JPH05504446A - Semiconductor interconnect structure using polyimide insulation - Google Patents

Semiconductor interconnect structure using polyimide insulation

Info

Publication number
JPH05504446A
JPH05504446A JP3503515A JP50351591A JPH05504446A JP H05504446 A JPH05504446 A JP H05504446A JP 3503515 A JP3503515 A JP 3503515A JP 50351591 A JP50351591 A JP 50351591A JP H05504446 A JPH05504446 A JP H05504446A
Authority
JP
Japan
Prior art keywords
layer
polyimide
polyimide layer
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3503515A
Other languages
Japanese (ja)
Inventor
アンソニイ、マーレーン・エー.
チヨウ、メラニイ
シユ、ルイーズ・エル―シイー
ジヨージ、ラジブ・ブイ.
ホワイト、ジエームズ・エフ.
Original Assignee
インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン filed Critical インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン
Publication of JPH05504446A publication Critical patent/JPH05504446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ポリイミド絶縁材を用いた半導体相互接続構造[産業上の利用分野] 本発明は、全般的には、半導体デバイスと製法に関する。[Detailed description of the invention] Semiconductor interconnect structure using polyimide insulating material [Industrial application field] TECHNICAL FIELD This invention relates generally to semiconductor devices and manufacturing methods.

より詳しくは、ポリイミド絶縁体を用いた半導体デバイス用の相互接続構造に関 する。More specifically, we will discuss interconnect structures for semiconductor devices using polyimide insulators. do.

[発明の背景] 通常、半導体デバイスは、シリコンやガリウム砒素などの基板内に形成されたデ バイス領域への電気接点及び相互接続の形成を必要とする。現在の大規模集積回 路(L S I )及び超大規模集積回路(VLSI)技術では、これらの電気 接点及び相互接続は、多段として形成され、隣接する相互接続段が絶縁材料の層 によって分離される。デバイスへの接点及び段間の接点を収容するため、バイア またはホールが、絶縁層を貫いて形成される。当技術分野では、このような相互 接続構造を、「パーソナライゼーション」あるいは「バックエンド・メタライゼ ーション」と呼んでいる。[Background of the invention] Semiconductor devices are typically semiconductor devices formed within a substrate such as silicon or gallium arsenide. Requires formation of electrical contacts and interconnections to the device area. Current large-scale integration cycle In LSI and very large scale integrated circuit (VLSI) technologies, these electrical Contacts and interconnects are formed in multiple stages, with adjacent interconnect stages being layers of insulating material. separated by Vias are provided to accommodate contacts to the device and contacts between stages. Or holes are formed through the insulating layer. In this technical field, such mutual ``Personalization'' or ``Backend Metallization'' of the connection structure It is called ``motion''.

従来、これらの相互接続構造に使われていた絶縁材料は、圧倒的に、二酸化シリ コン、窒化シリコン、ガラスなどの無機絶縁体であった。例えば、米国特許第4 822753号は、タングステン・スタッドによってケイ化デバイスに接続され たアルミニウム線を含むデバイス構造を示している。このタングステン・スタッ ドは、窒化チタン・バイア・ライナを含み、酸化物、窒化物、またはガラスから 構成される絶縁層を貫いて延びている。この構造を上方に(すなわち、半導体デ バイスの表面から離れる方向に)延長して多段の配線を設けることのできる多( の技法が、当技術分野で既知である。Traditionally, the insulating materials used for these interconnect structures have been overwhelmingly silicon dioxide. They were inorganic insulators such as silicon, silicon nitride, and glass. For example, U.S. Pat. No. 822753 is connected to a silicided device by a tungsten stud. A device structure including aluminum wires is shown. This tungsten stud The board includes titanium nitride via liners and is made from oxide, nitride, or glass. It extends through the insulating layer that is constructed. This structure should be moved upwards (i.e. Multi-layer wiring (in the direction away from the surface of the vise) that can be extended to provide multi-stage wiring techniques are known in the art.

「ポリイミド」と呼ばれる部類の材料が低い誘電定数を示し、そのため、絶縁層 として上記の相互接続構造で使用するのに特に望ましいものであると、ある期間 認められて来た。A class of materials called "polyimides" exhibit low dielectric constants, and therefore For a period of time, it is particularly desirable for use in the interconnect structure described above. I've been recognized.

例えば、米国特許第4560436号は、先細形のバイアをポリイミド絶縁層内 に形成する方法を示している。しかし、ポリイミドも、材料自体のもろい性質を 始めとして、いくつかの欠点を有する。ポリイミドは、半導体の加工に通常用い られていた材料および工程によってもたらされる汚染と、その後に起こる破壊を 特に受け易い。例えば、多くのエツチング液がポリイミドに対して非常に有害で あり、相互接続を作るのに用いられる金属の多くも同様である。For example, U.S. Pat. No. 4,560,436 describes tapered vias within a polyimide insulation layer. It shows how to form. However, polyimide also suffers from the brittle nature of the material itself. To begin with, it has some drawbacks. Polyimide is commonly used in semiconductor processing. The contamination caused by the materials and processes used and the subsequent destruction Especially easy to accept. For example, many etching solutions are very toxic to polyimide. Yes, and so do many of the metals used to make interconnects.

ヨーロッパ特許出願第0195977号は、ポリイミドを使って、電界効果トラ ンジスタ(FET)用のパーソナライゼーション構造中にプレーナ絶縁段を設け る方法を示している。上記の出願では、好ましくは二酸化シリコンで覆ったポリ イミド絶縁材をエツチングして、バイアを設ける。これらのバイアの底部を、例 えばポリイミドを粗面化して処理すると、選択的に付着されたタングステンを引 きつける活性化材として働(。選択的にタングステンを付着させたポリイミド絶 縁材を使用するこの工程を繰り返すと、多段相互接続構造が得られる。European Patent Application No. 0195977 uses polyimide to develop field effect transistors. A planar insulation stage is installed in the personalization structure for transistors (FET). It shows how to In the above-mentioned application, the polyester preferably covered with silicon dioxide Etch the imide insulation to provide vias. The bottom of these vias, e.g. For example, when polyimide is roughened, it attracts selectively deposited tungsten. Acts as a tightening activator (polyimide with selectively deposited tungsten) Repeating this process using edge material results in a multi-stage interconnect structure.

上記出願の方法は、タングステン金属が露呂したポリイミドを損傷する傾向をも つことを含めて、いくつかの顕著な欠点を有する。選択的に付着されたタングス テンの使用は、深いバイアが充填される間に浅いバイアが過剰充填されるので、 表面形状が様々に変化するデバイス表面に容易に適応できない。金属の選択的付 着でバイアがうま(充填されない。すなわち、例えば保護されていないポリイミ ドのガス抜け(「クリープ・アップ」形成と言う)によって、空隙が残る傾向が ある。さらに、この選択的付着は、それが実施できる金属が限られている。より 具体的には、銅、アルミニウムなどの望ましい相互接続金属ではうまく行かない 。上記出願は、どのような種類の移動イオンのゲッタリングをも実現するわけで ないという欠陥がある。The method of the above application also has a tendency to damage polyimide exposed to tungsten metal. It has some notable drawbacks, including: selectively deposited tongues The use of tens is important because shallow vias are overfilled while deep vias are filled. It cannot be easily adapted to device surfaces whose surface shapes vary. selective attachment of metals If the via is not filled (i.e. unprotected polyimide) There is a tendency for voids to remain due to outgassing (referred to as “creep up” formation). be. Furthermore, this selective deposition is limited to the metals on which it can be performed. Than Specifically, it does not work well with desirable interconnect metals such as copper, aluminum, etc. . The above application does not realize gettering of any type of mobile ions. There is a flaw that there is no.

相互接続構造の絶縁材としてポリイミドを用いるその他の例が、米国特許第47 02792号及び第4386116号に示されている。後者の特許は、多段相互 接続構造の絶縁材としてポリイミドを使用することを開示し、前者の特許はポリ イミド絶縁材を化学的機械的に研磨することにより多段相互構造を形成する方法 開示している。Another example of using polyimide as an insulating material in an interconnect structure is U.S. Pat. No. 02792 and No. 4386116. The latter patent is a multi-stage mutual The former patent discloses the use of polyimide as an insulating material in connection structures; Method for forming multi-tiered interconnected structures by chemical-mechanical polishing of imide insulators Disclosed.

本発明者の知る限りでは、ポリイミド材料の構造的保全性を維持しながら、ポリ イミドを後端絶縁体として用いて、その有益な誘電特性を最適化し、さらに様々 に変化する表面形状及び異なるタイプの相互接続金属に適応できる、従来技術の 方法はない。To the best of the inventor's knowledge, it is possible to Using imides as back-end insulators to optimize their beneficial dielectric properties and further of the prior art, which can adapt to varying surface geometries and different types of interconnect metals. There's no way.

[発明の要約] 本発明の目的は、ポリイミドを絶縁材として利用する、新しい、改善された半導 体相互接続構造、及びそれを製造する方法を提供することにある。[Summary of the invention] It is an object of the present invention to develop a new and improved semiconductor utilizing polyimide as an insulating material. An object of the present invention is to provide a body interconnect structure and a method of manufacturing the same.

本発明のもう一つの目的は、様々な高さの微細形状をもつデバイス構造への相互 接続を形成するのに容易に適用可能な、上記の方法及び装置を提供することにあ る。Another object of the present invention is to provide interconnection to device structures with microfeatures of various heights. The object of the present invention is to provide a method and apparatus as described above, which are easily applicable to forming a connection. Ru.

本発明のさらにもう一つの目的は、上記構造の異なる段で異なるタイプの導線が 使用できる、上記の方法及び装置を提供することにある。Yet another object of the invention is that different types of conductors are provided in different stages of the above structure. It is an object of the present invention to provide a method and a device as described above, which can be used.

本発明によれば、導電性接点を設けたい基板表面上のデバイス領域を含む、半導 体材料の基板と、基板表面の上のポリイミド層と、デバイス領域を露出させる、 ポリイミド層中の開口と、開口表面の上の金属ライニングと、デバイス領域への 導電性接点を形成するように、内張すされた開口をふさぐ耐火金属のスタッドと を備えた半導体構造が提供される。According to the invention, a semiconductor device including a device region on the surface of the substrate where it is desired to provide a conductive contact is provided. exposing a substrate of body material, a polyimide layer on top of the substrate surface, and a device area; An opening in the polyimide layer and a metal lining above the opening surface to the device area. A refractory metal stud plugs the lined opening to form a conductive contact. A semiconductor structure is provided.

本発明のもう一つの態様によれば、導電性接点を設けたい基板表面上のデバイス 領域を含む、半導体材料の基板を用意する段階と、基板表面の上にポリイミドの 層を形成する段階と、デバイス領域を露出させる開口をポリイミド層中に形成す る段階と、ポリイミド層中の開口表面の上に金属ライニングを形成する段階と、 ポリイミド層中の内張すされた開口をほぼ埋めるように、基板の上に耐火金属の 層を共形的に形成する段階と、耐火金属層をプレーナ化する段階とを含む、デバ イス領域への導電性接点を形成する方法が提供される。According to another aspect of the invention, the device on the surface of the substrate on which it is desired to provide conductive contacts providing a substrate of semiconductor material, including a region of polyimide on the surface of the substrate; forming the layer and forming an opening in the polyimide layer to expose the device area. forming a metal lining over the open surfaces in the polyimide layer; A layer of refractory metal is placed on top of the substrate to approximately fill the lined opening in the polyimide layer. The device includes the steps of conformally forming the layer and planarizing the refractory metal layer. A method of forming a conductive contact to a chair region is provided.

[図面の簡単な説明コ 本発明の上記及びその他の特徴、目的及び利点は、本発明の以下の詳細な記載を 図面を参照しながら読めば、明らかになろう。[Brief explanation of the drawing] These and other features, objects and advantages of the invention will be apparent from the following detailed description of the invention. It will become clear if you read it while referring to the drawings.

第1図ないし第9図は、本発明にしたがって製作された相互接続構造を含む、電 界効果トランジスタ (FET)の製造における連続する諸段階を順に示した断 面図である。FIGS. 1-9 illustrate electrical connections including interconnect structures made in accordance with the present invention. A cross-section showing the successive steps in the manufacture of a field-effect transistor (FET). It is a front view.

第10図ないし第12図は、ポリイミド中のバイアをエツチングする際に出会う アンダーカットの開運を克服するために利用される、本発明のある特徴構造を強 調した断面図である。Figures 10-12 are encountered when etching vias in polyimide. Certain features of the present invention are utilized to overcome undercut problems. FIG.

[発明の詳細な記載〕 ここで図面を参照すると、第1図は、N−シリコン基板24の主表面22上に製 造された電界効果(FET) トランジスタ20を示している。FET20は、 主表面22に隣接して形成され、間にある基板24のチャネル領域30によって 離隔されている、高ドープP゛ソース領域26及びドレイン領域28を含んでい る。チャネル30の表面の上にあり、表面から絶縁材の薄い層34によって離隔 されている導電ゲート接点32を含む、ゲート構造が設けられている。接点32 は、例えば、金属またはドープされたポリシリコンからなり、絶縁材34は、例 えば熱成長二酸化シリコン(SiO2)からなる。[Detailed description of the invention] Referring now to the drawings, FIG. A fabricated field effect (FET) transistor 20 is shown. FET20 is formed adjacent to major surface 22 by a channel region 30 of substrate 24 therebetween; It includes a highly doped P source region 26 and a drain region 28 that are spaced apart. Ru. overlying the surface of the channel 30 and separated from the surface by a thin layer of insulating material 34 A gate structure is provided that includes a conductive gate contact 32 that is connected to the gate. Contact point 32 is made of, for example, metal or doped polysilicon, and the insulating material 34 is made of, for example, metal or doped polysilicon. For example, it is made of thermally grown silicon dioxide (SiO2).

FET20はさらに、ゲート構造の垂直端を覆う酸化物の側壁スペーサ36.3 8と、FET20を取り囲み、基板24に形成されている他のデバイスから(図 示せず)FET2oを電気的に分離するフィールド酸化物領域4oを含んでいる 。その関連する微細構造を含めたFET20は、当技術分野で通常のデバイスを 備え、それらを製造する多くの方法が既知である。分離領域40を含むFET2 0を作成する詳細な方法は、本発明に含まれず、ここで詳しく説明する必要はな い。FET 20 further includes oxide sidewall spacers 36.3 covering the vertical edges of the gate structure. 8 and other devices surrounding the FET 20 and formed on the substrate 24 (Fig. (not shown) includes a field oxide region 4o electrically isolating FET 2o . FET 20, including its associated microstructure, is a conventional device in the art. Many methods of preparing and manufacturing them are known. FET2 including isolation region 40 The detailed method of creating 0 is not part of this invention and need not be described in detail here. stomach.

本発明によれば、無機絶縁材、好ましくは窒化シリコン(Si3N4)の薄い層 44を、FET20及びフィールド分離領域40を含む上記の構造の上に共形的 に付着する。層44は、例えば約2000オンゲストコームの厚さに形成する。According to the invention, a thin layer of inorganic insulating material, preferably silicon nitride (Si3N4) 44 conformally over the above structure including FET 20 and field isolation region 40. Attach to. Layer 44 is formed to a thickness of, for example, about 2000 angest combs.

層44は、後で付着される材料に対する移動イオンによる汚染を阻止する働きが ある。Layer 44 serves to prevent contamination of subsequently deposited materials by mobile ions. be.

層44の上にポリイミドの層46を、接点32の上面と表面22の間のストップ 高さ48より大きな厚さ、例えば約2.5ミクロンの厚さに付着する。ポリイミ ド46は、約450〜500℃の範囲の高温操作に耐える熱に安定なポリイミド 、例えば日立から市販されているPIQ L−100などから構成することが好 ましい。A layer 46 of polyimide is applied over layer 44 to form a stop between the top surface of contact 32 and surface 22. Deposit to a thickness greater than height 48, for example approximately 2.5 microns thick. polyimide Do46 is a heat-stable polyimide that withstands high temperature operation in the range of approximately 450-500°C. For example, it is preferable to use PIQ L-100 commercially available from Hitachi. Delicious.

次に第2図を参照すると、エッチバック・プレーナ化段階のfi/Jとして、プ レーナ化された上面46 Aをもたらすように、ニボキシまたは樹脂の層49を ポリイミド層46の表刃上に従来の方法でスピンニートする。次いで、第2図の デバイスを、例えば酸素プラズマを用いる反応性イオン・エツチング(RIE) など、層49を貫いて層46までブランケット°エツチング法を施して、ポリイ ミド層46の上面をプレーナ化する。Next, referring to FIG. 2, as fi/J in the etchback planarization stage, A layer of niboxy or resin 49 is applied to provide a rayed top surface 46A. The top surface of the polyimide layer 46 is spin-kneaded using a conventional method. Next, in Figure 2 The device can be etched by reactive ion etching (RIE) using, for example, oxygen plasma. etc., by applying a blanket etching method to the layer 46 through the layer 49. The upper surface of the middle layer 46 is planarized.

次に第3図を参照すると、上記の方法でプレーナ化した上面46Aを有するポリ イミド層46が示されている。層46のプレーナ化に続いて、例えば窒化シリコ ン、二酸化シリコン、またはガラスからなる無機絶縁材の層50を、層46の表 面上に、約3,500オングストロームの厚さに付着する。Referring now to FIG. 3, a polygon having a top surface 46A planarized in the manner described above. An imide layer 46 is shown. Following planarization of layer 46, e.g. A layer 50 of an inorganic insulating material, such as carbon dioxide, silicon dioxide, or glass, is applied to the surface of layer 46. It is deposited on the surface to a thickness of approximately 3,500 angstroms.

下記でさらに詳しく論じるように、層50は、エッチ・ストップ、研磨ストップ として、また下にあるポリイミドを後続の工程段階による損傷から保護するゲラ タラとして様々に機能する、不発明の重要な特徴構造を含んでいる。As discussed in more detail below, layer 50 includes an etch stop, a polish stop, etc. as well as a galley that protects the underlying polyimide from damage from subsequent process steps. Contains important features of the inventive structure that function as cods in a variety of ways.

次に第4図を参照すると、異方的反応性イオン・エツチング法で通常のフォトリ ソグラフィ・マスク (図示せず)を用いて、バイア52.54.56を形成す る。バイア54が、層50の表面から下方に層50.46.44を貫いて延び、 ゲート接点32の表面部分を露出させる。バイア52及び56も、同様に同じ層 50.46.44を貫いて下方に延び、それぞれソース領域26及びドレイン領 域28の表面部分を露出させる。バイア52.54.56は、例えばCF、プラ ズマを用いて層50を貫通してエツチングし、酸素プラズマを用いて層46を貫 通してエツチングし、フォトレジスト・マスクを除去した後もう一度CF、プラ ズマを用いて層44の露已部分を貫いてエツチングすることによって形成する。Next, referring to Figure 4, we can see that the anisotropic reactive ion etching method Using a lithographic mask (not shown), form vias 52, 54, 56. Ru. A via 54 extends from the surface of layer 50 downwardly through layer 50.46.44; A surface portion of gate contact 32 is exposed. Vias 52 and 56 are also on the same layer. 50, 46, and 44 extending downwardly through the source region 26 and drain region 26, respectively. A surface portion of area 28 is exposed. Vias 52, 54, 56 are for example CF, plastic. Etch through layer 50 using Zuma and through layer 46 using an oxygen plasma. After removing the photoresist mask, CF and plastic are etched again. It is formed by etching through the exposed portion of layer 44 using a Zuma.

本発明のもう一つの利点によれば、酸素プラズマを用いてポリイミド層46をエ ツチングすると、下にある基板24またはFET20に損傷を起こさず、完全か つ平坦なオーバーエツチングが可能となる。ポリイミドをかなりオーバーエツチ ングすることが、ステップ高さまたは表面形状が様々に変化する特徴構造に対し て良好なバイアを確保するためにしばしば望ましいが、本発明では下記で第10 図ないし第12図に関して述べるような僅かの方法変更でそれに対応できる。According to another advantage of the present invention, polyimide layer 46 is etched using an oxygen plasma. Twitching will ensure complete integrity without causing damage to the underlying board 24 or FET 20. This enables flat overetching. The polyimide is considerably overetched. For feature structures with varying step heights or surface topography, Although it is often desirable to ensure good vias in the This can be accommodated with slight method changes as described with reference to FIGS.

次に第5図を参照すると、導電材料の薄い層58を構造の上に共形的に付着する 。層58は、層48.50及び後で付着される耐火金属の間に拡散バリアを形成 するものを選び、チタン(T1)の第1層と窒化チタン(TiN)の第2層から なる2層構造を含むことが好ましい。層58は、例えばまずチタンをデバイスの 上に共形的に約500オングストロームの厚さにスパッタし、次いで窒化チタン をチタンの上に共形的に約500オングストロームの厚さに付着することによっ て形成できる。Referring now to FIG. 5, a thin layer 58 of conductive material is conformally deposited over the structure. . Layer 58 forms a diffusion barrier between layer 48.50 and the later deposited refractory metal. from the first layer of titanium (T1) and the second layer of titanium nitride (TiN). It is preferable to include a two-layer structure. Layer 58 may be formed, for example, by first applying titanium to the device. sputtered conformally onto the top to a thickness of approximately 500 angstroms and then titanium nitride. by depositing conformally onto the titanium to a thickness of approximately 500 angstroms. It can be formed by

次に第6図を参照すると、耐火金属、好ましくは化学的気相成長タングステン( W)の層を構造表面の上に付着して、バイア52.54.56を埋めて隙間を残 さない全体的に共形的な層60を形成する。本発明の重要な特徴によれば、タン グステン層60は、化学気相成長法(CVD)により、約300〜420℃の範 囲の温度、約5〜50トルの範囲の圧力で形成する。このCVD法は、通常のタ ングステン供給源ガス、例えばWF6+S i H4+H2を用いることができ る。これらの温度範囲及び圧力範囲内のとき、バイアの縦横比が1:4程度と非 常に大きい場合でさえ、タングステン層60はバイア52.54.56を一様に かつ隙間なく埋めることができる。Referring now to FIG. 6, a refractory metal, preferably chemical vapor grown tungsten ( Deposit a layer of W) on top of the structure surface to fill vias 52, 54, 56 and leave gaps. forming a generally conformal layer 60 that does not According to an important feature of the invention, the tan The gsten layer 60 is formed by chemical vapor deposition (CVD) at a temperature in the range of approximately 300 to 420°C. at ambient temperatures and pressures in the range of about 5 to 50 torr. This CVD method is A ungsten source gas such as WF6+SiH4+H2 can be used. Ru. Within these temperature and pressure ranges, the via aspect ratio is approximately 1:4. Tungsten layer 60 uniformly fills vias 52, 54, 56, even if always large. And it can be filled without any gaps.

この時点で、層58及び60の形成中に、無機層50が金属形成工程の劣化効果 及び腐食効果、特にCV Dタングステン法で用いられるガスの腐食効果からポ リイミド層46を保護する働きをすることに留意されたい。層58は、タングス テン層6oのデバイスへの接着力を改善し、下にあるデバイス領域に対するタン グステンの接触抵抗を低下させる働きをする。At this point, during the formation of layers 58 and 60, the inorganic layer 50 is exposed to the deteriorating effects of the metal forming process. and corrosion effects, especially the corrosion effects of the gas used in the CVD tungsten method. Note that it serves to protect the reimide layer 46. Layer 58 is tungs Improves the adhesion of the tensile layer 6o to the device and improves the adhesion of the tensile layer 6o to the underlying device area. It works to reduce the contact resistance of gsten.

次に第7図を参照すると、従来の化学的機械的研磨法を用いて、層60を下の絶 縁層50まで研磨し、それぞれソース領域26、ゲート接点32、ドレイン領域 28への離散的な金属スタッド接点60A、60B、60Cが残る。Referring now to FIG. 7, layer 60 is removed using conventional chemical mechanical polishing techniques. Polish down to the edge layer 50 and remove the source region 26, gate contact 32, and drain region, respectively. Discrete metal stud contacts 60A, 60B, 60C to 28 remain.

第7A図は、層50及び46がエツチングによって除去され、二酸化シリコン( すなわち石英)絶縁材63と交換される、本発明の代替実施例を示している。層 46及び50は、例えばCF、102プラズマを用いる反応性イオン・エツチン グ(RI E)法によって除去できる。層63は、従来の化学的気相酸化物成長 (CVD)法を用いて付着させ、次いで、従来の化学的機械的研磨法を用いてプ レーナ化して、第7A図に示されている構造をもたらすことができる。工程のこ の段階で本発明のどちらの実施例(すなわち第7図または第7A図の実施例)を 用いるかにかかわらず、下記の残りの工程段階は同じやり方で実施されることを 認識されたい。FIG. 7A shows that layers 50 and 46 have been removed by etching and silicon dioxide ( An alternative embodiment of the present invention is shown in which the insulation material 63 (i.e. quartz) is replaced. layer 46 and 50 are reactive ion etchants using e.g. CF, 102 plasma. It can be removed by the RIE method. Layer 63 is formed by conventional chemical vapor phase oxide growth. (CVD) method and then printed using conventional chemical mechanical polishing methods. It can be layered to yield the structure shown in FIG. 7A. process saw Which embodiment of the invention (i.e., the embodiment of FIG. 7 or FIG. 7A) of the present invention is used at the stage of The remaining process steps below are to be performed in the same manner regardless of the I want to be recognized.

次に第8図を参照すると、導電材料の薄い層64をデバイスの上に共形的に付着 し、後で付着される共形的に付着された導電材料のより厚い層66のエッチ・ス トップとして利用する。層64及び66は、異なるエツチング特性をもつことが 必要である。例えば、層64は、約0.1ミクロンの厚さにスパッタ付着された 銅からなり、層66は、約0.5ミクロンの厚さにスパッタ付着されたアルミニ ウムー銅合金(AICu)の第2層で覆われた、約0.5ミクロンの厚さにスパ ッタ付着されたチタン(T1)の第1層を含む多段構造からなる。Referring now to FIG. 8, a thin layer 64 of conductive material is conformally deposited over the device. etch step of the later deposited thicker layer 66 of conformally deposited conductive material. Use as a top. Layers 64 and 66 may have different etching properties. is necessary. For example, layer 64 was sputter deposited to a thickness of approximately 0.1 microns. Layer 66 is made of copper and is made of sputter deposited aluminum to a thickness of approximately 0.5 microns. Spun to a thickness of approximately 0.5 microns, covered with a second layer of Umu copper alloy (AICu). The structure consists of a multi-stage structure including a first layer of titanium (T1) deposited on the substrate.

層64.66の付着後の第8図の構造の説明を続けると、従来のフォトリソグラ フィ技法を用いて両層をマスクしく図示せず)、異方性エツチング剤を用いて、 全体的にFETゲート接点32の上にあり、埋められたバイ760Bの表面及び 層50の隣接部分を露出させる開口68を形成する。開口68は、例えばBCl 3、C1□、CC14RIEプラズマを用いてエッチ・ストップ層64までエツ チングし、HF浸漬液を用いて層64の露出部分を除去することによって形成で きる。このようにして層64.66中に開口68を形成した後、金属充填バイア 60A、60Cへの離散的な金属線/相互接続/ワイヤ、すなわちスタッド60 Aへの相互接続64A/66A及びバイア60Cへの相互接続64B/66Bを 形成する。Continuing with the structure of FIG. 8 after the deposition of layers 64 and 66, conventional photolithography using an anisotropic etching agent to mask both layers (not shown). The surface of the buried bi 760B, which is generally above the FET gate contact 32 and An opening 68 is formed exposing an adjacent portion of layer 50. The opening 68 is made of, for example, BCl. 3. Etch down to the etch stop layer 64 using C1□, CC14 RIE plasma. layer 64 and removing the exposed portions of layer 64 using an HF dip. Wear. After forming openings 68 in layers 64, 66 in this manner, metal-filled vias are formed. Discrete metal lines/interconnects/wires to 60A, 60C, i.e. studs 60 Interconnect 64A/66A to A and Interconnect 64B/66B to Via 60C Form.

第8図に開運して上述した工程の代りに、従来のりフトオフ法を用いて金属線6 4A/66A、 64 B/66 Bを形成することもできる。Instead of the process shown in FIG. 8 and described above, the metal wire 6 is 4A/66A, 64B/66B can also be formed.

次に第9図を参照すると、ポリイミドのプレーナ化層を形成する上記のステップ と、金属充填バイアを形成する上記のステップを繰り返して、ポリイミド絶縁材 72及び金属充填バイア/スタッド74.76.78を含む、第2の相互接続段 70を形成する。バイア76は、絶縁材72を貫いて延びて相互接続66A(し たがってFETゲート接点32)と接触し、バイア74及び76も同様に延びて それぞれ相互接続66、A(したがってFETソース領域26)及び66B(し たがってFETドレイン領域28)と接触する。Referring now to FIG. 9, the above steps for forming a planarized layer of polyimide. and polyimide insulation by repeating the above steps to form metal-filled vias. 72 and metal filled vias/studs 74, 76, 78. form 70. Via 76 extends through insulation 72 to connect interconnect 66A. thus contacting the FET gate contact 32) and extending vias 74 and 76 as well. interconnects 66, A (and thus FET source region 26) and 66B (and thus making contact with the FET drain region 28).

本発明の上記工程を拡張して、メタライゼーションの層をさらに設けることがで きることが理解されよう。不発明の利点を用いると、少くとも4段までのメタラ イゼーションが基板22上のFET20などのデバイスの上に形成できるように なり、各段は、金属充填バイア(すなわちバイア52.54.56)を支持し、 金属相互接続(すなわち相互接続66A、66B)を覆うポリイミド絶縁材の1 つの層(すなわち層46)として1定されることが理論付けされる。The above steps of the invention can be extended to provide further layers of metallization. It will be understood that it can be done. Using the advantage of non-invention, metallization up to at least 4 stages ization can be formed on a device such as FET 20 on substrate 22. and each stage supports metal-filled vias (i.e. vias 52, 54, 56); 1 of polyimide insulation covering the metal interconnects (i.e. interconnects 66A, 66B) It is theorized that one layer (ie, layer 46) is defined.

次に第10図ないし第12図を参照すると、バイアをオーバーエツチングしてエ ツチング・マスクをアンダーカットすることが必要である、あるいは望ましい、 本発明の顕著な利点が示されている。このような状況に8会うのは、例えば異な る縦横比のバイアをエツチングする必要がある場合である。Referring now to Figures 10-12, the vias can be overetched and etched. It is necessary or desirable to undercut the tucking mask, Significant advantages of the invention are shown. 8 This kind of situation can be met, for example, in a different way. When it is necessary to etch a via with a certain aspect ratio.

第10図は、上にある窒化シリコン層82、ポリイミド層84、窒化シリコン層 86を支持しているシリコン基板80を示している。(これは上記の第3図に示 されている絶縁体構造とほぼ同じであることが理解されよう。)図では開口88 が層86の表面から延びて層82に接触しており、開口88は、マスク用の窒化 シリコン層86の下にアンダーカット90を形成するように、02プラズマでオ ーバーエツチングされている。層86の上の通常のフォトリソグラフィ・マスク は自明であり、図示されていない。FIG. 10 shows the overlying silicon nitride layer 82, polyimide layer 84, and silicon nitride layer. A silicon substrate 80 is shown supporting 86. (This is shown in Figure 3 above. It will be understood that the structure is almost the same as that of the insulator structure described above. ) In the figure, the opening 88 extends from the surface of layer 86 and contacts layer 82, and opening 88 includes a masking nitride layer. 02 plasma to form an undercut 90 under the silicon layer 86. - bar etched. Conventional photolithography mask over layer 86 is self-explanatory and not shown.

本発明のこの特徴によれば、例えばCF、RIEプラズマ・エツチング剤を用い て、開口88中の層82の露出部分と同時に、窒化シリコン層86が除去される 。第11図を参照すると、上記のようにして、バリア金属層92及びプランケッ ト・タングステン付着層94が形成される。According to this aspect of the invention, using e.g. CF, RIE plasma etching agents, The silicon nitride layer 86 is then removed simultaneously with the exposed portion of layer 82 in the opening 88. . Referring to FIG. 11, the barrier metal layer 92 and Plunkett layer 92 are removed as described above. A tungsten adhesion layer 94 is formed.

第12図を参照すると、タングステン層94を層84の上面まで化学的機械的に 研磨して、充填されたバイア94Aが得られる。次いで、望ましい無機層、例え ば窒化シリコンの層96を再付着し、本発明にしたがって以後の処理を続ける。Referring to FIG. 12, tungsten layer 94 is chemically mechanically deposited to the top surface of layer 84. Polishing results in filled vias 94A. Then the desired inorganic layer, e.g. Then, a layer of silicon nitride 96 is redeposited and further processing continues in accordance with the present invention.

このように、本発明はあまり工程を変更せず、またあまり工程の複雑さもなく、 バイアのオーバーエツチングに対処できる。In this way, the present invention does not require much change in the process and does not have much complexity in the process. Can deal with via overetching.

このように、半導体デバイス用の金属相互接続を形成する新しくかつ改善された 方法が提供される。無機質の保護被覆と、拡散バリアで内張すされ耐火金属で埋 められたバイアまたはスタッドを備えたポリイミド絶縁材を用いると、得られる 相互接続構造は、従来技術の構造に優る、下記の顕著な利点を提供する。Thus, new and improved forming metal interconnects for semiconductor devices A method is provided. Lined with an inorganic protective coating and diffusion barrier and filled with refractory metal. Using polyimide insulation with calibrated vias or studs, the The interconnect structure provides the following significant advantages over prior art structures.

−低誘電性の絶縁材が使用できる − 下層の構造を損傷せずにエツチングできる− 下にあるステップ高さが様々 に変化する特徴構造に確実な電気的接続を設けることができる − デバイス基板の移動イオンによる汚染が実質的になくなる − 必要に応じて、異なる誘電材が使用できる本発明は、バイポーラ、FET、 バイポーラFETデバイスなどの半導体デバイスの製造に特に適用され、高密度 のデバイスを接触させるために多段の配線が必要な超大規模集積回路(VLSI )に特に有用である。− Low dielectric insulation materials can be used - Can be etched without damaging the underlying structure - Various underlying step heights A reliable electrical connection can be made to a feature structure that varies from - Virtually eliminates contamination of device substrates by mobile ions - The present invention allows the use of different dielectric materials depending on the needs, such as bipolar, FET, Particularly applicable to the manufacture of semiconductor devices such as bipolar FET devices, with high density Very large scale integrated circuits (VLSI) require multiple stages of interconnection to connect multiple devices. ) is particularly useful for

本発明を、特定の実施例に関して示し説明してきたが、このように限定されるも のではない。本発明の趣旨及び範囲に含まれる、数々の修正、変更、改良を思い つくであろう。Although the invention has been shown and described with respect to particular embodiments thereof, it is not intended to be so limited. It's not. Numerous modifications, changes, and improvements are contemplated that fall within the spirit and scope of the invention. It will come.

四 FIC,3 FIG、7A ポリイミド絶縁体を利用した、半導体相互接続構造導電性接点を設けたい基板の 表面上のデバイス領域を含む半導体材料の基板を含む半導体構造が提供される。four FIC,3 FIG. 7A Semiconductor interconnect structure using polyimide insulators for substrates where conductive contacts are desired. A semiconductor structure is provided that includes a substrate of semiconductor material that includes a device region on a surface.

基板の表面の上にプレーナ化されたポリイミド層が配置され、ポリイミド層の上 に無機材料の層が配置される。デバイス領域を露出させる開口が、ポリイミド層 中に形成され、拡散バリアを設けるため、ポリイミド層中の開口の表面の上に金 属ライニングが形成される。デバイス領域への導電性接点を形成するように、耐 火金属の層が、ポリイミド層中の内張すされた開口を埋める。A planarized polyimide layer is placed on top of the surface of the substrate, and the polyimide layer is A layer of inorganic material is disposed on. The opening exposing the device area is located in the polyimide layer. gold is formed on top of the surface of the opening in the polyimide layer to provide a diffusion barrier. A lining is formed. The resistant A layer of fire metal fills the lined openings in the polyimide layer.

貰腔遣査報告Inspection report

Claims (34)

【特許請求の範囲】[Claims] 1.導電性接点を設けたい基板表面上のデバイス領域を含む、半導体材料の基板 を用意する段階と、 上記基板の上記表面の上にポリイミド層を形成する段階と、上記デバイス領域を 露出させる開口を上記ポリイミド層中に形成する段階と、 上記ポリイミド層の上記開口の表面の上に金属ライニングを形成する段階と、 上記のポリイミド層の内張りされた開口をほぼ充填するように、上記基板の上に 耐火金属の層を共形的に付着する段階と、 上記耐火金属層をプレーナ化する段階とを含む、上記デバイス領域への導電性接 点を形成する方法。1. A substrate of semiconductor material, including the device area on the surface of the substrate where you want to provide conductive contacts a stage of preparing forming a polyimide layer on the surface of the substrate; forming an exposed opening in the polyimide layer; forming a metal lining over the surface of the opening in the polyimide layer; on top of the substrate so as to approximately fill the lined opening in the polyimide layer above. conformally depositing a layer of refractory metal; and planarizing the refractory metal layer to the device region. How to form points. 2.さらに、上記開口を形成する上記段階の前に、上記ポリイミドの表面の上に 無機材料の層を形成する段階を含む、請求項1の方法。2. Additionally, prior to the step of forming the openings, on the surface of the polyimide, 2. The method of claim 1, including the step of forming a layer of inorganic material. 3.さらに、上記開口を形成する上記段階の前に、上記ポリイミド層をプレーナ 化する段階を含む、請求項1の方法。3. Further, the polyimide layer is planarized prior to the step of forming the openings. 2. The method of claim 1, including the step of converting. 4.上記ポリイミド層をプレーナ化する上記段階が、上記ポリイミド層を化学的 機械的に研磨する段階を含む、請求項3の方法。4. The step of planarizing the polyimide layer includes chemically planarizing the polyimide layer. 4. The method of claim 3, including the step of mechanically polishing. 5.上記ポリイミド層をプレーナ化する上記段階が、上記ポリイミド層を有機ポ リマーで被覆する段階と、上記有機ポリマー及び上記ポリイミド層をエッチング する段階と を含む、請求項3の方法。5. The step of planarizing the polyimide layer comprises converting the polyimide layer into an organic polymer. coating with reamer and etching the organic polymer and polyimide layer the stage of 4. The method of claim 3, comprising: 6.上記耐火金属層をプレーナ化する上記段階が、上記耐火金属層を化学的機械 的に研磨する段階を含む、請求項1の方法。6. The step of planarizing the refractory metal layer comprises chemically mechanically 2. The method of claim 1, including the step of polishing. 7.上記金属ライニングが、チタン(Ti)の第1層と窒化チタン合金(TiN )の第2層を含む、請求項1の方法。7. The metal lining includes a first layer of titanium (Ti) and a titanium nitride alloy (TiN). 2. The method of claim 1, comprising a second layer of ). 8.上記耐火金属が、タングステン(W)からなる、請求項1の方法。8. The method of claim 1, wherein the refractory metal comprises tungsten (W). 9.上記のタングステン(W)が、300〜420℃の範囲の温度、5〜50ト ルの範囲の圧力で、化学的気相成長法によつて付着される、請求項8の方法。9. The above tungsten (W) is 9. The method of claim 8, wherein the method is deposited by chemical vapor deposition at a pressure in the range of 100 ml. 10.さらに、金属で充填したバイアを有する多段のポリイミドを形成して、多 段の電気的相互接続を設ける段階を含む、請求項1の方法。10. Additionally, multi-stage polyimide with metal-filled vias can be formed to 2. The method of claim 1, including the step of providing electrical interconnections of the stages. 11.導電性接点を設けたい上記基板の表面上のデバイス領域を含む、半導体材 料の基板を用意する段階と、上記基板の上記表面の上にポリイミド層を形成する 段階と、上記ポリイミド層の表面をプレーナ化する段階と、上記ポリイミド層の 上に無機材料の層を形成する段階と、上記無機材料層と上記ポリイミド層をエッ チングして、上記デバイス領域を露出させる開口を形成する段階と、上記ポリイ ミド層中の上記開口の表面の上に金属ライニングを形成する段階と、 上記ポリイミド層の内張りされた開口をほぼ充填するように、上記基板の上に耐 火金属の層を共形的に付着する段階と、上記耐火金属層をプレーナ化して、上記 ポリイミド層の表面から上記耐火金属を除去し、上記バイア中では上記の耐火金 属を残しておく段階と を含む、上記デバイス領域への導電性接点を形成する方法。11. Semiconductor material, including the device area on the surface of said substrate where it is desired to provide conductive contacts forming a polyimide layer on the surface of the substrate; and forming a polyimide layer on the surface of the substrate. a step of planarizing the surface of the polyimide layer; and a step of planarizing the surface of the polyimide layer. forming a layer of inorganic material thereon; and etching the inorganic material layer and the polyimide layer. etching the polyimide to form an opening exposing the device area; forming a metal lining over the surface of the opening in the midlayer; Place a resistive layer on top of the substrate so as to substantially fill the lined opening in the polyimide layer. conformally depositing a layer of refractory metal; planarizing the refractory metal layer; The refractory metal is removed from the surface of the polyimide layer, and the refractory metal is removed from the surface of the polyimide layer. The stage of leaving the genus A method of forming a conductive contact to the device region. 12.上記無機材料層が、二酸化シリコン、窒化シリコン、またはガラスからな る、請求項11の方法。12. The inorganic material layer is made of silicon dioxide, silicon nitride, or glass. 12. The method of claim 11. 13.上記ポリイミド層をプレーナ化する上記段階が、上記ポリイミド層を有機 ポリマーで被覆する段階と、上記有機ポリマー及び上記ポリイミド層をエッチン グする段階と を含む、請求項11の方法。13. The step of planarizing the polyimide layer comprises converting the polyimide layer into an organic material. coating with a polymer and etching the organic polymer and the polyimide layer; the stages of 12. The method of claim 11, comprising: 14.上記ポリイミド層をプレーナ化する上記段階が、上記ポリイミド層を化学 的機械的に研磨する段階を含む、請求項11の方法。14. The step of planarizing the polyimide layer includes chemically 12. The method of claim 11, including the step of mechanically polishing. 15.上記金属ライニングが、 上記ポリイミドの上のチタン(Ti)層と、上記チタン層の上の窒化チタン合金 (TiN)層とを含む、請求項11の方法。15. The metal lining above is a titanium (Ti) layer on the polyimide and a titanium nitride alloy on the titanium layer (TiN) layer. 16.上記耐火金属が、タングステン(W)からなる、請求項11の方法。16. 12. The method of claim 11, wherein the refractory metal comprises tungsten (W). 17.上記タングステン層を形成する上記段階が、300〜420℃の範囲の温 度、5〜50トルの範囲の圧力で、化学的気相成長法によって上記タングステン を付着する段階を含む、請求項16の方法。17. The step of forming the tungsten layer is performed at a temperature in the range of 300 to 420°C. The above tungsten is grown by chemical vapor deposition at a pressure in the range of 5 to 50 Torr. 17. The method of claim 16, including the step of depositing. 18.上記耐火金属層をプレーナ化する上記段階が、上記耐火金属を化学的機械 的に研磨する段階を含む、請求項16の方法。18. The step of planarizing the refractory metal layer comprises converting the refractory metal into a chemical mechanical 17. The method of claim 16, including the step of selectively polishing. 19.さらに、上記のポリイミド層の表面の上に導電材料層を形成して、上記ス タッドヘの少なくとも1本の導電性ワイヤを設ける段階を含む、請求項11の方 法。19. Furthermore, a conductive material layer is formed on the surface of the polyimide layer to 12. The aspect of claim 11, comprising the step of providing at least one electrically conductive wire to the tad. Law. 20.上記バイアの表面上に金属ライニングを形成する上記段階が、 上記ポリイミドの表面の上に上記金属層を共形的に形成する段階と、 上記バイア中を除き、上記金属層を除去する段階とを含む、請求項11の方法。20. forming a metal lining on the surface of the via; conformally forming the metal layer on the surface of the polyimide; and removing the metal layer except in the via. 21.さらに、金属で充填したバイアを有する多段のポリイミドを形成して、多 段の電気的相互接続を設ける段階を含む、請求項11の方法。21. Additionally, multi-stage polyimide with metal-filled vias can be formed to 12. The method of claim 11, including the step of providing electrical interconnections of the stages. 22.導電性接点を設けたい上記基板の表面上のデバイス領域を含む、半導体材 料の基板と、 上記基板の上記表面の上のポリイミド層と、上記デバイス領域を露出させる、上 記ポリイミド層中の開口と、 上記開口の表面の上の金属ライニングと、上記デバイス領域への導電性接点を形 成するように内張りされた開口を充填する耐火金属のスタッドとを備える、半導 体構造。22. Semiconductor material, including the device area on the surface of said substrate where it is desired to provide conductive contacts material substrate, a polyimide layer on the surface of the substrate and a top layer exposing the device area; an opening in the polyimide layer; Form a conductive contact to the device area with a metal lining over the surface of the opening above. a refractory metal stud filling an opening lined to Body structure. 23.さらに、上記開口の外側の上記ポリイミドの表面の上に無機材料層を備え る、請求項22の構造。23. Further, an inorganic material layer is provided on the surface of the polyimide outside the opening. 23. The structure of claim 22. 24.上記金属ライニングが、 上記ポリイミドの上のチタン層と、 上記チタン層の上の窒化チタン(TiN)層とを含む、請求項22の構造。24. The metal lining above is a titanium layer on the polyimide; and a titanium nitride (TiN) layer over the titanium layer. 25.上記耐火金属が、タングステン(W)からなる、請求項22の構造。25. 23. The structure of claim 22, wherein the refractory metal comprises tungsten (W). 26.さらに、多段の電気的相互接続を設けるため、金属で充填したバイアを有 する少なくとも1段の追加のポリイミドを含む、請求項22の構造。26. In addition, it includes metal-filled vias to provide multiple levels of electrical interconnection. 23. The structure of claim 22, comprising at least one additional stage of polyimide. 27.さらに、上記スタッドヘの少なくとも1本の導電性ワイヤを設けるため、 上記ポリイミド層の表面の上に導電性材料の領域を含む、請求項22の構造。27. Further, providing at least one electrically conductive wire to the stud; 23. The structure of claim 22, including a region of electrically conductive material on a surface of the polyimide layer. 28.導電性接点を設けたい上記基板の表面上のデバイス領域を含む、半導体材 料の基板と、 上記基板の上記表面の上のプレーナ化されたポリイミド層と、 上記ポリイミド層の上の無機材料の層と、上記デバイス領域を露出させる、上記 ポリイミド層中に形成された開口と、 拡散バリアを形成するように、上記ポリイミド層中の上記開口の表面の上に設け た金属ライニングと、上記ポリイミド層中の内張りされた開口を充填する耐火金 属の層と を備える、上記耐火金属層によつて上記デバイス領域への導電性接点を形成する 、半導体構造。28. Semiconductor material, including the device area on the surface of said substrate where it is desired to provide conductive contacts material substrate, a planarized polyimide layer on the surface of the substrate; a layer of inorganic material on top of the polyimide layer and exposing the device area; an opening formed in the polyimide layer; provided on the surface of the opening in the polyimide layer to form a diffusion barrier. a refractory metal lining and a refractory metal lining filling the lined openings in the polyimide layer. layer of genus and forming a conductive contact to the device region by the refractory metal layer comprising: , semiconductor structures. 29.上記ポリイミド層の上の上記無機材料層が、二酸化シリコン、窒化シリコ ンまたはガラスから選択される、請求項28の構造。29. The inorganic material layer on the polyimide layer is made of silicon dioxide or silicon nitride. 29. The structure of claim 28, wherein the structure is selected from glass or glass. 30.上記金属ライニングが、 上記ポリイミドの上のチタン(Ti)の層と、上記チタン層の上の窒化チタン( TiN)の層とを含む、請求項28の構造。30. The metal lining above is A layer of titanium (Ti) on the polyimide, and a layer of titanium (Ti) on the titanium layer. 29. The structure of claim 28, comprising a layer of TiN). 31.上記耐火金属が、タングステン(W)からなる、請求項28の構造。31. 29. The structure of claim 28, wherein the refractory metal comprises tungsten (W). 32.さらに、上記スタツドヘの少なくとも1本の導電性ワイヤを設けるため、 上記ポリイミド層の表面の上に導電性材料の領域を含む、請求項28の構造。32. Further, providing at least one electrically conductive wire to the stud; 29. The structure of claim 28, including a region of electrically conductive material on a surface of the polyimide layer. 33.さらに、上記ポリイミドと、上記の半導体基板の上記表面との間に無機材 料の層を含む、請求項26の構造。33. Furthermore, an inorganic material is provided between the polyimide and the surface of the semiconductor substrate. 27. The structure of claim 26, comprising a layer of material. 34.さらに、多段の電気的相互接続を設けるため、上記ポリイミド層の表面の 上に金属で充填したバイアを有する少なくとも1層の追加のポリイミド層を含む 、請求項28の構造。34. Additionally, the surface of the polyimide layer is at least one additional polyimide layer having metal-filled vias thereon; , the structure of claim 28.
JP3503515A 1990-01-04 1990-12-13 Semiconductor interconnect structure using polyimide insulation Pending JPH05504446A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US46069590A 1990-01-04 1990-01-04
US460,695 1990-01-04

Publications (1)

Publication Number Publication Date
JPH05504446A true JPH05504446A (en) 1993-07-08

Family

ID=23829709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3503515A Pending JPH05504446A (en) 1990-01-04 1990-12-13 Semiconductor interconnect structure using polyimide insulation

Country Status (3)

Country Link
EP (1) EP0507881A1 (en)
JP (1) JPH05504446A (en)
WO (1) WO1991010261A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739579A (en) * 1992-06-29 1998-04-14 Intel Corporation Method for forming interconnections for semiconductor fabrication and semiconductor device having such interconnections
US5612254A (en) * 1992-06-29 1997-03-18 Intel Corporation Methods of forming an interconnect on a semiconductor substrate
US5268330A (en) * 1992-12-11 1993-12-07 International Business Machines Corporation Process for improving sheet resistance of an integrated circuit device gate
JPH06252088A (en) * 1993-02-25 1994-09-09 Mitsubishi Electric Corp Semiconductor device and its manufacture
US5670018A (en) * 1995-04-27 1997-09-23 Siemens Aktiengesellschaft Isotropic silicon etch process that is highly selective to tungsten
US5960304A (en) * 1996-05-20 1999-09-28 Texas Instruments Incorporated Method for forming a contact to a substrate
US5866465A (en) 1997-04-03 1999-02-02 Micron Technology, Inc. Semiconductor processing method of forming a contact opening to a region adjacent a field isolation mass
US6323540B1 (en) 1998-06-10 2001-11-27 Micron Technology, Inc. Semiconductor processing method of forming a contact opening to a region adjacent a field isolation mass, and a semiconductor structure
DE102006015096B4 (en) * 2006-03-31 2011-08-18 Globalfoundries Inc. A method for reducing the damage caused by polishing in a contact structure by forming a cover layer
US8435898B2 (en) * 2007-04-05 2013-05-07 Freescale Semiconductor, Inc. First inter-layer dielectric stack for non-volatile memory

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142545A (en) * 1983-12-27 1985-07-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Multilayer composite structure
US4560436A (en) * 1984-07-02 1985-12-24 Motorola, Inc. Process for etching tapered polyimide vias
EP0261846B1 (en) * 1986-09-17 1992-12-02 Fujitsu Limited Method of forming a metallization film containing copper on the surface of a semiconductor device
EP0312986A1 (en) * 1987-10-22 1989-04-26 Siemens Aktiengesellschaft Etchback process for tungsten-filled integrated-circuit contact holes, with a titanium nitride underlayer
US4822753A (en) * 1988-05-09 1989-04-18 Motorola, Inc. Method for making a w/tin contact
DE3881032T2 (en) * 1988-05-26 1993-11-25 Fairchild Semiconductor Connection system of high performance for an integrated circuit.

Also Published As

Publication number Publication date
EP0507881A1 (en) 1992-10-14
WO1991010261A1 (en) 1991-07-11

Similar Documents

Publication Publication Date Title
US6465888B2 (en) Composite silicon-metal nitride barrier to prevent formation of metal fluorides in copper damascene
US6878615B2 (en) Method to solve via poisoning for porous low-k dielectric
US6424044B1 (en) Use of boron carbide as an etch-stop and barrier layer for copper dual damascene metallization
US5470793A (en) Method of via formation for the multilevel interconnect integrated circuits
US5985762A (en) Method of forming a self-aligned copper diffusion barrier in vias
US5434451A (en) Tungsten liner process for simultaneous formation of integral contact studs and interconnect lines
JPH0546983B2 (en)
US6146991A (en) Barrier metal composite layer featuring a thin plasma vapor deposited titanium nitride capping layer
JPH05504446A (en) Semiconductor interconnect structure using polyimide insulation
JP3102382B2 (en) Semiconductor device and manufacturing method thereof
US6867135B1 (en) Via bottom copper/barrier interface improvement to resolve via electromigration and stress migration
KR100221656B1 (en) Process for forming interconnector
TWI322471B (en) A semiconductor device having a second level of metallization formed over a first level with minimal damage to the first level and method
US6340638B1 (en) Method for forming a passivation layer on copper conductive elements
JPH08139190A (en) Manufacture of semiconductor device
JPH065544A (en) Manufacture of semiconductor device
JPH1074837A (en) Semiconductor device and its manufacture
KR100268917B1 (en) Structure for metal line of semiconductor device and for manufacturing the same
JP2606080B2 (en) Method for manufacturing semiconductor device
KR0161875B1 (en) Method of forming wiring on semiconductor device
JP2002176098A (en) Method for manufacturing semiconductor device having multilayer interconnection structure
JPH07153841A (en) Semiconductor device and its manufacture
JPH01270333A (en) Manufacture of semiconductor device
JPH06236931A (en) Wiring structure and its manufacture
JPH05283363A (en) Manufacture of semiconductor device