JPH0232360B2 - CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO - Google Patents

CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO

Info

Publication number
JPH0232360B2
JPH0232360B2 JP14926585A JP14926585A JPH0232360B2 JP H0232360 B2 JPH0232360 B2 JP H0232360B2 JP 14926585 A JP14926585 A JP 14926585A JP 14926585 A JP14926585 A JP 14926585A JP H0232360 B2 JPH0232360 B2 JP H0232360B2
Authority
JP
Japan
Prior art keywords
mol
ions
treatment
film
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14926585A
Other languages
Japanese (ja)
Other versions
JPS6210292A (en
Inventor
Yoshio Shindo
Katsushi Saito
Masaya Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14926585A priority Critical patent/JPH0232360B2/en
Publication of JPS6210292A publication Critical patent/JPS6210292A/en
Publication of JPH0232360B2 publication Critical patent/JPH0232360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は一般に亜鉛メツキ鋼板が使用される分
野において装飾が必要な部材に用いる着色亜鉛メ
ツキ鋼板の製造方法に関するものである。 (従来の技術) 表面処理鋼板は汎用的な品質と低コストの両面
から広範囲な分野に利用され、今後もその需要は
品質効良により増加することが確実視されてい
る。亜鉛メツキ鋼板の品質改良は、母材の高品質
と共に、外観、防錆、加工性、塗装性の点で多く
の新製品を誕生させ、自動車用鋼板、家電製品、
建材分野の要求に答えて来た。 近年、需要家の要求は、製品の品質を向上させ
ながらトータルコストミニマム化、処理プロセス
の単純化を狙つた表面処理鋼板の導入をはかつて
いる。即ち、従来、表面処理鋼板を加工した後、
前処理塗装して来た製品に対してプレコートされ
た鋼板を導入することによつて需要家工程で行つ
ていた前処理、塗装を省略し、低コストで高品質
の製品を得るプレコート鋼板がその1つである。 これらの要求に答え得るプレコート鋼板として
当初は20〜30μの高級プレコート鋼板が用いられ
て来たが、徹底したコストダウンの追求と、溶接
性等の観点から、着色表面処理鋼板の要求が望ま
れている。これらの要求に答える材料の具備すべ
き品質としては耐食性、加工性に加え、外観の均
一性が重要であり、必要によつては溶接性、耐薬
品性が要求される。色調としては黒色系統のもの
が好まれている。 亜鉛メツキ鋼板の着色処理として知られている
公知の技術は銀イオンを含むクロメート溶液中で
亜鉛メツキを処理する特開昭52―45544(個人)の
方法、リン酸およびリン酸銀をベースとしたクロ
メート溶液中で処理する特開58―177477(京都ク
ロメート工業)の方法がある。これらは酸化銀を
クロメート皮膜に共析させ、黒色外観を得る方法
である。又硫化物を形成させ黒化処理をする方法
として、特開昭52―65139(外国)の方法が公開さ
れている。又クロメート皮膜を形成後染料を用い
て着色させる方法として、特開昭54―145336(三
井金属鉱業)特公昭52―28730(三井金属鉱業)の
方法が公開されている。これらは全て、溶液と亜
鉛メツキを直接化学反応させて着色表面を得る方
法である。その他、陽極酸化法によつて黒色表面
を得る方法が公開されている。例えば、Ni,Co,
MoとZnの合金メツキ鋼板を硫酸アンモニウム水
溶液中で陽極処理する特開昭58―151491の方法、
Ni,Co,MoとZnの合金メツキ浴中で陽極処理
する特開昭58―151490の方法等が代表的な公開技
術である。 (発明が解決しようとする問題点) 従来の着色方法は優れた方法であるが、残念な
ことにスチールメーカーが保有している製造設備
に必ずしもマツチングしていない。例えば、高速
生産性の点でより短時間化が必要である。又、従
来法では亜鉛メツキの黒化処理の場合、処理直後
の黒色皮膜がゲル状で、密着性に於て劣り、コイ
ル生産への大きな障害であり、硬化処理等が必要
であるためプロセスを複雑化している。 いずれにしても広巾のコイル製品を塗装以外の
方法で均一に着色化する方法は従来経験しなかつ
た事である。本発明は高速短時間で現行のプロセ
ス条件で均一な黒色亜鉛メツキ鋼板を得る方法を
提供するものである。 (問題点を解決するための手段) 上述したように亜鉛メツキ鋼板の着色化上の問
題の1つは、黒化処理直後のゲル状物質の生成と
下地の亜鉛の腐食による密着不良が挙げられる。
この解決策として、いろいろ考えられるが、基本
的には、下地の亜鉛の溶解を抑え、水和していな
いコンパクトな皮膜例えばメツキの如き連続膜を
形成させることが有効である。 即ち、本発明は、亜鉛メツキ鋼板の表面に亜鉛
メツキの溶解を出来る丈少くした状態で密着性の
良好な着色皮膜を短時間で得ることに成功したも
のである。 本発明は次の如きもので構成されている。すな
わち亜鉛イオン0.1〜1モル/、ニツケルイオ
ン0.1〜1モル/、鉄イオン0.01〜0.2モル/
の水溶液にバナジウムイオンもしくはモリブデン
イオンもしくはクロムイオンを0.01〜0.5モル/
加えた水溶液中で亜鉛メツキ鋼板を陰極とし
て、1dm2当り20〜200クーロンで電解処理したの
ち、保護皮膜をコーテイングすることを特徴とす
る着色亜鉛メツキ鋼板の製造方法によつて解決し
た。 以下本発明について述べる。 本発明に用いる電解浴は上述したような金属イ
オンを含んだ水溶液中で陰極電解処理によつて着
色化することが出来る。析出する着色皮膜は亜
鉛、ニツケルを主体とする合金及び金属酸化物の
コンポジツト被膜で構成されている。 本発明は、有色特に黒色の酸化物をコンポジツ
ト共析させる必要がある。従つて、陰極で酸化物
が析出する特別な条件をメツキ浴および電解条件
に与えねばならない。 亜鉛単独浴では、酸化物を共析させることが困
難で本目的の着色皮膜を短時間で得ることが難し
い。ニツケルイオンおよび鉄イオンの存在があつ
て金属の析出とともに酸化物が共析する。Ni単
独浴では水素の発生、下地の亜鉛メツキとの電位
差が大きい理由から亜鉛メツキを主成分とした
Zn―Ni―Oxidesの複合メツキがベストである。
コンポジツトの酸化物は金属まで還元してはなら
ない。従つて、遷移元素で且つ、価数の大きい化
合物を選択し、還元過程で価数の低い酸化物とし
て析出させる。水溶液中では金属に還元しない
Tiイオンは例外で2、3および4価いずれも適
用が可能である。コンポジツトメツキは厚い皮膜
では充分な加工密着性が得られない欠点があり薄
膜の状態が必要である。 以下本発明を処理浴、電解条件、保護コーテイ
ングに分け説明する。 本発明に用いる電解浴の1つは亜鉛イオン0.1
〜1モル/、ニツケルイオン0.1〜1モル/、
鉄イオン0.01〜0.2モル/を含み、望ましくは
ニツケルイオンと亜鉛イオンのモル濃度比
(Ni/Zn比)を0.2〜2.0にすると黒色化し易い。
これらのイオンを含む処理浴に以下述べる金属イ
オン(着色化金属イオンと以下記述)0.01〜0.5
モル/加えた水溶液である。浴のPHは着色度、
電解条件によつて異り、黒色外観を得るためには
1〜4が望ましい。 これらの条件の決定理由は以下の通りである。 亜鉛イオン、ニツケルイオンの濃度は0.1モ
ル/未満では析出が不充分で着色外観が得られ
ない。1.0モル/超は亜鉛、ニツケルが優先析
出し酸化物が共析し難く、充分な着色外観が得ら
れない。黒色外観を得る場合Ni/Zn比0.2未満で
はニツケルの共析率が低く、ニツケルの析出によ
つて誘導共析する酸化物の量が低く黒色度が低く
なる。Ni/Zn比2.0超では水素過電圧の低下によ
り水素ガスが発生し、むらが生じ着色も不充分に
なる場合がある。 又、鉄イオンは酸化物の析出を促進させる作用
があり、0.01〜0.2モル/の範囲で加える。0.01
モル/未満は効果が弱いため着色し難い。0.2
モル/超は鉄の悪影響が生ずる。即ち、外観む
らや色調がうすくなる現象や浴中の沈殿物の発生
等の問題が生ずる。 着色化金属イオン(一部Men+と略)は、バナ
ジウムイオン、もしくはモリブデンイオン、もし
くはクロムイオンの多価金属イオンである。バナ
ジウムイオンは2,3,4,5価のイオンモリブ
デンイオンは2,3,4価のイオン、クロムイオ
ンは3,6価のイオンである。 これらの金属イオンは単独浴では析出し難く、
亜鉛、ニツケル、鉄の析出により誘導析出する。
従つてこれらの金属イオンの濃度は着色度とビヒ
クルとしての亜鉛、ニツケルおよび鉄のメツキと
の混合率特に加工密着性の観点と陰極電解処理直
後の付着性の観点から決定する。濃度は0.001〜
0.5モル/である。好ましくはビヒクル金属イ
オンの全濃度に対する着色化金属イオン濃度比
(Men+/(Zn2++Ni2++Fe2++Fe3+))が0.025〜
0.25で良好な外観と品質が得られ易い。各着色化
金属イオン濃度の限定は下限は共析不足による着
色不足であり、上限は酸化物で析出せず金属的な
光沢外観になり易く、又、たとえ黒色外観が得ら
れたとしてもパウダリングと呼ばれる粉末状の剥
離が生ずるためである。パウダリングの点で
(Men+/(Zn2++Fe2++Fe2++Fe3+))比が0.025
〜0.25が好ましい。 浴のPHは、低PHでは黒色度が低く、高PHでは黒
色度が強い。1未満では亜鉛面のエツチングに伴
う陰極電解処理直後に剥離し易すくなる傾向があ
り、電解条件で調節する。4超は沈澱を生ずる
が、これらは錯化剤例えばクエン酸、EDTA、
酒石酸等を加えることによつて解決できる。しか
しビヒクル金属が析出し難く、好ましくはPH1〜
4で行うのが望ましい。又、電解電圧を下げるた
め、導電助剤を加えた浴も本発明の範囲である。 本発明の処理浴に光沢剤を添加することによ
り、黒色度の高い平滑な着色亜鉛メツキ鋼板を得
ることが出来る。光沢剤としては水溶性のカチオ
ン、ノニオンの高分子化合物例えば2〜3級アミ
ンをポリマーの側鎖に有するアミン、高分子とそ
の共重合体、ポリアクリルアミド、デキストリン
等である。添加量は化合物によつて異り0.01〜1
g/の範囲である。ポリアクリルアミドは低濃
度で光沢化効果的である。アミンポリマーはポリ
アミンスルホン化合物の場合広範囲にわたり光沢
化と黒色化に効果が大きい。 又、デキストリン等でん粉や糖類は高濃度側で
光沢化効果が大きい。これらの添加剤は析出する
コンポジツトメツキを平滑にし、透明感のある色
調を与える。又、メツキ素地の凹凸に対して均一
な析出とピンホールの少い皮膜を提供する。特に
アミンポリマーは黒化処理に効果が大きい特徴が
ある。 電解条件について述べる。前述した如く、本発
明はビヒクル金属と、酸化物を共析させる条件が
必要であり、電解条件としてクーロン量を設定す
る必要がある。。本発明は1dm2当り20〜200クー
ロンの範囲で陰極電解処理する。この範囲外では
黒系統の着色が得られ難い。電流密度は5〜
50A/dm2が好ましいが電気メツキセル条件によ
つて異る。浴温は通常の電解条件範囲20〜60℃で
よい。 以下保護皮膜について詳述する。 陰極電解処理で形成した着色皮膜上に更に保護
皮膜をコーテイングすることによつて、より優れ
た外観を与えると共に耐食性、加工性、傷付き性
を与えるものである。これらの皮膜は無機系、有
機系および有機無機の三つに分類できる。 無機系としてはクロメート皮膜、リン酸塩皮
膜、ケイ酸塩皮膜、ジルコン酸皮膜である。これ
らの皮膜は水溶液を着色処理面上に塗布し、膜厚
制御を行つたのち、乾燥又は焼付けて仕上げる。
或いはこれらの水溶液中で電解処理することによ
つてコーテイングする。又、クロメート被膜を処
理したのち有機皮膜をコーテイングするような重
ねコーテイングは品質向上に最も優れている。こ
れらの場合下層被膜として無機系が優れている。 有機系としては、キレート化合物、タンニン
酸、フイチン酸の化合物、水溶性ポリマーあるい
は水分散性のエマルジヨンを硬化剤と共に着色メ
ツキ鋼板上に塗布して膜厚制御して乾燥又は焼付
て仕上げる。或いは電解処理によつて被覆する。
有機・無機系は水溶性又は水分散系の有機高分子
化合物に無機高分子(例えばシリカ、アルミナ、
ジルコニヤ)等あるいは、クロム酸塩、縮合リン
酸、ジルコン酸、シラン化合物を加えて作成した
水溶液又はエマルジヨンを着色メツキ鋼板上に塗
布し、膜厚制御したのち、乾燥、焼付ける方法、
あるいは電解処理によつて被覆する。 黒色メツキ上にこれらの保護皮膜をコーテイン
グすることにより前述した特性が加えられ、より
実用的なプレコート鋼板を得ることが出来る。又
ワツクス仕上げ等も外観向上、加工性の観点から
利用できる。膜厚としては有機および有機無機系
では3μ以下が望しい無機系は1μ以下が望しい。 塗布方法は1つはロールコーテイングあるいは
塗布後絞りロールや、エアーナイフによつて膜厚
制御する従来の方法で可能である。焼付温度は板
温60〜150℃が望ましい。 2つ目は、電解処理によつて被覆したのち、必
要により水洗あるいはロール絞り、エアーナイフ
絞りののち、乾燥する方法が可能である。 (実施例) 以下実施例を挙げ本発明を詳細に説明する。 実施例 1 硫酸亜鉛(ZnSo4・7H2O)100g(0.34モル)、
硫酸ニツケル(NiSO4・6H2O)100g(0.35モ
ル)硫酸第1鉄(FeSO4・7H2O)50g(0.17モ
ル)を水に溶解した。(Ni/Zn≒1)。更に硫酸
バナジル(VOSO4・6H2O)、メタバナジン酸ア
ンモン(NH4VO3)を10g(0.06モル、0.08モ
ル)別個に加えた処理浴(PH=3.0)中で電気亜
鉛メツキ鋼板(目付20g/m2)を陰極として電解
処理を行つた。浴温50℃、電流密度20A/dm2
50クーロン/dm2で行つた。 保護皮膜として電解クロム酸処理(全クロムと
して30mg/m2)した後アクリルエマルジヨンとシ
リカの複合浴を1μ塗布し板温120℃に熱風で短時
間焼付けた。得られた着色メツキ鋼板の品質はL
値(明度を表す値)は12〜13の黒色の光沢外観で
塩水噴霧試験(以下S,S,T,と略:JIS
Z2371連続法)で120時間発錆を認めなかつた。
又深さ30mmのプレス加工を行つても剥離を認めな
かつた。 又、保護コートとして、アクリルエマルジヨン
とシリカの代りにケイ酸ナトリウムの水溶液を塗
布した場合、L値12〜13、SST72時間で発錆を
認めなかつた。 実施例 2 硫酸亜鉛50g/(0.17モル/)、硫酸ニツ
ケル70g/(0.25モル/)、硫酸第1鉄20
g/(0.07モル/)、硫酸アンモニウム50
g/の水溶液にモリブデン酸アンモニウム5
(0.02モル/)、10(0.04モル/)g/を加
えたPH=3.5の水溶液(Ni/Zn≒1.4)中で電気亜
鉛メツキ鋼板を陰極電解処理した(電流密度
15A/dm2、クーロン量100クーロン/dm2)。 次いで、コロイダルシリカとクロム酸の水溶液
を塗布し熱風で乾燥しクロメート処理(全クロム
として25mg/m2)したのち、ポリアクリル酸とジ
ルコン酸のアンモニア水溶液PH=6を塗布し板温
120℃で焼付けた。L値12の黒色外観が得られ、
SST120時間で発錆なく直径3mmφの180℃曲げ
で剥離を認めなかつた。 実施例 3 実施例2のモリブデン酸アンモニウムの代りに
第1表に示す着色化金属イオンを加え同様の処理
および評価を行つた。
(Industrial Application Field) The present invention generally relates to a method for producing a colored galvanized steel sheet for use in members requiring decoration in fields where galvanized steel sheets are used. (Prior Art) Surface-treated steel sheets are used in a wide range of fields because of their general-purpose quality and low cost, and it is certain that the demand for them will continue to increase due to their quality and effectiveness. Improvements in the quality of galvanized steel sheets have led to the creation of many new products in terms of appearance, rust prevention, workability, and paintability, as well as the high quality of the base material.
We have responded to the demands of the building materials field. In recent years, customer demands have led to the introduction of surface-treated steel sheets that aim to minimize total costs and simplify treatment processes while improving product quality. That is, conventionally, after processing a surface-treated steel sheet,
By introducing pre-coated steel sheets to products that have been pre-treated and painted, we can omit the pre-treatment and painting that were performed in the customer process, and produce high-quality products at low cost. This is one of them. Initially, high-grade pre-painted steel sheets with a thickness of 20 to 30μ were used as pre-painted steel sheets that could meet these demands, but in the pursuit of thorough cost reduction and from the viewpoint of weldability, there was a demand for colored surface-treated steel sheets. ing. In addition to corrosion resistance and workability, it is important for materials to have uniformity in appearance in order to meet these demands, and weldability and chemical resistance are also required as necessary. Black-ish colors are preferred. A known technique known for the color treatment of galvanized steel sheets is the method of JP-A-52-45544 (Private) of treating galvanized steel in a chromate solution containing silver ions, based on phosphoric acid and silver phosphate. There is a method disclosed in JP-A No. 58-177477 (Kyoto Chromate Industries) that involves treatment in a chromate solution. These methods eutectoid silver oxide on a chromate film to obtain a black appearance. Furthermore, as a method for blackening treatment by forming sulfides, a method disclosed in Japanese Patent Application Laid-open No. 52-65139 (foreign) has been disclosed. Furthermore, as a method for coloring a chromate film using a dye after forming it, the method disclosed in Japanese Patent Application Laid-open No. 54-145336 (Mitsui Kinzoku Mining) and Japanese Patent Publication No. 52-28730 (Mitsui Kinzoku Mining) has been disclosed. All of these methods involve a direct chemical reaction between a solution and galvanizing to obtain a colored surface. In addition, a method of obtaining a black surface by an anodic oxidation method has been disclosed. For example, Ni, Co,
The method of JP-A-151491, in which Mo and Zn alloy plated steel sheets are anodized in an aqueous ammonium sulfate solution;
Representative published techniques include the method disclosed in Japanese Patent Application Laid-Open No. 151490 (1982), which involves anodizing in an alloy plating bath of Ni, Co, Mo and Zn. (Problems to be Solved by the Invention) Conventional coloring methods are excellent methods, but unfortunately they do not necessarily match the manufacturing equipment owned by steel manufacturers. For example, shorter processing times are required for high-speed productivity. In addition, in the case of blackening treatment of zinc plating using conventional methods, the black film immediately after treatment is gel-like and has poor adhesion, which is a major hindrance to coil production and requires hardening treatment, which makes the process difficult. It's getting complicated. In any case, we have never experienced a method of uniformly coloring a wide coil product using a method other than painting. The present invention provides a method for obtaining uniform black galvanized steel sheets at high speed and in a short time under current process conditions. (Means for solving the problem) As mentioned above, one of the problems with coloring galvanized steel sheets is the formation of gel-like substances immediately after blackening treatment and poor adhesion due to corrosion of the underlying zinc. .
Various solutions can be considered to solve this problem, but basically it is effective to suppress the dissolution of the underlying zinc and form an unhydrated, compact film, such as a continuous film such as plating. That is, the present invention has succeeded in obtaining a colored film with good adhesion on the surface of a galvanized steel sheet in a short period of time in a state where the length is short enough to allow dissolution of the zinc plating. The present invention is comprised of the following components. That is, zinc ion 0.1-1 mol/, nickel ion 0.1-1 mol/, iron ion 0.01-0.2 mol/
Add 0.01 to 0.5 mol/vanadium ion, molybdenum ion, or chromium ion to the aqueous solution of
The problem was solved by a method for producing a colored galvanized steel sheet, which is characterized in that the galvanized steel sheet is electrolytically treated at 20 to 200 coulombs per 1 dm 2 in an aqueous solution, and then coated with a protective film. The present invention will be described below. The electrolytic bath used in the present invention can be colored by cathodic electrolytic treatment in an aqueous solution containing metal ions as described above. The deposited colored film is composed of a composite film of zinc, an alloy mainly composed of nickel, and metal oxides. In the present invention, it is necessary to co-deposit a colored oxide, especially a black oxide, into a composite. Therefore, special conditions must be provided to the plating bath and electrolytic conditions for oxide precipitation at the cathode. In a zinc-only bath, it is difficult to eutectoid oxides and it is difficult to obtain the desired colored film in a short time. Due to the presence of nickel ions and iron ions, oxides eutectoid along with metal precipitation. In a Ni-only bath, zinc plating was used as the main component because of the generation of hydrogen and the large potential difference with the underlying zinc plating.
Composite plating of Zn-Ni-Oxides is the best.
The oxide of the composite must not be reduced to metal. Therefore, a compound that is a transition element and has a high valence is selected, and is precipitated as a low valence oxide in the reduction process. Does not reduce to metal in aqueous solution
With the exception of Ti ions, any of divalent, trivalent and tetravalent Ti ions can be applied. Composite plating has the disadvantage that a thick film cannot provide sufficient processing adhesion, so a thin film is required. The present invention will be explained below in terms of treatment bath, electrolytic conditions, and protective coating. One of the electrolytic baths used in the present invention is zinc ion 0.1
~1 mol/, Nickel ion 0.1-1 mol/,
Containing 0.01 to 0.2 mol of iron ions, preferably with a molar concentration ratio of nickel ions to zinc ions (Ni/Zn ratio) of 0.2 to 2.0, facilitates blackening.
Metal ions (described below as colored metal ions) 0.01 to 0.5 are added to the treatment bath containing these ions.
mol/added aqueous solution. The pH of the bath is the degree of coloring,
It varies depending on the electrolytic conditions, and a value of 1 to 4 is desirable in order to obtain a black appearance. The reasons for determining these conditions are as follows. If the concentration of zinc ions and nickel ions is less than 0.1 mol/mol, precipitation will be insufficient and a colored appearance will not be obtained. When the amount exceeds 1.0 mol/mol, zinc and nickel preferentially precipitate, making it difficult for oxides to co-deposit, making it impossible to obtain a sufficient colored appearance. When obtaining a black appearance, if the Ni/Zn ratio is less than 0.2, the nickel eutectoid rate is low, and the amount of oxide induced to eutectoid by nickel precipitation is low, resulting in a low blackness. If the Ni/Zn ratio exceeds 2.0, hydrogen gas is generated due to a decrease in hydrogen overvoltage, resulting in unevenness and insufficient coloring. Further, iron ions have the effect of promoting the precipitation of oxides, and are added in a range of 0.01 to 0.2 mol/. 0.01
If the amount is less than mol/mol, the effect is weak and coloring is difficult. 0.2
If the amount exceeds mol/mol, adverse effects of iron occur. That is, problems such as uneven appearance, pale color tone, and formation of precipitates in the bath occur. The colored metal ion (sometimes abbreviated as Me n+ ) is a polyvalent metal ion such as a vanadium ion, a molybdenum ion, or a chromium ion. Vanadium ions are 2-, 3-, 4-, and 5-valent ions; molybdenum ions are 2-, 3-, and 4-valent ions; and chromium ions are 3-, 6-valent ions. These metal ions are difficult to precipitate in a single bath;
Induced precipitation occurs due to the precipitation of zinc, nickel, and iron.
Therefore, the concentration of these metal ions is determined based on the degree of coloring and the mixing ratio of zinc, nickel and iron plating as a vehicle, particularly from the viewpoint of processing adhesion and adhesion immediately after cathodic electrolytic treatment. Concentration is 0.001~
It is 0.5 mol/. Preferably, the coloring metal ion concentration ratio (Me n+ /(Zn 2+ + Ni 2+ + Fe 2+ + Fe 3+ )) to the total concentration of vehicle metal ions is 0.025 to
Good appearance and quality can be easily obtained with 0.25. The lower limit of the concentration of each coloring metal ion is insufficient coloring due to insufficient eutectoid, and the upper limit is oxide that does not precipitate and tends to have a metallic glossy appearance, and even if a black appearance is obtained, powdering may occur. This is because powder-like flaking called . In terms of powdering, the (Me n+ / (Zn 2+ + Fe 2+ + Fe 2+ + Fe 3+ )) ratio is 0.025.
~0.25 is preferred. When the pH of the bath is low, the degree of blackness is low, and when the pH is high, the degree of blackness is high. If it is less than 1, it tends to peel off immediately after cathodic electrolytic treatment due to etching of the zinc surface, so the electrolytic conditions should be adjusted. 4 or more will produce a precipitate, but these may be caused by complexing agents such as citric acid, EDTA,
This can be solved by adding tartaric acid, etc. However, the vehicle metal is difficult to precipitate, and the pH is preferably 1 to 1.
It is preferable to do this at 4. Further, in order to lower the electrolytic voltage, a bath to which a conductive additive is added is also within the scope of the present invention. By adding a brightener to the treatment bath of the present invention, a smooth colored galvanized steel sheet with a high degree of blackness can be obtained. Examples of brighteners include water-soluble cationic and nonionic polymer compounds such as amines having secondary to tertiary amines in their side chains, polymers and their copolymers, polyacrylamide, dextrin, and the like. The amount added varies depending on the compound and ranges from 0.01 to 1.
g/. Polyacrylamide is effective in brightening at low concentrations. In the case of polyamine sulfone compounds, amine polymers are highly effective in brightening and blackening over a wide range of areas. In addition, starches and sugars such as dextrin have a greater glossing effect at higher concentrations. These additives smooth out the deposited composite plating and give it a transparent color tone. Moreover, it provides a film with uniform deposition and fewer pinholes on the unevenness of the plating base. Amine polymers are particularly effective in blackening treatment. The electrolysis conditions will be described. As described above, the present invention requires conditions for eutectoiding the vehicle metal and the oxide, and it is necessary to set the coulomb amount as the electrolytic conditions. . The present invention uses cathodic electrolysis in the range of 20 to 200 coulombs per dm 2 . Outside this range, it is difficult to obtain blackish coloring. Current density is 5~
A value of 50 A/dm 2 is preferable, but it varies depending on the electromechanical cell conditions. The bath temperature may be within the usual electrolysis condition range of 20 to 60°C. The protective film will be explained in detail below. By further coating the colored film formed by cathodic electrolytic treatment with a protective film, a more excellent appearance is provided, as well as corrosion resistance, workability, and scratch resistance. These films can be classified into three types: inorganic, organic, and organic-inorganic. Inorganic types include chromate film, phosphate film, silicate film, and zirconate film. These films are finished by applying an aqueous solution onto the colored surface, controlling the film thickness, and then drying or baking.
Alternatively, coating may be performed by electrolytic treatment in these aqueous solutions. Furthermore, layered coating, in which a chromate film is treated and then an organic film is applied, is the most excellent method for improving quality. In these cases, inorganic coatings are preferable as the lower layer coating. As organic systems, chelate compounds, tannic acid, phytic acid compounds, water-soluble polymers, or water-dispersible emulsions are applied together with a hardening agent onto a colored plated steel plate, the film thickness is controlled, and the finish is finished by drying or baking. Alternatively, it is coated by electrolytic treatment.
Organic/inorganic systems include water-soluble or water-dispersed organic polymer compounds and inorganic polymers (e.g. silica, alumina,
zirconia), etc. Alternatively, a method in which an aqueous solution or emulsion prepared by adding chromate, condensed phosphoric acid, zirconic acid, or a silane compound is applied onto a colored plated steel plate, the film thickness is controlled, and then dried and baked.
Alternatively, it is coated by electrolytic treatment. By coating these protective films on the black plating, the above-mentioned properties are added and a more practical pre-coated steel sheet can be obtained. Also, wax finishing etc. can be used from the viewpoint of improving appearance and workability. The film thickness is preferably 3μ or less for organic and organic-inorganic systems, and 1μ or less for inorganic systems. One of the coating methods is roll coating, or a conventional method of controlling the film thickness using a squeezing roll or an air knife after coating. The baking temperature is preferably 60 to 150℃. The second method is to apply the coating by electrolytic treatment, wash it with water or squeeze it with a roll, or squeeze it with an air knife if necessary, and then dry it. (Example) The present invention will be described in detail below with reference to Examples. Example 1 Zinc sulfate (ZnSo 4.7H 2 O) 100g (0.34 mol),
100 g (0.35 mol) of nickel sulfate (NiSO 4 .6H 2 O) and 50 g (0.17 mol) of ferrous sulfate (FeSO 4 .7H 2 O) were dissolved in water. (Ni/Zn≒1). Furthermore, an electrogalvanized steel sheet (fabric weight 20 g) was prepared in a treatment bath (PH = 3.0 ) in which 10 g (0.06 mol, 0.08 mol) of vanadyl sulfate (VOSO 4 6H 2 O) and ammonium metavanadate (NH 4 VO 3 ) were separately added. /m 2 ) was used as a cathode for electrolytic treatment. Bath temperature 50℃, current density 20A/dm 2 ,
It was conducted at 50 coulombs/ dm2 . After electrolytic chromic acid treatment (total chromium: 30 mg/m 2 ) as a protective film, 1μ of a composite bath of acrylic emulsion and silica was applied and baked with hot air at a plate temperature of 120°C for a short time. The quality of the colored plated steel sheet obtained is L.
The value (value representing brightness) is 12 to 13 with a black glossy appearance and a salt spray test (hereinafter abbreviated as S, S, T: JIS
No rust was observed for 120 hours using Z2371 continuous method).
Also, no peeling was observed even after press working to a depth of 30 mm. Furthermore, when an aqueous solution of sodium silicate was applied as a protective coat instead of acrylic emulsion and silica, the L value was 12 to 13, and no rust was observed at an SST of 72 hours. Example 2 Zinc sulfate 50g/(0.17 mol/), nickel sulfate 70g/(0.25 mol/), ferrous sulfate 20
g/(0.07 mol/), ammonium sulfate 50
ammonium molybdate in an aqueous solution of
(0.02 mol/), 10(0.04 mol/)
15A/dm 2 , coulomb amount 100 coulombs/dm 2 ). Next, an aqueous solution of colloidal silica and chromic acid was applied, dried with hot air, and chromate treated (total chromium: 25 mg/m 2 ), and then an ammonia aqueous solution of polyacrylic acid and zirconic acid, pH=6, was applied and the plate temperature was lowered.
Baked at 120℃. A black appearance with an L value of 12 is obtained,
No rust occurred after 120 hours of SST, and no peeling was observed when bent at 180°C with a diameter of 3 mm. Example 3 In place of ammonium molybdate in Example 2, colored metal ions shown in Table 1 were added, and the same treatments and evaluations were carried out.

【表】 実施例 4 実施例1の処理浴にポリアミンスルホン高分子
を10g/添加した処理浴中で亜鉛メツキ鋼板を
同条件で陰極処理を行つた。 本処理鋼板上にアクリルエマルジヨンとクロム
酸アンモンとシリカの保護皮膜を0.5μ塗布し板温
100℃焼付けた。L値は12〜11、耐食性は塩水噴
霧120時間で白錆発生を認めなかつた。 実施例 5 硫酸亜鉛100g/(0.34モル/)硫酸ニツ
ケル100g/(0.35モル/)硫酸第一鉄50
g/(0.17モル/)の水溶液にモリブデン酸
ナトリウム20g/(0.1モル/)を加え更に
ポリアクリルアマイド100ppm加えたPH=2.5の水
溶液中で溶融亜鉛メツキ鋼板を電流密度30A/d
m2で150クーロン/dm2の陰極電解処理したのち、
市販の塗布クロメートを全クロム25mg/m2塗布し
熱風で乾燥したのち、ポリエチレンイミンとシリ
カゲルのエマルジヨンとシランカツプリング剤か
らなる液を1μ塗布し板温120℃で焼付けた。L値
は13の黒色外観、耐色性は90゜の曲げ部で48時間
発錆していなかつた。 又塗布クロメートの代りに市販のリン酸塩処理
を通常処理(2分スプレー)の1/4時間(30秒)
行つたのち、同様の塗布評価を行つた。L値は
14、耐食性は90゜曲げ部で2%発錆していたのみ
であつた。 (発明の効果) 本発明は、比較的安価で防食性能を持つ亜鉛メ
ツキ鋼板を装飾化した鋼板で従来の塗装鋼板のよ
うな外観が得られ且つ、無機系の特色例えば硬
さ、疵付性等の品質効果が得られる。又低コスト
の大量生産が可能であることは最も大きなメリツ
トである。 従来のポストコート材をプレコート化するに
は、需要家工程における諸作業を折りこんだ特性
を備えねばならず、有気系の塗装のみでは限界が
あり、本発明はこの分野進出の一つである。
[Table] Example 4 A galvanized steel sheet was subjected to cathodic treatment under the same conditions in a treatment bath in which 10 g/polyamine sulfone polymer was added to the treatment bath of Example 1. A protective film of 0.5μ of acrylic emulsion, ammonium chromate, and silica was applied to the treated steel sheet, and the plate temperature
Baked at 100℃. The L value was 12 to 11, and the corrosion resistance showed no white rust after 120 hours of salt water spraying. Example 5 Zinc sulfate 100g/(0.34 mol/) Nickel sulfate 100g/(0.35 mol/) Ferrous sulfate 50
g/(0.17 mol/), 20 g/(0.1 mol/) of sodium molybdate, and 100 ppm of polyacrylamide.
After cathodic electrolytic treatment at 150 coulombs/ dm 2 ,
A commercially available coated chromate was applied at 25mg/ m2 of total chromium and dried with hot air, then 1μ of a solution consisting of an emulsion of polyethyleneimine and silica gel and a silane coupling agent was applied and baked at a board temperature of 120°C. It had a black appearance with an L value of 13, and its color fastness did not rust for 48 hours at a 90° bend. Also, instead of applying chromate, use commercially available phosphate treatment for 1/4 hour (30 seconds) of the normal treatment (2 minutes spray).
After that, a similar coating evaluation was performed. The L value is
14. Corrosion resistance was only 2% rusted at the 90° bend. (Effects of the Invention) The present invention is a steel plate that is a decorative galvanized steel plate that is relatively inexpensive and has anti-corrosion properties.It has an appearance similar to a conventional coated steel plate, and has inorganic characteristics such as hardness and scratch resistance. Quality effects such as The biggest advantage is that mass production at low cost is possible. In order to convert conventional post-coating materials into pre-coating materials, it is necessary to have characteristics that incorporate various operations in the customer process, and there are limits to using only aerobic coatings, so the present invention is one of the advancements in this field. be.

Claims (1)

【特許請求の範囲】[Claims] 1 亜鉛イオン0.1〜1モル/、ニツケルイオ
ン0.1〜1モル/、鉄イオン0.01〜0.2モル/
の水溶液にバナジウムイオン、モリブデンイオ
ン、クロムイオンの1種又は2種以上を0.01〜
0.5モル/加えた水溶液中で亜鉛メツキ鋼板を
陰極として、1dm2当り20〜200クーロン電解処理
したのち、保護皮膜をコーテイングすることを特
徴とする着色亜鉛メツキ鋼板の製造方法。
1 Zinc ion 0.1-1 mol/, Nickel ion 0.1-1 mol/, Iron ion 0.01-0.2 mol/
Add one or more of vanadium ions, molybdenum ions, and chromium ions to an aqueous solution of 0.01~
1. A method for producing a colored galvanized steel sheet, which comprises subjecting the galvanized steel sheet to electrolytic treatment at 20 to 200 coulomb per 1 dm 2 in an aqueous solution containing 0.5 mol/mole as a cathode, followed by coating with a protective film.
JP14926585A 1985-07-09 1985-07-09 CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO Expired - Lifetime JPH0232360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14926585A JPH0232360B2 (en) 1985-07-09 1985-07-09 CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14926585A JPH0232360B2 (en) 1985-07-09 1985-07-09 CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS6210292A JPS6210292A (en) 1987-01-19
JPH0232360B2 true JPH0232360B2 (en) 1990-07-19

Family

ID=15471457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14926585A Expired - Lifetime JPH0232360B2 (en) 1985-07-09 1985-07-09 CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0232360B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815584B2 (en) * 1990-11-30 1996-02-21 日本鋼管株式会社 Weldable colored steel sheet
JP2844953B2 (en) * 1991-03-29 1999-01-13 日本鋼管株式会社 Weldable colored steel plate
JPH09137290A (en) * 1995-11-13 1997-05-27 Sumitomo Metal Ind Ltd Black zinc electroplated steel sheet
WO2000061835A1 (en) * 1999-04-12 2000-10-19 Toyo Kohan Co., Ltd. Method for production of surface treated steel sheet, surface treated steel sheet, and surface treated steel sheet coated with resin comprising surface treated steel sheet and organic resin coating the steel sheet
CA2831402C (en) 2011-03-29 2014-04-15 Nippon Steel & Sumitomo Metal Corporation Surface-treated steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6210292A (en) 1987-01-19

Similar Documents

Publication Publication Date Title
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
JPS6314890A (en) Decorative galvanized steel sheet and its production
JPH0232360B2 (en) CHAKUSHOKUAENMETSUKIKOHANNOSEIZOHOHO
JPH0352557B2 (en)
JPH0422992B2 (en)
JPH0217633B2 (en)
JPH0216395B2 (en)
JP2005105321A (en) Method for manufacturing surface treated steel sheet of excellent appearance, surface treated steel sheet, film-covered surface-treated steel sheet
JPH01195286A (en) Production of black surface-treated steel sheet
JPS6160915B2 (en)
JPS63153295A (en) Colored coated steel sheet and its production
JPS62180081A (en) Colored galvanized steel sheet
JPH0340116B2 (en)
JPH0543799B2 (en)
JP2954417B2 (en) Black surface-treated steel sheet with excellent corrosion resistance and method for producing the same
JPH01108396A (en) Production of galvannealed steel sheet for coating by cationic electrodeposition
JPH01290797A (en) Composite electroplated steel sheet having superior corrosion resistance
JPS6256598A (en) Surface treatment of zinc alloy plated steel sheet
JP2954416B2 (en) Black surface-treated steel sheet with excellent corrosion resistance and method for producing the same
JPH0627356B2 (en) Method for producing highly corrosion resistant iron-based article
JP2569993B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent corrosion resistance, fingerprint resistance and paintability
JPH02104695A (en) Black surface-treated steel material and production thereof
JPS62270799A (en) Colored surface-treated steel sheet and its production
JPH05339746A (en) Method for chromating zinc electroplated steel sheet excellent in color tone stability
JPS63143292A (en) Production of electrolytically chromated steel sheet having excellent corrosion resistance