JPH0550501B2 - - Google Patents

Info

Publication number
JPH0550501B2
JPH0550501B2 JP59131994A JP13199484A JPH0550501B2 JP H0550501 B2 JPH0550501 B2 JP H0550501B2 JP 59131994 A JP59131994 A JP 59131994A JP 13199484 A JP13199484 A JP 13199484A JP H0550501 B2 JPH0550501 B2 JP H0550501B2
Authority
JP
Japan
Prior art keywords
reaction
sulfur
group
water
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59131994A
Other languages
Japanese (ja)
Other versions
JPS6112653A (en
Inventor
Hisamitsu Ooba
Masanori Fukunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP59131994A priority Critical patent/JPS6112653A/en
Publication of JPS6112653A publication Critical patent/JPS6112653A/en
Publication of JPH0550501B2 publication Critical patent/JPH0550501B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明はニトロ安息香酸類から接触還元により
アミノ安息香酸類を製造する方法に関する。 「従来の技術」 アミノ安息香酸類は医薬、農薬、化粧品、樹脂
製造用原料として又樹脂脂用硬化剤等として近年
需要が増加しているものである。 アミノ安息香酸類の製造法としてはメタノール
などのアルコール溶媒中水素及びラネーニツケル
触媒の存在下ニトロ安息香酸類を接触還元する方
法が一般的である。 またジメチルホルムアミドと溶媒として接触還
元する方法も知られているが、これらの溶媒は接
触還元反応で生成する水と自由に混和するため反
応終了後これらの溶媒を回収するには多量の熱エ
ネルギーを必要とする蒸留操作を行なわなければ
ならない。また通常のラネーニツケル触媒を用い
て接触還元を行なつた場合、目的とする反応以外
の好ましくは副反応がおこる。 生成したアミノ基が溶媒のアルコールと反応し
てN−アルキルアミノ体を生成したり、エステル
交換反応を起こし、不純物を生成したりする。 これに反して水に事実上溶解しない炭化水素系
化合物を溶媒として接触還元する場合は生成する
アミノ安息香類が炭化水素系溶媒に溶解しにくい
ので目的物の分離が容易であるのみならず溶媒の
後処理についても液々分離によつて生成する水を
容易に除去出来るという利点がある。 しかしながらラネーニツケル触媒を使用して水
に事実上溶解しない炭化水素系溶媒中で接触水素
化反応を行なう方法は反応速度が非常に遅いので
工業的に有利な方法とはいえない。又前記のよう
な炭化水素系溶媒に4級アンモニウム塩、乳化剤
等を添加して反応を行つても反応液の着色、反応
廃液の分液性、発泡、品質面等不利な点が多くな
る。なおラネーニツケル触媒の代りに貴金属触媒
を使用すれば反応速度の面では改善されるが、貴
金属自体高価であるため工業的に有利な方法とは
いい難い。 「発明が解決しようとする問題点」 接触還元によつて生成する水との分離が容易な
水に事実上溶解しない炭化水素系溶媒及び安価に
入手できるラネーニツケル触媒を用いてニトロ安
息香酸類を工業的に有利な条件で接触還元する方
法の開発が望まれていた。 「問題点を解決する為の手段」 本発明者らは前記したような問題点を解決すべ
く鋭意努力した結果ニトロ安息香酸類の還元反応
に際し硫黄又は硫黄化合物を添加し、あるいはそ
れらでラネーニツケル触媒を被毒することにより
意外にも従来問題であつた反応速度を工業的に十
分満足できる程度に迄反応速度を増加せしめるこ
とが出来るばかりでなく高純度、高収率で、目的
とするアミノ安息香酸類が得られることを見出し
本発明を完成させた。即ち本発明は 式 (式(1)においてXは水素原子、クロル原子、ブ
ロム原子、水酸基、メトキシ基又はC1〜5のアルキ
ル基、Rはアミノ基、C1〜8のアルコキシ基、C3〜6
のアルコキシアルコキシ基、NHC2H4N(CH32
基、NHC2H4N(C2H52基、OC2H4N(CH22基、
OC2H4N(C2H52基又は 基を表わす。) で表わされるニトロ安息香酸類を水が共存しても
よい水に事実上溶解しない炭化水素系溶媒中、硫
黄もしくは硫黄化合物及びラネーニツケル触媒の
存在下又は硫黄化合物で被毒したラネーニツケル
を使用して接触水素化することにより式 (式(2)においてXは前記と同じ意味を、R′は
アミノ基、C1〜8のアルコキシ基、C3〜6のアルコキ
シアルコキシ基、NHC2H4N(CH32基、
NHC2H4N(C2H52基、OC2H4N(CH32基、
OC2H4N(C2H52基又は 基を表わす。) で表わされるアミノ安息香酸類を製造するという
ものである。 本発明で反応液中に加えられるか又はラネーニ
ツケル触媒を被毒する為に用いられる硫黄又はそ
の化合物としては次のものが挙げられる。 ●遊離硫黄 ●酸性亜硫酸塩:酸性亜硫酸ナトリウム、酸性亜
硫酸カリウム ●硫化ソーダ類:2硫化ソーダ、5硫化ソーダ、
その他の多硫化ソーダ ●チオ硫酸塩:チオ硫酸ナトリウム、チオ硫酸カ
リウム ●チオシアン酸塩:チオシアン酸ナトリウム、チ
オシアン酸カリウム ●ピロ硫酸塩:ピロ硫酸ナトリウム、ピロ硫酸カ
リウム ●アルキルスルフイド類:メチルスルフイド、エ
チルスルフイド ●メルカプタン類:メチルメルカプタン、エチル
メルカプタン、チオフエノール その他3酸化イオウ、2硫化炭素、硫化水素、
チオ尿素、ジメチルスルホキシド、スルホラン、
メルカプトベンゾチアゾール、ベンゾチアゾール
等の無機、有機の硫黄化合物も用いられる。 反応液に添加する前記硫黄又は硫黄化合物はラ
ネーニツケルのニツケル金属1000部に対して0.1
〜1000部より好ましくは1〜500部の範囲で用い
られる。本発明では又、硫黄又は硫黄化合物を用
いてラネーニツコル触媒を被毒させることもで
き、被毒触媒は例えば次のようにして得ることが
できる。 使用するラネーニツケル触媒は一般にニツケル
−アルミニウム合金であり、他種金属、例えば
鉄、クロム等数%含むものもあるがこのような合
金を使用前にアルカリ処理して展開するか又は市
販の展開されたラネーニツケル触媒をそのまま使
用してもよい。この展開されたラネーニツケルの
水性ペーストを純水中に懸濁し、撹拌しながら、
ニツケル金属1000重量部に対して0.1〜1000部、
より好ましくは1〜200重量部の範囲で硫黄又は
硫黄化合物を加えて0〜90℃の任意の温度で1〜
120分間処理し被毒処理されたラネーニツケル触
媒の水性ペーストを得る。被毒処理の方法として
は硫黄又は硫黄化合物をそのまま又はその水溶液
又は水●スラリー液として撹拌下にラネーニツケ
ル触媒の水懸濁液に添加するか、硫黄又は硫黄化
合物の水溶液又は水●スラリー液にラネーニツケ
ル触媒の水性ペーストを撹拌下に添加する等の方
法が用いられる。 この被毒処理の際に使用する水の量、硫黄又は
硫黄化合物の添加方法、処理温度、処理時間等の
条件を一定にすれば被毒効果に顕著な違いは生じ
ないので被毒効果の再現性は高い。 使用されるラネーニツケル触媒の使用量は任意
に選ぶことができるが、通常ニトロ安息香酸類
100重量部に対してニツケル金属0.1〜100重量部
より好ましくは1〜50重量部の範囲である。 本発明の方法が適用される式(1)のニトロ安息香
酸類としては、例えばo,m,p−ニトロ安息香
酸メチルエステル、o,m,p−ニトロ安息香酸
エチルエステル、o,m,p−ニトロ安息香酸−
m−プロピルエステル、o,m,p−ニトロ安息
香酸−m−ブチルエステル、o,m,p−ニトロ
安息香酸アミルエステル、3−メチル−4−ニト
ロ安息香酸エチルエステル、3−クロル−4−ニ
トロ安息香酸iso−プロピルエステル、2−メト
キシ−3−ニトロ安息香酸メチルエステル、2−
ヒドロキシ−4−ニトロ安息香酸−アミルエステ
ル、3−ニトロ安息香酸ベンジルエステル、4−
ニトロ安息香酸−β−ジエチルアミノエチルエス
テル、4−ニトロ安息香酸−β−ブトキシエチル
エステル、ビス−(4−ニトロベンゾキシ)−1,
3−プロパン、3−ニトロベンズアミド、4−ニ
トロ−N−(β−ジエチルアミノエチル)−ベンズ
アミド等をあげることができる。 本発明においてはニトロ安息香酸類を一度に反
応系に仕込むこともできるし、逐次的に仕込むこ
ともできる。ここに逐次的とはニトロ安息香酸類
をそのままもしくは溶媒に溶解して反応進行中の
反応系に連続的に又は間欠的に仕込むことを意味
する。 本発明で使用する水に事実上溶解しない炭化水
素系溶媒の例としては飽和の脂肪族炭化水素、脂
環式炭化水素及びアルキル基、ハロゲン基で置換
されていてもよい芳香族炭化水素等があげられ
る。次のその具体的な例をあげると、n−ペンタ
ン、n−ヘキサン、イソヘキサン、シクロヘキサ
ン、メチルシクロヘキサン、ベンゼン、トルエ
ン、エチルベンゼン、キシレン、イソプロピルベ
ンゼン、クロルベンゼン、o−ジクロルベンゼン
等である。これらの溶媒の使用量はニトロ安息香
酸類に対して1/3〜10倍程度が反応熱の除去、触
媒の分離等の点に於いて好都合である。 反応溶媒中に少量の水が混在していても本発明
の方法を実施する上で何の支障もない。 本発明の方法における反応は室温から200℃の
間の任意の温度において行なわれるが、好ましく
は40〜150℃で行なう。 又反応圧力については常圧〜100Kg/cm2ゲージ
の間の任意の反応圧において行なわれるが、好ま
しくは1〜20Kg/cm2ゲージで行なわれる。 反応の進行状況は水素吸収量によりチエツクす
ることができる。反応終了後は触媒を沈降分離あ
るいは過等により取り除いた後、分液により水
を除去し、冷却して結晶をとり出すか、必要によ
り溶媒を一部留去して、結晶を得る。液は蒸留
操作等加えることなくそのまま次回の反応溶媒に
供することができる。また室温において結晶化し
ないものは溶媒留去後、必要により蒸留操作等を
施すことにより目的物を得る。 「発明の効果」 本発明の方法によつて反応後の分液が容易で、
水に事実上溶解しない炭化水素系溶媒及び安価に
入手出来るララネーニツケル触媒を用いてニトロ
安息香酸類から収率よく、高純度のニトロ安息香
酸類をえることが出来る。 「実施例」 以下に実施例をあげて、本発明をさらに詳細に
説明する。 実施例 1 撹拌子を入れた1000c.c.ビーカーにラネーニツケ
ル触媒100gと水500c.c.を入れ室温で撹拌しながら
5.8gの酸性亜硫酸ソーダを加え60分撹拌した。
その後傾斜して上澄みの水を捨て被毒ラネーニツ
ケル触媒を得た。 撹拌機付の500c.c.オートクレーブにこの被毒ラ
ネーニツケル触媒3.0gとp−ニトロ安息香酸エ
チルエステル100g、トルエン150c.c.を入れ、水素
置換後、撹拌しながら昇温、昇圧を行ない、反応
圧10Kg/cm2ゲージ、反応温度100℃に到達させ
1000rpmにて水素還元を行なつた反応中水素は連
続的に供給する。反応開始から48分後に水素吸収
は完全に止つた。 続いて冷却静置を行ない、触媒を別し、トル
エン−水反応液を得た。反応液を分液ロートに移
し、水を分液後トルエン相を0℃まで冷却して析
出した結晶を過し、p−ニトロ安息香酸エチル
エステル80.1g(純度100.0%)を得た。 実施例 2 5.8gの酸性亜硫酸ソーダの代りに2.2gのチオ
硫酸ソーダを用いたことを除き実施例1の手順に
従つた。反応時間63分でp−アミノ安息香酸エチ
ルエステル80.2g(純度100.0%)を得た。 実施例 3 p−ニトロ安息香酸エチルエステル100gの代
りにp−ニトロ安息香酸メチルエステル80gを用
いたことを除き、実施例1の手順に従つた。反応
時間85分でp−アミノ安息香酸メチルエステル
64.0g(純度100.0%)を得た。 実施例 4 p−ニトロ安息香酸エチルエステル100gの代
りにp−ニトロ安息香酸−iso−アミルエステル
100gを用いて実施例1の手順に従つて反応させ
た。反応時間44分。水を分液して得たトルエン相
からトルエンを留去してp−アミノ安息香酸−
iso−アミルエステル83.8g(純度99.9%)を得
た。 実施例 5 トルエン150c.c.の代りにn−ペンタン150c.c.を用
いて実施例1の手順に従つて反応させた。反応時
間71分。 水を分液して得たn−ペンタン相からn−ペン
タンを留去してp−アミノ安息香酸エチルエステ
ル82.1g(純度99.9%)を得た。 実施例 6〜18 実施例1と同様にして硫黄又は各種硫黄化合物
で被毒処理したラネーニツケルを用いて反応を行
つた。
"Industrial Application Field" The present invention relates to a method for producing aminobenzoic acids from nitrobenzoic acids by catalytic reduction. ``Prior Art'' Demand for aminobenzoic acids has been increasing in recent years as raw materials for pharmaceuticals, agricultural chemicals, cosmetics, and resin production, and as curing agents for resins. A common method for producing aminobenzoic acids is to catalytically reduce nitrobenzoic acids in the presence of hydrogen and a Raney-nickel catalyst in an alcoholic solvent such as methanol. A method of catalytic reduction using dimethylformamide as a solvent is also known, but since these solvents are freely miscible with the water produced in the catalytic reduction reaction, a large amount of thermal energy is required to recover these solvents after the reaction is completed. The necessary distillation operations must be carried out. Furthermore, when catalytic reduction is carried out using a normal Raney-nickel catalyst, side reactions other than the desired reaction preferably occur. The generated amino group reacts with alcohol as a solvent to generate an N-alkylamino compound, or a transesterification reaction occurs to generate impurities. On the other hand, in the case of catalytic reduction using a hydrocarbon compound that is practically insoluble in water as a solvent, the aminobenzoates produced are difficult to dissolve in the hydrocarbon solvent, so it is not only easy to separate the target product, but also to remove the solvent. Regarding post-treatment, there is an advantage that water generated by liquid-liquid separation can be easily removed. However, the method of carrying out a catalytic hydrogenation reaction in a hydrocarbon solvent that is virtually insoluble in water using a Raney-nickel catalyst has a very slow reaction rate and is therefore not an industrially advantageous method. Further, even if the reaction is carried out by adding a quaternary ammonium salt, an emulsifier, etc. to the above-mentioned hydrocarbon solvent, there are many disadvantages such as coloring of the reaction liquid, separation property of the reaction waste liquid, foaming, and quality. Note that if a noble metal catalyst is used instead of the Raney-nickel catalyst, the reaction rate will be improved, but since the noble metal itself is expensive, this method cannot be said to be industrially advantageous. "Problems to be Solved by the Invention" Industrial production of nitrobenzoic acids using a hydrocarbon solvent that is virtually insoluble in water, which is easily separated from water produced by catalytic reduction, and an inexpensively available Raney-nickel catalyst. It has been desired to develop a method for catalytic reduction under favorable conditions. "Means for Solving the Problems" As a result of our earnest efforts to solve the above-mentioned problems, the present inventors added sulfur or sulfur compounds during the reduction reaction of nitrobenzoic acids, or added sulfur or sulfur compounds to the Raney-nickel catalyst. Surprisingly, by poisoning, it is possible to not only increase the reaction rate to a level that is industrially satisfactory, but also to produce the desired aminobenzoic acids with high purity and high yield. The present invention was completed by discovering that the following can be obtained. That is, the present invention has the formula (In formula (1), X is a hydrogen atom, a chlorine atom, a bromine atom, a hydroxyl group, a methoxy group, or a C1-5 alkyl group, and R is an amino group, a C1-8 alkoxy group, a C3-6
alkoxyalkoxy group, NHC 2 H 4 N(CH 3 ) 2
group, NHC 2 H 4 N (C 2 H 5 ) 2 groups, OC 2 H 4 N (CH 2 ) 2 groups,
2 OC 2 H 4 N (C 2 H 5 ) or represents a group. ) in a hydrocarbon solvent that is virtually insoluble in water, which may coexist with water, in the presence of sulfur or a sulfur compound and a Raney nickel catalyst, or using a Raney nickel poisoned with a sulfur compound. By hydrogenating the formula (In formula (2), X has the same meaning as above, R ' is an amino group, a C1-8 alkoxy group, a C3-6 alkoxyalkoxy group, NHC2H4N ( CH3 ) 2 group,
NHC 2 H 4 N (C 2 H 5 ) 2 groups, OC 2 H 4 N (CH 3 ) 2 groups,
2 OC 2 H 4 N (C 2 H 5 ) or represents a group. ) to produce aminobenzoic acids represented by Examples of sulfur or its compounds that are added to the reaction solution or used to poison the Raney-nickel catalyst in the present invention include the following. ●Free sulfur ●Acid sulfites: sodium acid sulfite, potassium acid sulfite ●Soda sulfides: sodium disulfide, sodium pentasulfide,
Other polysulfides ● Thiosulfates: Sodium thiosulfate, potassium thiosulfate ● Thiocyanates: Sodium thiocyanate, potassium thiocyanate ● Pyrosulfates: Sodium pyrosulfate, potassium pyrosulfate ● Alkyl sulfides: Methyl sulfide, Ethyl sulfide ●Mercaptans: Methyl mercaptan, ethyl mercaptan, thiophenol Other sulfur trioxide, carbon disulfide, hydrogen sulfide,
Thiourea, dimethyl sulfoxide, sulfolane,
Inorganic and organic sulfur compounds such as mercaptobenzothiazole and benzothiazole can also be used. The amount of the sulfur or sulfur compound added to the reaction solution is 0.1 per 1000 parts of Raney nickel metal.
The amount used is preferably 1 to 500 parts, more preferably 1 to 500 parts. In the present invention, the Raney-Nikkol catalyst can also be poisoned using sulfur or a sulfur compound, and the poisoned catalyst can be obtained, for example, as follows. The Raney nickel catalyst used is generally a nickel-aluminum alloy, and some contain several percent of other metals, such as iron and chromium. Raney nickel catalysts may be used as is. This developed aqueous paste of Raney nickel is suspended in pure water, and while stirring,
0.1 to 1000 parts per 1000 parts by weight of nickel metal,
More preferably, sulfur or a sulfur compound is added in a range of 1 to 200 parts by weight, and 1 to 200 parts by weight are added at any temperature of 0 to 90°C.
Treat for 120 minutes to obtain a poisoned aqueous paste of Raney nickel catalyst. Poisoning treatment methods include adding sulfur or sulfur compounds as they are or their aqueous solutions or water/slurry liquids to an aqueous suspension of Raney nickel catalyst under stirring, or adding Raney nickel to an aqueous solution or water/slurry of sulfur or sulfur compounds. Methods such as adding an aqueous paste of the catalyst under stirring are used. If conditions such as the amount of water used during the poisoning treatment, the method of adding sulfur or sulfur compounds, the treatment temperature, and the treatment time are kept constant, there will be no noticeable difference in the poisoning effect, so the poisoning effect can be reproduced. The quality is high. The amount of Raney nickel catalyst used can be selected arbitrarily, but usually nitrobenzoic acids
The range is preferably 1 to 50 parts by weight, more preferably 0.1 to 100 parts by weight of nickel metal per 100 parts by weight. Examples of the nitrobenzoic acids of formula (1) to which the method of the present invention is applied include o, m, p-nitrobenzoic acid methyl ester, o, m, p-nitrobenzoic acid ethyl ester, o, m, p- Nitrobenzoic acid
m-propyl ester, o,m,p-nitrobenzoic acid-m-butyl ester, o,m,p-nitrobenzoic acid amyl ester, 3-methyl-4-nitrobenzoic acid ethyl ester, 3-chloro-4- Nitrobenzoic acid iso-propyl ester, 2-methoxy-3-nitrobenzoic acid methyl ester, 2-
Hydroxy-4-nitrobenzoic acid amyl ester, 3-nitrobenzoic acid benzyl ester, 4-
Nitrobenzoic acid β-diethylaminoethyl ester, 4-nitrobenzoic acid β-butoxyethyl ester, bis-(4-nitrobenzoxy)-1,
Examples include 3-propane, 3-nitrobenzamide, 4-nitro-N-(β-diethylaminoethyl)-benzamide, and the like. In the present invention, nitrobenzoic acids can be charged into the reaction system all at once or sequentially. Here, "sequentially" means that the nitrobenzoic acids are continuously or intermittently introduced into the reaction system while the reaction is in progress, either as is or dissolved in a solvent. Examples of hydrocarbon solvents that are virtually insoluble in water used in the present invention include saturated aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons that may be substituted with alkyl groups or halogen groups. can give. Specific examples include n-pentane, n-hexane, isohexane, cyclohexane, methylcyclohexane, benzene, toluene, ethylbenzene, xylene, isopropylbenzene, chlorobenzene, o-dichlorobenzene, and the like. The amount of these solvents to be used is about 1/3 to 10 times the amount of nitrobenzoic acids, which is convenient in terms of removing reaction heat and separating the catalyst. Even if a small amount of water is mixed in the reaction solvent, there is no problem in carrying out the method of the present invention. The reaction in the method of the present invention is carried out at any temperature between room temperature and 200°C, preferably between 40 and 150°C. The reaction pressure may be any pressure between normal pressure and 100 kg/cm 2 gauge, preferably 1 to 20 kg/cm 2 gauge. The progress of the reaction can be checked by the amount of hydrogen absorbed. After the reaction is completed, the catalyst is removed by sedimentation or filtration, water is removed by liquid separation, and the crystals are taken out by cooling, or if necessary, a portion of the solvent is distilled off to obtain crystals. The liquid can be used as a solvent for the next reaction as it is without performing any distillation operation or the like. For those that do not crystallize at room temperature, the desired product can be obtained by distilling off the solvent and performing a distillation operation, if necessary. "Effects of the Invention" The method of the present invention allows easy separation of liquids after reaction.
High-purity nitrobenzoic acids can be obtained from nitrobenzoic acids in good yield using a hydrocarbon solvent that is virtually insoluble in water and an inexpensively available Laraney Nickel catalyst. "Example" The present invention will be described in further detail with reference to Examples below. Example 1 100 g of Raney nickel catalyst and 500 c.c. of water were placed in a 1000 c.c. beaker containing a stirring bar, and the mixture was stirred at room temperature.
5.8 g of acidic sodium sulfite was added and stirred for 60 minutes.
Thereafter, the vessel was tilted and the supernatant water was discarded to obtain a poisoned Raney nickel catalyst. 3.0 g of this poisoned Raney nickel catalyst, 100 g of p-nitrobenzoic acid ethyl ester, and 150 c.c. of toluene were placed in a 500 cc. Pressure 10Kg/cm 2 gauge, reaction temperature reached 100℃
Hydrogen is continuously supplied during the reaction in which hydrogen reduction is carried out at 1000 rpm. Hydrogen absorption completely stopped 48 minutes after the start of the reaction. Subsequently, the mixture was cooled and allowed to stand, and the catalyst was separated to obtain a toluene-water reaction liquid. The reaction solution was transferred to a separatory funnel, and after separating the water, the toluene phase was cooled to 0° C. and the precipitated crystals were filtered to obtain 80.1 g (purity 100.0%) of p-nitrobenzoic acid ethyl ester. Example 2 The procedure of Example 1 was followed except that 5.8 g of sodium acid sulfite was replaced with 2.2 g of sodium thiosulfate. In a reaction time of 63 minutes, 80.2 g (purity 100.0%) of p-aminobenzoic acid ethyl ester was obtained. Example 3 The procedure of Example 1 was followed except that 80 g of p-nitrobenzoic acid methyl ester was used instead of 100 g of p-nitrobenzoic acid ethyl ester. p-aminobenzoic acid methyl ester in a reaction time of 85 minutes
64.0g (purity 100.0%) was obtained. Example 4 p-nitrobenzoic acid-iso-amyl ester instead of 100 g p-nitrobenzoic acid ethyl ester
The reaction was carried out according to the procedure of Example 1 using 100 g. Reaction time: 44 minutes. Toluene is distilled off from the toluene phase obtained by separating water, and p-aminobenzoic acid-
83.8 g of iso-amyl ester (purity 99.9%) was obtained. Example 5 A reaction was carried out according to the procedure of Example 1 using 150 c.c. of n-pentane instead of 150 c.c. of toluene. Reaction time 71 minutes. N-pentane was distilled off from the n-pentane phase obtained by separating water to obtain 82.1 g (purity 99.9%) of p-aminobenzoic acid ethyl ester. Examples 6 to 18 Reactions were carried out in the same manner as in Example 1 using Raney nickel poisoned with sulfur or various sulfur compounds.

【表】 比較例 1 実施例1で使用した被毒ラネーニツケル触媒30
gの代りに被毒してないラネーニツケル触媒3.0
gを用いて実施例1と同様にして反応を行なつ
た。8時間を要してもまだ水素吸収があつた。そ
の時のガスクロマトグラフイーによる反応液の分
析ではp−アミノ安息香エチルエステル91.5%、
p−ニトロ安息香酸エチルエステル7.3%、その
他1.2%であつた。 比較例 2 p−ニトロ安息香酸エチルエステル100gの代
りにp−ニトロ安息香酸メチルエステル80g、被
毒ラネーニツケル触媒3.0gの代りに被毒してな
いラネーニツケル3.0gを用いたことを除き実施
例1の手順に従つた。8時間を要しても水素吸収
があつた。その時のガスクロマトグラフイーによ
る反応液の分析ではp−アミノ安息香酸メチルエ
ステル71.6%、p−ニトロ安息香酸メチルエステ
ル27.3%、その他1.1%であつた。
[Table] Comparative example 1 Poisoned Raney nickel catalyst 30 used in Example 1
Non-poisoned Raney nickel catalyst 3.0 instead of g
A reaction was carried out in the same manner as in Example 1 using g. Even after 8 hours, hydrogen was still absorbed. At that time, analysis of the reaction solution by gas chromatography revealed that p-aminobenzoic ethyl ester was 91.5%.
The content was 7.3% p-nitrobenzoic acid ethyl ester and 1.2% others. Comparative Example 2 Example 1 except that 80 g of p-nitrobenzoic acid methyl ester was used instead of 100 g of p-nitrobenzoic acid ethyl ester, and 3.0 g of unpoisoned Raney nickel was used instead of 3.0 g of poisoned Raney nickel catalyst. I followed the instructions. Hydrogen was absorbed even though it took 8 hours. Analysis of the reaction solution by gas chromatography at that time revealed that it contained 71.6% p-aminobenzoic acid methyl ester, 27.3% p-nitrobenzoic acid methyl ester, and 1.1% others.

Claims (1)

【特許請求の範囲】 1 式(1) (式(1)においてXは水素原子、クロル原子、ブ
ロム原子、水酸基、メトキシ基又はC1〜5のアルキ
ル基を、Rはアミノ基、C1〜8のアルコキシ基、
C3〜6のアルコキシアルコキシ基、NHC2H4N
(CH32基、NHC2H4N(C2H52基、OC2H4N
(CH32基、OC2H4N(C2H52基又は 基を表わす。) で表わされるニトロ安息香酸類を水が共存しても
よい水に事実上溶解しない炭化水素系溶媒中、硫
黄もしくは硫黄化合物及びラネーニツケル触媒の
存在下又は硫黄又は硫黄化合物で被毒したラネー
ニツケルを使用して接触水素化することを特徴と
する式 (式(2)においてXは前記と同じ意味を、R′は
アミノ基、C1〜8のアルコキシ基、C3〜6のアルコキ
シアルコキシ基、NHC2H4N(CH32基、
NHC2H4N(C2H52基、OC2H4N(CH32基、
OC2H4N(C2H52基又は 基を表わす。) で表わされるアミノ安息香酸類の製法。
[Claims] 1 Formula (1) (In formula ( 1 ) ,
C3-6 alkoxyalkoxy group , NHC2H4N
(CH 3 ) 2 groups, NHC 2 H 4 N (C 2 H 5 ) 2 groups, OC 2 H 4 N
(CH 3 ) 2 groups, OC 2 H 4 N (C 2 H 5 ) 2 groups, or represents a group. ) in a hydrocarbon solvent that is practically insoluble in water, where water may coexist, in the presence of sulfur or a sulfur compound and a Raney nickel catalyst, or by using Raney nickel poisoned with sulfur or a sulfur compound. A formula characterized by catalytic hydrogenation (In formula (2), X has the same meaning as above, R ' is an amino group, a C1-8 alkoxy group, a C3-6 alkoxyalkoxy group, NHC2H4N ( CH3 ) 2 group,
NHC 2 H 4 N (C 2 H 5 ) 2 groups, OC 2 H 4 N (CH 3 ) 2 groups,
2 OC 2 H 4 N (C 2 H 5 ) or represents a group. ) Process for producing aminobenzoic acids represented by
JP59131994A 1984-06-28 1984-06-28 Production of aminobenzoic acids Granted JPS6112653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59131994A JPS6112653A (en) 1984-06-28 1984-06-28 Production of aminobenzoic acids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131994A JPS6112653A (en) 1984-06-28 1984-06-28 Production of aminobenzoic acids

Publications (2)

Publication Number Publication Date
JPS6112653A JPS6112653A (en) 1986-01-21
JPH0550501B2 true JPH0550501B2 (en) 1993-07-29

Family

ID=15071067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131994A Granted JPS6112653A (en) 1984-06-28 1984-06-28 Production of aminobenzoic acids

Country Status (1)

Country Link
JP (1) JPS6112653A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111129A (en) * 1998-11-04 2000-08-29 Uniroyal Chemical Company, Inc. Process for the preparation of alkanediol-diaminobenzoates
KR100540888B1 (en) * 2002-02-26 2006-01-11 에스케이케미칼주식회사 Method for preparing p-aminobenzoic acid

Also Published As

Publication number Publication date
JPS6112653A (en) 1986-01-21

Similar Documents

Publication Publication Date Title
CA1127185A (en) Toluene diamine from non-washed dinitrotoluene
JPH0550501B2 (en)
WO1997001527A1 (en) Production of mono-n-alkyl-dinitroalkylanilines and n-alkyl-dinitroaniline derivatives
KR100195843B1 (en) A process for preparing dinitrotoluene
US4139562A (en) Process for purifying crude p-aminophenol
US4061646A (en) Process for purification of crude 2-mercaptobenzothiazole
US5990354A (en) Conversion of ammonium picrate to m-phenylenediamine, aniline, and primary amines
US4440962A (en) Process for removing nitrosating agents from 1-chloro-2,6-dinitro-4-(trifluoromethyl) benzene
US4677209A (en) Process for the preparation of 2-mercaptobenzoxazoles
JPS61275263A (en) Production of mercatophenol
CS215179B1 (en) Method of making the n-cyclohexybenzthiazol-2-sulphenamide
KR870001165B1 (en) Process for refining mercaptobenzothiazole
US4870209A (en) Process for purifying crude 4-aminophenol
JPH0520434B2 (en)
JP2722686B2 (en) Method for producing thiophosgene
JPH026339B2 (en)
SU1616514A3 (en) Method of purifying 1-chloro-2,6-dinitro-4-(trifluoromethyl)benzene
US5405999A (en) Process for preparing ethalfluralin
JP2808695B2 (en) Preparation of thiophosgene
JP2808696B2 (en) Method for producing thiophosgene
JPS60132933A (en) Manufacture of nitrodiarylamine
JPH0415219B2 (en)
JPS6261955A (en) Purification of n,n-diethylaminophenol
JP4338966B2 (en) Method for producing bisphenol A
EP0268507B1 (en) Process for the preparation of alkylthiochloroformiates

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term