JPH0549759B2 - - Google Patents

Info

Publication number
JPH0549759B2
JPH0549759B2 JP59264835A JP26483584A JPH0549759B2 JP H0549759 B2 JPH0549759 B2 JP H0549759B2 JP 59264835 A JP59264835 A JP 59264835A JP 26483584 A JP26483584 A JP 26483584A JP H0549759 B2 JPH0549759 B2 JP H0549759B2
Authority
JP
Japan
Prior art keywords
steel material
plating
plating bath
zinc
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59264835A
Other languages
Japanese (ja)
Other versions
JPS61143590A (en
Inventor
Minoru Hiramatsu
Hitoshi Kawasaki
Fumio Kusano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Prefectural Government
Original Assignee
Okayama Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Prefectural Government filed Critical Okayama Prefectural Government
Priority to JP26483584A priority Critical patent/JPS61143590A/en
Publication of JPS61143590A publication Critical patent/JPS61143590A/en
Publication of JPH0549759B2 publication Critical patent/JPH0549759B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 本発明は新規な亜鉛めつき法による、鋼板とか
各種接着下地用鋼製部材(以下鋼材と称す)の製
造方法に関するものである。 〈従来の技術〉 従来、亜鉛めつきは鋼材の装飾用めつきとして
外観の美化を目的にいかに平滑な面を形成するか
に傾注していた(例えば、特公昭48−29458号、
特開昭52−126634号)。 ところで、自動車を例にとると、製品の高度
化、使用地域の広域化につれて防錆面から耐久性
が要求され、塗装とかゴム接着などにおける下地
に亜鉛めつきが施され始めている。 ところが、亜鉛めつき上へ塗装を施したりゴム
等の有機分子材料を接着する場合、如何に塗料が
高分子材料の組成に配慮が加えられても、また、
鋼材と塗料との間にプライマー、接着剤等の下地
剤を介在させても接着性の改良に限度がみられ
る。 そこで、亜鉛めつき後の鋼材表面を接着下地処
理することが種々検討され、実用化されている。
その例としては、リン酸塩処理によるリン酸塩
皮膜化成法とか、クロム酸処理によるクロメート
皮膜化成法等の化学的処理、サンドブラスト、
グリツトブラスト等により表面に凹凸を付与して
クサビ(アンカーリング)効果を期待する物理的
処理等である。つまり、亜鉛めつき表面が従来の
平滑を目標としたのと異なり、できるだけ凹凸を
与えることを目標とするものである。 〈発明が解決しようとする課題〉 ところが、亜鉛めつき後の鋼材表面の処理方法
として最もよく使われているに示したリン酸塩
を用いる方法は、排水処理及び多量に発生するス
ラツジの処分の問題がある。また、クロム酸処理
は塗装下地としての接着性は必ずしも良好でな
く、更にクロムの毒性及び排水処理に問題があ
る。 に示したサンドブラスト等による物理的方法
は、アンカー効果を充分に発揮するまでの微細か
つ複雑な凹凸を付与することが困難であるし、曲
り形状や小部材に適さず、更に部材の隅々にまで
凹凸の付与ができない難点があつた。 〈課題を解決するための手段〉 本発明は、塗装を施したりゴム等の有機高分子
材料を接着する場合に良好な接着性を発揮する亜
鉛めつき鋼材の製造方法について種々検討した結
果、ここに完成をみたものである。その特徴とす
る点は、素材鋼材に亜鉛めつきを施すに際して、
酸性めつき浴に対してアミン系又は第4級アンモ
ニウム系界面活性剤を10-1〜10-5ml/添加し、
電流密度0.5〜7A/dm2の条件下でめつき表面に
凹凸状亜鉛結晶からなる粗面を形成することにあ
る。 ここで、アミン系の界面活性剤は非イオン界面
活性剤である。 ポリオキシエチレンアルキルアミン や、アルキルアミンオキサイド 等を例示できる。 次に、陽イオン界面活性剤としては、次のもの
を例示できる。 脂肪族アミン塩 R−NH2・X (R:C12〜C18 R1,R2:CH3 X:無機酸、有機酸) また、第4級アンモニウム塩としては脂肪族の (R1:C12〜C18 R2:C12〜C18,CH3 X:
Cl,Br) が有用である。 これら界面活性剤は1種又は2種以上混合して
使用でき、めつき浴への添加量は10-1〜10-5ml/
と少量の範囲で良く、好ましくは10-2ml/程
度である。 電流密度も通常より小で、0.5〜7A/dm2程度
である。7A/dm2以上では凹凸粗面は形成せず、
ほとんど平滑なめつき面となる。 〈作 用〉 亜鉛メツキ浴が上記のような組成であると、得
られた亜鉛メツキ鋼材はその表面にくさび効果を
生じる扇状の亜鉛突起からなる凹凸状亜鉛結晶が
密に形成された粗面となり、塗膜との接着性が著
しく向上する。 以下実施例によつて本発明を詳細に説明する。 実施例 1 めつき浴組成を、 ZnSO4・7H2O 288g/ H3BO3 25g/ NH4Cl 27g/ とし、これに下記濃度の添加剤を加えた。 非イオン界面活性剤(ポリオキシエチレンラウ
リルアミン) 2×10-2ml/ 上記のようなめつき浴はPHが4であり、この状
態で陽極に亜鉛板(99.99%)を用い、予めアル
カリ脱脂処理された0.5mm厚の鋼板(60×70mm)
を陰極として、液温30±2℃において、電流密度
2A/dm2で18分間めつき処理した。 このようにして得られた亜鉛めつき鋼材はその
表面に5〜10μm高さの扇状突起が密に、しかも
均一に形成されたものとなつた。 実施例 2 前記実施例と同じ酸性めつき浴へ陽イオン界面
活性剤として、 ドデシルジメチルベンジルアンモニウムクロラ
イド 10-4M/≒3×10-2ml/ を添加し、陽極に亜鉛板を用い、予め脱脂処理さ
れた0.5mm厚の鋼板(60×70mm)を陰極として、
液温30±2℃において、電流密度2A/dm2で18
分間めつき処理した。 その結果、鋼板は顕微鏡観察の結果、その表面
に実施例1と同様に微細な凹凸に富んだ亜鉛メツ
キが施されたものとなつていた。 実施例 3 めつき浴組成を上記実施例と同様酸性亜鉛めつ
き浴とし、これに下記濃度の添加剤を加えた。 非イオン界面活性剤(ポリオキシエチレンラ
ウリルアミン) 5×10-3ml/ 陽イオン界面活性剤(ドデシルトリメチルア
ンモニウムクロライド)
5×10-4M/≒1.5×10-1ml/ 上記のようなめつき浴はPHが4であり、この状
態で陽極に亜鉛板(99.99%)を用い、予めトリ
クレン脱脂処理された0.5mm厚の鋼板(60×70mm)
を陰極として、液温30±2℃において、電流密度
2A/dm2で18分間めつき処理した。 このようにして得られた亜鉛めつき鋼材は、平
均めつき厚が9μmとなり、第1図にみられるよう
に、その表面に5〜10μm高さの扇状突起が密に、
しかも均一に形成されたものとなつている。な
お、第1図はめつき鋼材の表面構造を示す顕微鏡
写真である。また、第2図に塗装を施した場合の
断面状態の顕微鏡写真を示した。このような凹凸
状亜鉛結晶を形成した時の電流効率は94%と非常
に高く、工業的に有利な結果となつている。 第1図に示すような、鋼材表面に生じる亜鉛の
微細な結晶は、後にもその効果を考察するが、結
晶の生成理由については明らかでない。しかしな
がら、これらの無数の結晶は機械的強度が大であ
るから、このような凹凸表面に塗料とか他の有機
高分子が接着されると、その一部は凹凸内へ生じ
た穴とか架橋部分へ入つて固化して強固な接着状
態となるのである。それは従来のサンドブラスト
等による機械的処理とかリン酸塩等による化学的
処理によつては得られなかつた程に高度に複雑化
しためつき表面によるものである。 なお、本発明は上記実施例に限定されるもので
はなく、めつき浴組成も通常実施し得る他の亜鉛
化合物によるとか、他のメツキ助剤の使用、非イ
オン界面活性剤として前記例示したような構造で
カチオン性を有したものとか、陽イオン界面活性
剤を使用し得る。界面活性剤の添加量も、良好な
結果が得られた例を示すと、非イオン界面活性剤
にポリオキシエチレンラウリルアミン(以下
POELAと略記)を用いた場合、10-3〜2×10-1
ml/であり、陽イオン界面活性剤にドデシルト
リメチルアンモニウムクロライド(以下DTAC
と略記)を用いた場合、10-5〜10-3M/約10-3
〜10-1ml/である。メツキ条件としては電流密
度が0.5〜5A/dm2、PHが3〜6、浴温20〜40℃
が適している。 上記条件はハルセル試験の結果得られたもので
ある。第3図及び第4図に試験結果を示した。こ
のハルセル試験の条件は以下の通りである。 めつき浴組成 ZnSO4・7H2O 288g/ H3BO3 25g/ NH4Cl 27g/ 添加剤 POELA、DTACのいずれか又は両者混合 総電流 3A×5分 PH 3.8〜4.0 液温度 30℃ 液 量 267ml なお、第3図はPOELA及びDTACの添加量と
ハルセル試験片上での電流密度との関係が亜鉛め
つきの表面形状に及ぼす影響をみたものである。
DTACの添加量を増すことによつて小電流密度
でめつき表面に凹凸が形成されるのが明らかとな
つている。第4図及び第5図はDTAC及び
POELAの添加とめつき表面に凹凸が生ずる電流
密度範囲(斜線部分)をみたものである。第4図
によつてDTACの添加効果の大きいことが分る。 次に亜鉛めつきの表面形状に及ぼすアニオン界
面活性剤の影響について述べる。 上記ハルセル試験と同じ組成のめつき浴へアニ
オン界面活性剤として直鎖ドデシルベンゼンスル
ホン酸ソーダ(ネオゲンS.C、第一工業製薬(株)
製)を3.3×10-3〜3.3×10-2ml/添加し、ハル
セル試験を行つた。 その結果、亜鉛めつきの表面形状は電流密度が
0.3〜15A/dm2の範囲で平滑であり、本発明の
目的とする凹凸(扇状結晶)がみられなかつた。 アニオン界面活性剤と同様な傾向はノニオン界
面活性剤のうちアミン系でないカチオン性に劣る
例えばエステル系やエーテル系ノニオン界面活性
剤にもみられる。 本発明の方法により得られた接着下地用亜鉛め
つき鋼材はこれに下地処理なしに直接塗料を塗装
したところ、接着性試験において従来にない下記
第1表のような好結果が得られた。
<Industrial Field of Application> The present invention relates to a method for manufacturing steel plates and various adhesive base steel members (hereinafter referred to as steel materials) using a novel galvanizing method. <Prior art> Conventionally, galvanizing has focused on forming a smooth surface for the purpose of beautifying the appearance of steel materials as decorative plating (for example, Japanese Patent Publication No. 48-29458,
(Japanese Patent Application Laid-open No. 126634/1983). By the way, taking automobiles as an example, as products become more sophisticated and the areas in which they are used expand, durability is required in terms of rust prevention, and zinc plating has begun to be applied as a base for painting, rubber adhesion, etc. However, when painting on galvanized surfaces or adhering organic molecular materials such as rubber, no matter how much consideration is given to the composition of the polymeric material in the paint,
Even if a base agent such as a primer or adhesive is interposed between the steel material and the paint, there is a limit to the improvement in adhesion. Therefore, various studies have been conducted on applying adhesive base treatment to the surface of the steel material after galvanizing, and this has been put into practical use.
Examples include chemical treatments such as phosphate film formation method using phosphate treatment, chromate film formation method using chromic acid treatment, sandblasting,
This is a physical treatment that creates unevenness on the surface by grit blasting or the like to create a wedge (anchoring) effect. In other words, unlike conventional galvanized surfaces, which aim to be smooth, the aim is to make them as uneven as possible. <Problems to be Solved by the Invention> However, the method using phosphates shown in the above, which is the most commonly used method for treating the surface of steel materials after galvanizing, is difficult to treat wastewater and dispose of large amounts of sludge. There's a problem. In addition, chromic acid treatment does not necessarily provide good adhesion as a paint base, and there are also problems with chromium toxicity and wastewater treatment. Physical methods such as sandblasting, as shown in Figure 2, are difficult to create fine and complex irregularities that fully exhibit the anchoring effect, are not suitable for curved shapes or small parts, and are not suitable for creating curved shapes or small parts. However, there was a problem in that it was not possible to provide unevenness. <Means for Solving the Problems> The present invention was developed as a result of various studies on methods for manufacturing galvanized steel materials that exhibit good adhesive properties when painted or bonded with organic polymeric materials such as rubber. It was completed in . Its distinctive feature is that when galvanizing steel material,
Add 10 -1 to 10 -5 ml of an amine or quaternary ammonium surfactant to the acid plating bath,
The objective is to form a rough surface consisting of uneven zinc crystals on the plating surface under conditions of a current density of 0.5 to 7 A/dm 2 . Here, the amine surfactant is a nonionic surfactant. Polyoxyethylene alkylamine and alkylamine oxide. Next, examples of cationic surfactants include the following. Aliphatic amine salt R-NH 2・X (R: C12 - C18 R1 , R2 : CH3X : inorganic acid, organic acid) In addition, as the quaternary ammonium salt, aliphatic ( R1 : C12 - C18 R2 : C12 - C18 , CH3X :
Cl, Br) are useful. These surfactants can be used alone or in a mixture of two or more, and the amount added to the plating bath is 10 -1 to 10 -5 ml/
The amount may be within a small amount, preferably about 10 -2 ml/. The current density is also smaller than usual, about 0.5 to 7 A/dm2. At 7A/dm2 or more , no uneven surface is formed.
The surface will be almost smooth. <Function> If the galvanizing bath has the above composition, the resulting galvanized steel material will have a rough surface with densely formed uneven zinc crystals consisting of fan-shaped zinc protrusions that produce a wedge effect on the surface. , the adhesion with the paint film is significantly improved. The present invention will be explained in detail below with reference to Examples. Example 1 The composition of the plating bath was 288 g of ZnSO 4 .7H 2 O/25 g of H 3 BO 3 / 27 g of NH 4 Cl, and the following concentrations of additives were added thereto. Nonionic surfactant (polyoxyethylene laurylamine) 2 x 10 -2 ml / The above plating bath has a pH of 4, and in this state, a zinc plate (99.99%) is used as the anode and is pre-alkaline degreased. 0.5mm thick steel plate (60 x 70mm)
As a cathode, at a liquid temperature of 30±2℃, the current density is
Plating treatment was carried out at 2 A/dm 2 for 18 minutes. The galvanized steel thus obtained had fan-shaped protrusions with a height of 5 to 10 μm densely and uniformly formed on its surface. Example 2 Dodecyldimethylbenzylammonium chloride 10 -4 M/≒3×10 -2 ml/ as a cationic surfactant was added to the same acidic plating bath as in the previous example, and a zinc plate was used as the anode. A degreased 0.5 mm thick steel plate (60 x 70 mm) is used as the cathode.
18 at a current density of 2A/ dm2 at a liquid temperature of 30±2℃
It was plated for a minute. As a result, as a result of microscopic observation of the steel plate, it was found that the surface of the steel plate was galvanized with many fine irregularities as in Example 1. Example 3 The composition of the plating bath was an acidic zinc plating bath similar to that of the above example, and the following concentrations of additives were added thereto. Nonionic surfactant (polyoxyethylene laurylamine) 5×10 -3 ml/Cationic surfactant (dodecyltrimethylammonium chloride)
5 × 10 -4 M / ≒ 1.5 × 10 -1 ml / The above plating bath has a pH of 4, and in this state, a zinc plate (99.99%) is used as the anode, and a 0.5 mm plating bath that has been previously treated with triclene degreasing is used as the anode. Thick steel plate (60x70mm)
As a cathode, at a liquid temperature of 30±2℃, the current density is
Plating treatment was carried out at 2 A/dm 2 for 18 minutes. The galvanized steel thus obtained has an average plating thickness of 9 μm, and as shown in Figure 1, the surface is densely populated with fan-shaped protrusions with a height of 5 to 10 μm.
Moreover, it is formed uniformly. In addition, FIG. 1 is a micrograph showing the surface structure of the plated steel material. Moreover, FIG. 2 shows a microscopic photograph of the cross-sectional state when the coating is applied. When such uneven zinc crystals are formed, the current efficiency is extremely high at 94%, which is an industrially advantageous result. The effect of the fine crystals of zinc that appear on the surface of the steel material as shown in FIG. 1 will be discussed later, but the reason for the formation of the crystals is not clear. However, these countless crystals have high mechanical strength, so when paint or other organic polymers are adhered to such an uneven surface, some of them will penetrate into holes or bridges formed within the uneven surface. It hardens into a strong bond. This is due to the highly complex textured surface that could not be obtained by conventional mechanical treatments such as sandblasting or chemical treatments such as phosphates. It should be noted that the present invention is not limited to the above embodiments, and the plating bath composition may also be modified by using other zinc compounds, other plating auxiliaries, or nonionic surfactants as exemplified above. A surfactant having a cationic structure or a cationic surfactant can be used. Regarding the amount of surfactant added, in an example where good results were obtained, polyoxyethylene laurylamine (hereinafter referred to as
(abbreviated as POELA), 10 -3 to 2×10 -1
ml/ml, and the cationic surfactant is dodecyltrimethylammonium chloride (DTAC).
(abbreviated as ), 10 -5 to 10 -3 M/approximately 10 -3
~10 -1 ml/. The plating conditions are a current density of 0.5 to 5 A/dm 2 , a pH of 3 to 6, and a bath temperature of 20 to 40°C.
is suitable. The above conditions were obtained as a result of the Hull cell test. The test results are shown in FIGS. 3 and 4. The conditions for this Hull cell test are as follows. Plating bath composition ZnSO 4・7H 2 O 288g / H 3 BO 3 25g / NH 4 Cl 27g / Additives POELA, DTAC, or a mixture of both Total current 3A x 5 minutes PH 3.8 to 4.0 Liquid temperature 30℃ Liquid amount 267ml Figure 3 shows the effect of the relationship between the added amounts of POELA and DTAC and the current density on the Hull cell test piece on the surface shape of galvanized steel.
It has become clear that by increasing the amount of DTAC added, irregularities are formed on the plated surface at a small current density. Figures 4 and 5 show DTAC and
This figure shows the current density range (shaded area) where unevenness occurs on the bonded surface when POELA is added. It can be seen from FIG. 4 that the effect of adding DTAC is large. Next, we will discuss the effect of anionic surfactants on the surface shape of galvanized steel. Linear sodium dodecylbenzenesulfonate (Neogen SC, Daiichi Kogyo Seiyaku Co., Ltd.) was added to the plating bath with the same composition as the Hull Cell test above as an anionic surfactant.
3.3 x 10 -3 to 3.3 x 10 -2 ml/Halcel test was conducted. As a result, the galvanized surface profile has a lower current density.
It was smooth in the range of 0.3 to 15 A/dm 2 , and no irregularities (fan-shaped crystals), which are the object of the present invention, were observed. The same tendency as with anionic surfactants is also observed among nonionic surfactants that are not amine-based and have poor cationic properties, such as ester-based and ether-based nonionic surfactants. When the galvanized steel material for adhesive base obtained by the method of the present invention was directly coated with paint without any surface treatment, unprecedented good results as shown in Table 1 below were obtained in the adhesion test.

【表】 なお、塗料にメラミン系塗料(関西ペイント(株)
製、2B−アミラツク黒)を用い、塗膜厚が20μm
となるよう塗装し、140℃で25分間焼付乾燥した。 表に示した比較例1は実施例1のめつき浴から
陽イオン界面活性剤を除いて電解処理したもので
あり、比較例2は比較例1によつて得られた亜鉛
めつき鋼材の表面をリン酸塩処理して得られたも
のである。リン酸塩処理はリン酸亜鉛処理液(日
本パーカー(株)製、BT−7R)を用い、液温50℃で
2分20秒間浸漬処理し、亜鉛めつき表面に2.2
g/m2のリン酸亜鉛皮膜を形成したものである。 接着性試験はJIS Z 2247のエリクセン試験法
(押出し量10mm)によつた。判定基準は次の通り
である。 ◎:剥離なし 〇:わずかに剥離 ×:極度に剥離 第1表の結果で明らかなように、塗料と鋼材間
の接着が高強度であるから、塗料は傷付き難く、
長期に亘つて剥離しない。 〈発明の効果〉 本発明の方法によると、通常操作のめつき工程
のみによつて、接着下地用亜鉛めつき鋼材が得ら
れる。得られた亜鉛めつき鋼材はサンドブラスト
等による機械的処理やリン酸塩等による化学的処
理等の下地処理なしで塗料とか他の高分子材料と
の接着強度が大であるから、表面塗装とか接着処
理された部材等が剥離せず、また、防錆効果が非
常に大きい。従つて、冬期や寒冷地において岩塩
等の凍結防止剤を使用する腐蝕環境の苛酷な場所
等における自動車部品等への使用が効果的であ
る。
[Table] Please note that melamine-based paint (Kansai Paint Co., Ltd.)
The coating thickness is 20 μm.
It was painted and baked at 140℃ for 25 minutes. Comparative Example 1 shown in the table was obtained by electrolytically treating the plating bath of Example 1 by removing the cationic surfactant, and Comparative Example 2 was obtained by electrolytically treating the surface of the galvanized steel material obtained by Comparative Example 1. It was obtained by treating with phosphate. Phosphate treatment uses a zinc phosphate treatment solution (BT-7R, manufactured by Nippon Parker Co., Ltd.) and is immersed in the solution for 2 minutes and 20 seconds at a temperature of 50°C, resulting in a 2.2
A zinc phosphate film of g/m 2 is formed. The adhesion test was based on the Erichsen test method of JIS Z 2247 (extrusion amount 10 mm). The judgment criteria are as follows. ◎: No peeling 〇: Slight peeling ×: Extremely peeling As is clear from the results in Table 1, the adhesive between the paint and the steel material is high strength, so the paint is difficult to scratch.
Does not peel off over a long period of time. <Effects of the Invention> According to the method of the present invention, a galvanized steel material for use as an adhesive base can be obtained only by a plating step in a normal operation. The resulting galvanized steel material has a high adhesive strength with paints and other polymeric materials without any mechanical treatment such as sandblasting or chemical treatment with phosphates, etc., so it can be used for surface painting or adhesion. Treated parts do not peel off, and the rust prevention effect is very high. Therefore, it is effective for use in automotive parts and the like in locations with harsh corrosive environments where antifreeze agents such as rock salt are used in winter or in cold regions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は接着下地用亜鉛めつき鋼材の表面構造
を示す顕微鏡写真である。第2図は塗装を施した
場合の顕微鏡断面写真である。第3図は亜鉛めつ
きの表面形態に及ぼす添加剤の影響を示す図であ
り、第4図及び第5図はPOELA及びDTACそれ
ぞれの添加効果を示す図である。
FIG. 1 is a microscopic photograph showing the surface structure of a galvanized steel material for use as an adhesive base. Figure 2 is a microscopic cross-sectional photograph of the coated material. FIG. 3 is a diagram showing the influence of additives on the surface morphology of galvanizing, and FIGS. 4 and 5 are diagrams showing the effects of addition of POELA and DTAC, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 素材鋼材に亜鉛めつきを施すに際して、酸性
めつき浴に対してアミン系又は第4級アンモニウ
ム系界面活性剤を2×10-1〜10-5ml/添加し、
電流密度0.5〜7A/dm2の条件下でめつき表面に
凹凸状亜鉛結晶からなる粗面を形成することを特
徴とする接着下地用亜鉛めつき鋼材の製造方法。
1. When galvanizing the steel material, add 2 x 10 -1 to 10 -5 ml of an amine-based or quaternary ammonium-based surfactant to the acidic plating bath,
A method for producing a galvanized steel material for use as an adhesive base, which comprises forming a rough surface consisting of uneven zinc crystals on the plating surface under conditions of a current density of 0.5 to 7 A/dm 2 .
JP26483584A 1984-12-15 1984-12-15 Production of galvanized steel material for adhesive base Granted JPS61143590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26483584A JPS61143590A (en) 1984-12-15 1984-12-15 Production of galvanized steel material for adhesive base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26483584A JPS61143590A (en) 1984-12-15 1984-12-15 Production of galvanized steel material for adhesive base

Publications (2)

Publication Number Publication Date
JPS61143590A JPS61143590A (en) 1986-07-01
JPH0549759B2 true JPH0549759B2 (en) 1993-07-27

Family

ID=17408866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26483584A Granted JPS61143590A (en) 1984-12-15 1984-12-15 Production of galvanized steel material for adhesive base

Country Status (1)

Country Link
JP (1) JPS61143590A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01290797A (en) * 1988-05-17 1989-11-22 Nippon Steel Corp Composite electroplated steel sheet having superior corrosion resistance
JP4935099B2 (en) * 2006-02-10 2012-05-23 Jfeスチール株式会社 Metal plating material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829458A (en) * 1971-07-30 1973-04-19
JPS52126634A (en) * 1976-04-16 1977-10-24 Oxy Metal Industries Corp Lusterous plating method and composition for use in galvanizing bath

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829458A (en) * 1971-07-30 1973-04-19
JPS52126634A (en) * 1976-04-16 1977-10-24 Oxy Metal Industries Corp Lusterous plating method and composition for use in galvanizing bath

Also Published As

Publication number Publication date
JPS61143590A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
CN1096937C (en) Metal finishing process
JPS61143597A (en) Manufacture of zinc-silica composite plated steel material
JP3139795B2 (en) Metal surface treatment agent for composite film formation
JP2003155578A (en) Chemical conversion treatment agent for iron and/or zinc
WO2022147493A1 (en) Corrosion-resistant magnesium alloy with a multi-level protective coating and preparation process thereof
JPH0549759B2 (en)
JPS6043499A (en) Production of steel sheet electroplated with zinc on one surface
JPH032391A (en) Production of zinc plated steel sheet excellent in chemical convertibility and performance after coating
JPH0232360B2 (en) CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO
JPH01240671A (en) Zinc phosphate treatment for metallic surface for coating
US20030104228A1 (en) Hureaulite conversion coating as a base for the bonding of rubber to metal
JP2528944B2 (en) Method for producing Zn-based alloy electroplated steel sheet excellent in chemical conversion treatability and corrosion resistance
JPH11310895A (en) Production of electrogalvanized steel sheet
JPH01177392A (en) Pretreatment of body to be coated by electrodeposition
JP2000064095A (en) Coating
JP3358479B2 (en) Method for producing composite zinc-based electroplated metal sheet
JPS58100691A (en) Surface-treated steel plate with high corrosion resistance
JPH042677B2 (en)
JPS6196083A (en) Pretreatment of steel sheet before chemical conversion treatment
JP2954416B2 (en) Black surface-treated steel sheet with excellent corrosion resistance and method for producing the same
JP2954417B2 (en) Black surface-treated steel sheet with excellent corrosion resistance and method for producing the same
JPS6167795A (en) Production of steel sheet electrogalvanized on one side
JPS59143088A (en) Manufacture of one-side electroplated steel sheet
JPH04333553A (en) Production of aluminized steel sheet excellent in adhesive strength of coating material and corrosion resistance after coating
JPS5970793A (en) Manufacture of one-side zinc electroplated steel sheet