
GR3023806T3 (en) 1997-09-30
DE69131721T2 (en) 2000-03-02
WO1991015753A1 (en) 1991-10-17
EP0526503B1 (en) 1997-06-04
EP0526503A1 (en) 1993-02-10
ES2103809T3 (en) 1997-10-01
EP0693288B1 (en) 1999-10-13
ATE153860T1 (en) 1997-06-15
DE69126429T2 (en) 1997-10-23
ATE185489T1 (en) 1999-10-15
EP0693288A1 (en) 1996-01-24
DK0526503T3 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
JPH05506227A (en) Polymers as contrast agents for magnetic resonance imaging
EP0670695B1 (en) Polymers as contrast media for magnetic resonance imaging
CA1331458C (en) Paramagnetic compounds
US6576221B1 (en) Iron-containing nanoparticles with double coating and their use in diagnosis and therapy
Young et al. Gadolinium zeolite as an oral contrast agent for magnetic resonance imaging
JP4965020B2 (en) Contrast-enhanced magnetic resonance imaging of tissue perfusion
JP2003500136A5 (en)
US5855868A (en) Method of T1 -weighted resonance imaging of RES organs
ØKSENDAL et al. Superparamagnetic particles as an oral contrast agent in abdominal magnetic resonance imaging
Zhang et al. Lactose-modified enzyme-sensitive branched polymers as a nanoscale liver cancer-targeting MRI contrast agent
JP2008074800A (en) Contrast composition for diffusion-weighted imaging
AU671862C (en) Polymers as contrast media for magnetic resonance imaging
CN107802844A (en) A kind of preparation method for the hydridization sodium alginate nanogel for loading double radiography elements
CN114042172B (en) PH-responsive T1-T2 dual-activation nanoprobe and preparation method and application thereof
Dong et al. Ultrasmall catechol-PEG-anchored ferrite nanoparticles for high-sensitive magnetic resonance angiography
JPH09227414A (en) Contrast medium composition
JPH0680588A (en) Contrast medium for mri
Prayer et al. Superparamagnetic particles as oral contrast medium in magnetic resonance imaging of patients with treated ovarian cancer—comparison with plain MRI
Niemi et al. Superparamagnetic particles as gastrointestinal contrast agent in magnetic resonance imaging of lower abdomen
KR101480393B1 (en) gadolinium complexs for contrast agent and contrast agent for diagnosing hepatoma
JP6182019B2 (en) Polymerized contrast agent
Khan Physics of MRI
Gorelik Analysis of domestic market of contrasting substances for X-ray diagnosis