JPH0549009B2 - - Google Patents

Info

Publication number
JPH0549009B2
JPH0549009B2 JP63165749A JP16574988A JPH0549009B2 JP H0549009 B2 JPH0549009 B2 JP H0549009B2 JP 63165749 A JP63165749 A JP 63165749A JP 16574988 A JP16574988 A JP 16574988A JP H0549009 B2 JPH0549009 B2 JP H0549009B2
Authority
JP
Japan
Prior art keywords
side chain
polymer
resin
meth
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63165749A
Other languages
Japanese (ja)
Other versions
JPH0216016A (en
Inventor
Eiichiro Takyama
Katsuhisa Morita
Michiaki Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP63165749A priority Critical patent/JPH0216016A/en
Publication of JPH0216016A publication Critical patent/JPH0216016A/en
Publication of JPH0549009B2 publication Critical patent/JPH0549009B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、济槜、掗面化粧台、システムキツチ
ン・ワヌクトツプ、タむル等ずい぀た矎感ず耐氎
性ずを兌ね備えお芁求される成圢品の補造方法に
関するものである。 埓来の技術 きわめお淡色、透明性が生呜である人造倧理石
などにあ぀おは、成圢品の物性もさるこずなが
ら、成圢品の倖芳はその商品䟡倀を決定する重芁
な項目である。 曎に、厚さ10にも及ぶ泚型、しかも
以䞊の倧圢成圢品にあ぀おは、成圢時にクラツク
が発生しないようにするこずが決定的に重芁であ
る。 埓来、この人造倧理石の泚型甚暹脂ずしおは、
既存のラゞカル硬化型暹脂、䟋えば䞍飜和ポリ゚
ステル暹脂、ビニル゚ステル暹脂が甚いられおい
た。 勿論、これら既存の暹脂は有甚であり、それな
りの成圢品が補造され、垂販されおいる。 然し、前述した倖芳向䞊の芁望、曎には成圢時
の安党性を高め、補品収率をあげる方向から、尚
䞀局の改善の求められおいるこずも事実である。 発明が解決しようずする課題 本発明は、前述した情勢に鑑み、クラツクの発
生がなく倖芳も向䞊し、その䞊ゲルコヌト面のみ
を沞隰氎に接觊させる、いわゆる片面煮沞テスト
でも充分に満足出来る繊維匷化プラスチツク成圢
品以䞋FRP成圢品ず略称を収率よく補造す
る方法を提䟛しようずするものである。 課題を解決するための手段 即ち、本発明は、型にゲルコヌトを斜し、その
次の局に繊維補匷材の局を蚭けるか蚭けずに、偎
鎖にりレタン結合又ぱステル結合を介しおメ
タアクリロむル基を有し䞻鎖が炭玠−炭玠結合
である偎鎖䞍飜和ポリマヌず充おん材ずの混合物
を、䞭間局ずしお蚭定し、曎に繊維補匷材の裏打
ち局を蚭けるこずによ぀お、前蚘した課題が解決
された、優れた物性を瀺す成圢品の補造方法に関
するものである。 䜜甚 本発明で䞭間局ずしお䜿甚される偎鎖䞍飜和ポ
リマヌは、埓来の䞍飜和ポリ゚ステル暹脂、ビニ
ル゚ステル暹脂に比范しお、䞻鎖が炭玠−炭玠結
合ポリマヌであるため、分子量が倧きく安定であ
り䞔぀匷床も倧である、たた偎鎖末端に反応性の
メタアクリロむル基を有しおいるため、硬化
性もすぐれおいる。埓぀お、この暹脂を䞭間局に
䜿甚し、その片面又は䞡面に繊維補匷材を積局補
匷しお甚いるこずによ぀お、耐煮沞特性にすぐれ
䞔぀クラツクのない本発明のFRP成圢品が収率
よく埗られるものず掚定される。 本発明で甚いられる偎鎖䞍飜和ポリマヌずしお
は、偎鎖にりレタン結合又ぱステル結合を介し
おメタアクリロむル基を有し䞻鎖が炭玠−炭
玠結合である硬化可胜なポリマヌであり、偎鎖に
ヒドロキシル基、カルボキシル基、クリシゞル基
などの官胜基を有するビニル系ポリマヌを補造
し、次いで該官胜基ずりレタン化又ぱステル化
反応を行う反応基及びメタアクリロむル基を
共有する化合物を反応させお補造される。その代
衚的な補造法及び具䜓䟋ずしお以䞋のものが挙げ
られる。 (1) 偎鎖にりレタン結合を介しおメタアクリ
ロむル基を有する偎鎖䞍飜和ポリマヌ (ã‚€) 特開昭59−230019号公報、同60−38403号
公報に蚘茉ず同様の、 [A] 偎鎖にヒドロキシル基を含むポリマヌ
ず、 [B] 倚䟡む゜シアナヌトずメタアクリ
ロむル基を有する䞍飜和モノアルコヌルず
の付加物で遊離のむ゜シアナヌト基を有す
る䞍飜和む゜シアナヌトずを重合性単量䜓
䞭でのヒドロキシル基ずのむ
゜シアナヌト基ずを反応させるこずよりな
る硬化可胜な偎鎖䞍飜和ポリマヌが挙げら
れる。 そのなかで、䞋蚘䞀般匏〔〕で瀺され
るポリマヌが本発明においお奜適に䜿甚さ
れる。 〔䜆し、R1、R2は氎玠又はメチル基であ
り、はゞむ゜シアナヌトの残基を衚わ
し、は50〜300、は70〜99、は〜
30、は又はの敎数である。〕 具䜓的には、偎鎖にヒドロキシル基を含
むポリマヌずしお−ヒドロキシル゚チル
メタアクリレヌト又は−ヒドロキシ
プロピルメタアクリレヌトずスチレン
ずの共重合䜓を甚い、それに䞍飜和む゜シ
アナヌトずしおむ゜ホロンゞむ゜シアナヌ
ト、−トリレンゞむ゜シアナヌト、
のように個のむ゜シアナヌト基の反応性
の異なるゞむ゜シアナヌトず−ヒドロキ
シ゚チルメタアクリレヌト又は−ヒ
ドロキシプロピルメタアクリレヌトの
モル又はモル以䞊の付加物を反応
させお埗られるものが最適である。 (ロ) 前蚘の偎鎖にヒドロキシル基を含むポリマ
ヌず、メタアクリロむルオキシ゚チルむ
゜シアナヌトずを反応させるこずによりなる
硬化可胜な偎鎖䞍飜和ポリマヌが挙げられ
る。 (ハ) メタアクリロむルオキシ゚チルむ゜シ
アナヌトず、他のスチレン、メチルメタクリ
レヌト等ビニルモノマヌずの共重合によ぀お
埗られる偎鎖にむ゜シアナヌトを含むポリマ
ヌず、メタアクリロむル基を有する䞍飜
和アルコヌルずを反応させるこずにより埗ら
れる偎鎖䞍飜和ポリマヌが挙げられる。 (2) 偎鎖に゚ステル結合を介しおメタアクリ
ロむル基を有する偎鎖䞍飜和ポリマヌ、 (ニ) 偎鎖にグリシゞル基を含むポリマヌず、
メタアクリル酞ずを反応させるこずによ
りなる埗られる偎鎖䞍飜和ポリマヌであり䞋
蚘䞀般匏〔〕で瀺されるポリマヌが代衚的
である。 〔䜆し、R1、R2、、及びの定矩は前
蚘ず同じ。〕 具䜓的には、スチレンずグリシゞルメ
タアクリレヌトずの共重合䜓に、メタ
アクリル酞を゚ステル化反応させお埗られる
ものが奜適である。たた、グリシゞルメ
タアクリレヌトに代えおアリルグリシゞル
゚ヌテルを甚いたものも奜適に䜿甚される。 (ホ) 偎鎖にカルボキシル基を含むポリマヌず、
䞍飜和゚ポキシ化合物ずを反応させお埗られ
る䞊蚘䞀般匏〔〕で瀺されるポリマヌが挙
げられる。 具䜓的には、スチレンずメタアクリル
酞ずの共重合䜓に、グリシゞルメタアク
リレヌトを反応させお埗られるものが奜適で
ある。 (ヘ) 特開昭61−258817号「硬化可胜な暹脂及び
その補造方法」に代衚される、 [A] メタアクリル酞モルに察しお、
゚ポキシ暹脂モル以䞊ずを反応させお埗
られる分子䞭メタアクリロむル基ず゚
ポキシ基ずを有する䞍飜和゚ポキシ暹脂を
少なくずも䞀成分ずしお含む成分ず、ビニ
ルモノマヌ、ずをラゞカル重合觊媒を甚い
お共重合させるこずにより、生成ポリマヌ
の偎鎖に゚ポキシ基を有するポリマヌ含有
反応混合物を造り、次いで、 [B] 工皋から埗られた反応混合物䞭
に残存する゚ポキシ基ず実質的に等モルの
メタアクリル酞を加えお、゚ポキシ基
ずカルボキシル基の反応を行わせるこずに
よ぀お埗られる偎鎖䞍飜和ポリマヌが挙げ
られる。 そのなかで、䞋蚘䞀般匏〔〕で瀺され
るポリマヌが奜適である。 〔䜆し、R1、R2、、、は前蚘ず同
様である。R3、R4は氎玠又はメチル基で
あり、は〜の敎数である。〕 同様に、䞊蚘ビスプノヌル型゚ポキシ
暹脂に代えお、ノボラツク型゚ポキシ暹
脂、脂環匏゚ポキシ暹脂を甚いたものも奜
適に䜿甚される。 (ト) 偎鎖にカルボキシル基を含むポリマヌに、
䞊蚘䞍飜和゚ポキシ暹脂を反応させお埗られ
る䞀般匏〔〕で衚わされる偎鎖䞍飜和ポリ
マヌが挙げられる。 䜿甚される゚ポキシ暹脂は䞊蚘ず同様であ
る。 (チ) 偎鎖に酞無氎物基を含むポリマヌに、メ
タアクリロむル基を有する䞍飜和アルコヌ
ルを反応させお埗られる偎鎖䞍飜和ポリマヌ
が挙げられる。 そのなかで、䞋蚘䞀般匏〔〕で瀺される
ポリマヌが奜適に䜿甚される。 〔䜆し、R1、R2、、及びは前蚘した
通りである。〕 具䜓的には、酞無氎物基を有するポリマヌ
ずしおスチレンず無氎マレむン酞ずの共重合
䜓を甚い、それに−ヒドロキシ゚チルメ
タアクリレヌト又は−ヒドロキシプロピ
ルメタアクリレヌトを反応させお埗られ
るものが最適である。 曎に、゚ステル化の結果生じた遊離カルボ
キシル基を゚ポキシ基たたはヒドロキシル基
及びメタアクリロむル基ずを有しおいる
モノマヌず反応させるこずによ぀お埗られる
遊離のカルボキシル基の無いポリマヌも本発
明方法においお䜿甚可胜である。 以䞊の偎鎖䞍飜和ポリマヌは分子量5000以䞊、
望たしくは䞇以䞊10䞇以䞋が望たしい。 5000以䞋の分子量では硬化性、物性が必ずしも
十分ではなく、10䞇以䞊では粘床が高くな぀お䜜
業性が劣るようになる。 偎鎖䞍飜和ポリマヌ䞭のメタアクリロむル
基の比率は、モル以䞊30モル以䞋が望たし
い。 最も適圓な範囲はモル以䞊20モル以䞋で
ある。 これら偎鎖䞍飜和ポリマヌは、モノマヌ溶液䟋
えばスチレンモノマヌずの混合物ずしお䜿甚され
る。混合割合は通垞ポリマヌ濃床で30〜70、奜
たしくは40〜60である。 暹脂の泚型、硬化にあた぀おは、通垞泚型甚暹
脂に充おん材を䜵甚し、適床の透明感を出し、䜵
せお硬化成圢時の発熱によるクラツクを防止する
こずが行われおいる。䜵甚される充おん材ずしお
は、透明感が芁求される時は、ガラスフレヌク、
ガラス埮粉末、氎和アルミナ氎酞化アルミニり
ム、シリカ埮粉末などが有甚である。 透明感が芁求されなければ、炭酞カルシりム、
クレヌ、アルミナ、マむカ、バラむト、石こう、
マむクロバルヌン等必芁に応じお遞択される。 これらのなかで、ガラスフレヌクは透明感を䞎
えるず共にクラツク防止にも特に有効である。ガ
ラスフレヌクずしおは倧きさ玄50〜400ミクロン、
厚み〜10ミクロンの偏平状のものであり、䟋え
ば日本硝子繊維(æ ª)のガラスフレヌクCFが挙げら
れる。その他にはガラスパりダヌが利甚される。
その最も代衚的なものは、日本プロヌ(æ ª)の商品
名“フリツト”である。 充おん材ず偎鎖䞍飜和ポリマヌずの混合割合は
任意に遞べるが、粘床及び塗装䜜業性を考慮する
ず、充おん材の混入割合重量は凡そ10〜80
䜍、望たしくは40〜60が奜適である。 本発明に甚いられるゲルコヌト甚暹脂、䞊びに
裏打ちの積局甚暹脂及び必芁に応じお甚いられる
ゲルコヌトの次の積局郚分の積局甚暹脂は、䟋え
ば䞍飜和ポリ゚ステル暹脂、ビニル゚ステル暹
脂、アクリルりレタン暹脂などの通垞のラゞカル
硬化性暹脂が利甚し埗る。勿論、前蚘した本発明
の偎鎖䞍飜和ポリマヌも䜿甚するこずができる。 䞍飜和ポリ゚ステル暹脂は、α−β䞍飜和倚塩
基酞たたはその酞無氎物を必須成分ずしお含み、
飜和酞を䜵甚するかしないで、倚䟡アルコヌルず
゚ステル化しお埗られる䞍飜和ポリ゚ステルをス
チレンなどの共重合可胜なモノマヌに溶解した圢
のものである。 本発明で甚いられるものずしおは、倚䟡アルコ
ヌル成分ずしおネオペンチルグリコヌル、氎玠化
ビスプノヌル、ビスプノヌルプロピレン
オキシド付加物ずい぀た硬化暹脂に耐熱氎性を䞎
える成分が、たた飜和酞ずしおはむ゜フタル酞、
テレフタル酞が望たしい。 ビニル゚ステル暹脂は、゚ポキシ暹脂ずメ
タアクリル酞ずを䜿甚しお、゚ポキシ基ずカル
ボキシル基の反応により合成される。゚ポキシ暹
脂ずしおは、ビスプノヌル−グリシゞル゚ヌテ
ル系の分子量350〜700䜍のものが適圓である。 メタアクリル酞の他に、倚塩基酞たたはそ
の酞無氎物を䜵甚するこずも実甚的である。 本発明に利甚する圢ずしおは、スチレンなどの
共重合可胜なモノマヌに溶解したものである。通
垞スチレンモノマヌの暹脂に察しお40〜60重量
、より䞀般的には玄50重量配合しお䜿甚す
る。 アクリルりレタン暹脂は、アクリロむル基たた
はメタクリロむル基を有する䞍飜和アルコヌルを
䞀成分ずしお含み、ポリヒドロキシ化合物たたは
そのポリマヌ、ゞむ゜シアナヌトを反応させお埗
られる䞍飜和りレタン暹脂であり、代衚的には次
匏で瀺されるものが挙げられる。 〔匏䞭、は−たたは−CH3である〕。 その他、倚䟡アルコヌルのポリアクリレヌト、
スピロアセタヌルのゞアクリレヌトなどのオリゎ
アクリレヌトも利甚可胜である。 本発明で甚いられる繊維補匷材は、ガラス繊維
のマツト、ロヌビングを切断しお吹付けるケヌス
が䞀般的であるが、必芁に応じおロヌビングクロ
ス、クロスを䜿甚するこずもできる。 成圢品に透明性を䞎えるには屈折率1.54〜1.55
のガラス繊維を䜿甚するのが望たしい。 成圢品の着色は自由であり、成圢方法は通垞の
方法で実斜される。 実斜䟋 次に本発明の理解を助けるために、以䞋に実斜
䟋を瀺す。 実斜䟋  偎鎖にりレタン結合を介しおメタアクリロ
むル基を有する偎鎖䞍飜和ポリマヌ(ã‚€)の補造加熱
及び冷华可胜なのオヌトクレヌブに、スチレ
ン、ヒドロキシ゚チルメタクリレヌト、−ドデ
シルメルカプタン及び−ドデシルメルカプタン
の所定量を仕蟌み、所定枩床で共重合を行぀た。
定期的にサンプルを採取し、分子量を枬定した。 所定の分子量に達した時点で、垌釈モノマヌず
しおスチレン、重合犁止剀ずしおハむドロキノ
ン、觊媒ずしおゞブチル錫ゞラりレヌトからなる
垌釈液の所定量をオヌトクレヌブに泚入し、60℃
に保ちながら、0.5時間攪拌した。 次いで、む゜ホロンゞむ゜シアナヌトの180郚
ず−ヒドロキシプロピルメタクリレヌトの144
郚ずを反応しお埗られた分子䞭にメタクリロむル
基ずむ゜シアナヌト基を共有する䞍飜和む゜シア
ナヌトの圓量を加え、60℃におむ゜シアナヌト基
が消倱するたでりレタン化を行぀た。反応時間は
玄時間であ぀た。 埗られた硬化性暹脂100郚に過酞化物觊媒化
薬ヌヌリヌ(æ ª)補、328E郚及びナフテン酞コ
バルトコバルト含有0.5郚ゞメチルアミ
ノ゚タノヌルのアセチルアセトネヌト0.3郚を配
合しお垞枩で硬化させお物性を枬定した。
[Industrial Field of Application] The present invention relates to a method for manufacturing molded products such as bathtubs, washstands, system kitchen worktops, tiles, etc., which are required to have both aesthetic appearance and water resistance. [Prior Art] In the case of artificial marble, which is very pale in color and whose vitality is transparency, the appearance of the molded product is an important item in determining its commercial value, as well as the physical properties of the molded product. In addition, casting up to a thickness of 10m/m, and even 1m
In the case of the above-mentioned large molded products, it is critically important to prevent cracks from occurring during molding. Conventionally, the resin for casting this artificial marble is
Existing radical curable resins, such as unsaturated polyester resins and vinyl ester resins, have been used. Of course, these existing resins are useful, and various molded products are manufactured and sold commercially. However, it is true that further improvements are required in view of the above-mentioned desire to improve the appearance, as well as to improve safety during molding and increase product yield. [Problems to be Solved by the Invention] In view of the above-mentioned circumstances, the present invention provides a product that does not cause cracks, has an improved appearance, and is also fully satisfactory even in a so-called single-sided boiling test in which only the gel coated surface is brought into contact with boiling water. The purpose of this invention is to provide a method for producing fiber-reinforced plastic molded products (hereinafter referred to as FRP molded products) with good yield. [Means for Solving the Problems] That is, the present invention applies a gel coat to a mold, and then provides (with or without providing a layer of fiber reinforcing material in the next layer) via a urethane bond or an ester bond in the side chain. By setting a mixture of a filler and a side chain unsaturated polymer having a meth)acryloyl group and a main chain having a carbon-carbon bond as an intermediate layer, and further providing a backing layer of a fiber reinforcing material, the above-mentioned The present invention relates to a method for manufacturing a molded article exhibiting excellent physical properties, which solves the above problems. [Function] Compared to conventional unsaturated polyester resins and vinyl ester resins, the side chain unsaturated polymer used as the intermediate layer in the present invention has a large molecular weight and is stable because its main chain is a carbon-carbon bond polymer. It has high strength, and has a reactive (meth)acryloyl group at the end of the side chain, so it has excellent curability. Therefore, by using this resin as an intermediate layer and laminating and reinforcing fiber reinforcing material on one or both sides, the FRP molded product of the present invention with excellent boiling resistance and no cracks can be produced in high yield. estimated to be obtained. The side chain unsaturated polymer used in the present invention is a curable polymer having a (meth)acryloyl group in the side chain via a urethane bond or an ester bond, and the main chain is a carbon-carbon bond. A vinyl polymer having a functional group such as a hydroxyl group, a carboxyl group, or a chrycidyl group is produced, and then the functional group is reacted with a compound that shares a reactive group that performs a urethanization or esterification reaction and a (meth)acryloyl group. Manufactured by Typical manufacturing methods and specific examples include the following. (1) A side chain unsaturated polymer having a (meth)acryloyl group in the side chain via a urethane bond (a) [A] similar to those described in JP-A-59-230019 and JP-A-60-38403; A polymer containing a hydroxyl group in the side chain and [B] an unsaturated isocyanate having a free isocyanate group which is an adduct of a polyvalent isocyanate and an unsaturated monoalcohol having a (meth)acryloyl group are combined into a polymerizable monomer. Examples include curable side-chain unsaturated polymers obtained by reacting the hydroxyl group of [A] and the isocyanate group of [B] in a polymer. Among them, polymers represented by the following general formula [] are preferably used in the present invention. [However, R 1 and R 2 are hydrogen or a methyl group, G represents a diisocyanate residue, M is 50 to 300, n is 70 to 99, and m is 1 to
30, l is an integer of 2 or 3. ] Specifically, a copolymer of 2-hydroxylethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate and styrene is used as the polymer containing a hydroxyl group in the side chain, and isophorone di-styrene is used as the unsaturated isocyanate. Isocyanate, 2,4-tolylene diisocyanate,
A 1:1 mol or 1 mol or more adduct of 2-hydroxyethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate is reacted with a diisocyanate whose two isocyanate groups have different reactivities, such as The best one is the one that can be obtained. (b) Examples include curable side chain unsaturated polymers obtained by reacting the aforementioned polymer containing a hydroxyl group in the side chain with (meth)acryloyloxyethyl isocyanate. (c) A polymer containing isocyanate in the side chain obtained by copolymerizing (meth)acryloyloxyethyl isocyanate with other vinyl monomers such as styrene and methyl methacrylate, and an unsaturated polymer having a (meth)acryloyl group. Examples include side chain unsaturated polymers obtained by reacting with alcohol. (2) a side chain unsaturated polymer having a (meth)acryloyl group in the side chain via an ester bond; (d) a polymer having a glycidyl group in the side chain;
It is a side chain unsaturated polymer obtained by reacting with (meth)acrylic acid, and the polymer represented by the following general formula [] is typical. [However, the definitions of R 1 , R 2 , M, n and m are the same as above. ] Specifically, (meth) is added to a copolymer of styrene and glycidyl (meth)acrylate.
Preferably, it is obtained by subjecting acrylic acid to an esterification reaction. Moreover, those using allyl glycidyl ether instead of glycidyl (meth)acrylate are also preferably used. (e) a polymer containing a carboxyl group in its side chain;
Examples include polymers represented by the above general formula [] obtained by reacting with an unsaturated epoxy compound. Specifically, a material obtained by reacting a copolymer of styrene and (meth)acrylic acid with glycidyl (meth)acrylate is suitable. (F) [A] For 1 mole of (meth)acrylic acid, as typified by JP-A No. 61-258817 "Curable resin and method for producing the same",
A component containing as at least one component an unsaturated epoxy resin having a (meth)acryloyl group and an epoxy group in the molecule obtained by reacting with 1 mole or more of an epoxy resin and a vinyl monomer are co-coated using a radical polymerization catalyst. By polymerizing, a polymer-containing reaction mixture having epoxy groups in the side chains of the resulting polymer is produced, and then [B] substantially equimolar amount of the epoxy groups remaining in the reaction mixture obtained from step [A] is prepared. Examples include side-chain unsaturated polymers obtained by adding (meth)acrylic acid and reacting epoxy groups with carboxyl groups. Among these, polymers represented by the following general formula [] are preferred. [However, R 1 , R 2 , M, n, and m are the same as above. R 3 and R 4 are hydrogen or a methyl group, and p is an integer of 0 to 5. ] Similarly, in place of the bisphenol type epoxy resin, a novolac type epoxy resin or an alicyclic epoxy resin may also be suitably used. (g) Polymers containing carboxyl groups in their side chains,
Examples include side-chain unsaturated polymers represented by the general formula [] obtained by reacting the above-mentioned unsaturated epoxy resins. The epoxy resin used is the same as above. (H) A side chain unsaturated polymer obtained by reacting an unsaturated alcohol having a (meth)acryloyl group with a polymer having an acid anhydride group in the side chain can be mentioned. Among them, polymers represented by the following general formula [] are preferably used. [However, R 1 , R 2 , n, m and M are as described above. ] Specifically, a copolymer of styrene and maleic anhydride is used as a polymer having an acid anhydride group, and it is obtained by reacting it with 2-hydroxyethyl (meth)acrylate or 2-hydroxypropyl (meth)acrylate. The best option is the one that can be used. Furthermore, a polymer free of free carboxyl groups obtained by reacting the free carboxyl groups resulting from esterification with a monomer having an epoxy group or a hydroxyl group and a (meth)acryloyl group is also applicable to the method of the present invention. It can be used in The above side chain unsaturated polymers have a molecular weight of 5000 or more,
Desirably 10,000 or more and 100,000 or less. If the molecular weight is less than 5,000, the curing properties and physical properties are not necessarily sufficient, and if it is more than 100,000, the viscosity becomes high and workability becomes poor. The ratio of (meth)acryloyl groups in the side chain unsaturated polymer is preferably 1 mol % or more and 30 mol % or less. The most suitable range is 5 mol% or more and 20 mol% or less. These side-chain unsaturated polymers are used as a mixture with monomer solutions, for example styrene monomers. The mixing ratio is usually 30 to 70%, preferably 40 to 60% in terms of polymer concentration. When casting and curing resin, a filler is usually used in combination with the casting resin to provide a suitable degree of transparency and to prevent cracks due to heat generation during curing and molding. When transparency is required, glass flakes,
Fine glass powder, hydrated alumina (aluminum hydroxide), fine silica powder, etc. are useful. If transparency is not required, calcium carbonate,
clay, alumina, mica, barite, gypsum,
Micro balloons etc. are selected as necessary. Among these, glass flakes are particularly effective in providing transparency and preventing cracks. Glass flakes are approximately 50 to 400 microns in size.
It is a flat material with a thickness of 2 to 10 microns, such as glass flake CF manufactured by Nippon Glass Fiber Co., Ltd. Other uses include glass powder.
The most representative example is the product name "Frits" manufactured by Nippon Fellow Co., Ltd. The mixing ratio of the filler and the side chain unsaturated polymer can be selected arbitrarily, but considering the viscosity and painting workability, the mixing ratio (wt%) of the filler should be approximately 10 to 80.
%, preferably 40 to 60%. The gel coat resin used in the present invention, the backing laminating resin, and the laminating resin for the next laminated part of the gel coat used as necessary are conventional resins such as unsaturated polyester resins, vinyl ester resins, and acrylic urethane resins. radical curable resins can be used. Of course, the aforementioned side-chain unsaturated polymers of the present invention can also be used. The unsaturated polyester resin contains an α-β unsaturated polybasic acid or its acid anhydride as an essential component,
It is a form in which an unsaturated polyester obtained by esterification with a polyhydric alcohol, with or without a saturated acid, is dissolved in a copolymerizable monomer such as styrene. The polyhydric alcohol components used in the present invention include neopentyl glycol, hydrogenated bisphenol A, and bisphenol A propylene oxide adducts, which provide hot water resistance to the cured resin, and the saturated acid is isophthalate. acid,
Terephthalic acid is preferred. Vinyl ester resins are synthesized by reaction of epoxy groups and carboxyl groups using epoxy resins and (meth)acrylic acid. As the epoxy resin, a bisphenol-glycidyl ether type resin having a molecular weight of 350 to 700 is suitable. In addition to (meth)acrylic acid, it is also practical to use polybasic acids or their acid anhydrides together. The form utilized in the present invention is dissolved in a copolymerizable monomer such as styrene. Usually, the styrene monomer is used in a proportion of 40 to 60% by weight, more generally about 50% by weight, based on the resin. Acrylic urethane resin is an unsaturated urethane resin that contains as one component an unsaturated alcohol having an acryloyl group or a methacryloyl group, and is obtained by reacting a polyhydroxy compound or its polymer, and diisocyanate, and is typically represented by the following formula. Examples include those shown in . [Wherein R is -H or -CH3 ]. Other polyhydric alcohol polyacrylates,
Oligoacrylates such as spiroacetal diacrylates are also available. The fiber reinforcing material used in the present invention is generally made by cutting and spraying glass fiber mat or roving, but roving cloth or cloth can also be used if necessary. A refractive index of 1.54 to 1.55 is required to provide transparency to molded products.
It is preferable to use glass fiber. The molded product can be colored as desired, and the molding method can be carried out in a conventional manner. [Example] Next, in order to help the understanding of the present invention, examples are shown below. Example 1 Production of side chain unsaturated polymer (a) having a (meth)acryloyl group via a urethane bond in the side chain Styrene, hydroxyethyl methacrylate, t-dodecyl mercaptan and n - A predetermined amount of dodecyl mercaptan was charged and copolymerization was carried out at a predetermined temperature.
Samples were taken periodically and the molecular weight was determined. When a predetermined molecular weight is reached, a predetermined amount of a diluent consisting of styrene as a diluent monomer, hydroquinone as a polymerization inhibitor, and dibutyltin dilaurate as a catalyst is poured into an autoclave and heated at 60°C.
The mixture was stirred for 0.5 hour while maintaining the temperature. Then 180 parts of isophorone diisocyanate and 144 parts of 2-hydroxypropyl methacrylate
An equivalent amount of an unsaturated isocyanate that shares a methacryloyl group and an isocyanate group was added to the molecule obtained by reacting the methacryloyl group with the isocyanate group, and urethanization was performed at 60°C until the isocyanate group disappeared. The reaction time was approximately 6 hours. To 100 parts of the obtained curable resin, 2 parts of a peroxide catalyst (manufactured by Kayaku Nouri Co., Ltd., 328E), 0.5 parts of cobalt naphthenate (containing 6% cobalt), and 0.3 parts of acetylacetonate of dimethylaminoethanol were blended. The material was cured at room temperature and its physical properties were measured.

【衚】【table】

【衚】 ゲルコヌト(ã‚€)の補造 偎鎖䞍飜和ポリマヌ(ã‚€)100郚に、゚ロゞルRx−
200を郚、フタロシアニンブルヌ0.05郚をロヌ
ル混緎しおゲルコヌト(ã‚€)ずした。 フレヌク・コンパりンド(ã‚€)の補造 偎鎖䞍飜和ポリマヌ(ã‚€)100郚に、゚ロゞルRx−
200を郚、ガラスフレヌクずしおCF−150を70
郚、カツプリング剀−174郚を圓初゚ロ
ゞルを䞉本ロヌルで、曎に残りの成分をミキサヌ
で混入しおフレヌク・コンパりンド(ã‚€)ずしおた。 テストピヌス(ã‚€)の䜜成 離型剀凊理をしたガラス板䞊に、ゲルコヌト(ã‚€)
100郚に日本油脂(æ ª)パヌブチルPV2郚加え、0.6
、になるようにバヌコヌタヌで塗装し、60
℃30分加熱しおゲル化させた埌、フレヌク・コン
パりンド100郚に察しパヌカドツクス 16を郚
加えお調補した、フレヌク・コンパりンド(ã‚€)を玄
厚になるように塗装し、60℃で30分加熱
しおゲル化させた。 ポリ゚ステル暹脂ずしお、プロピレングリコヌ
ル2.1モル、無氎マレむン酞モル、無氎フタル
酞モルの組成物を加熱゚ステル化し、酞化35.4
の䞍飜和ポリ゚ステルずした埌、300ppmのハむ
ドロキノンを含む重量で40のスチレンに溶解
し、ポリ゚ステル暹脂を補造した。このポリ゚ス
テル暹脂100郚に゚ロゞル−200 郚、ナフテ
ン酞コバルト0.5郚を混合し、䜿甚盎前にメチル
゚チルケトンパヌオキシド郚を加え裏打ち甚暹
脂ずした。 フレヌク・コンパりンド局の䞊に 350のガラ
スマツト局ず前述した裏打ち甚ポリ゚ステル暹
脂で裏打ち積局し、曎にマむラヌフむルムを密
着、硬化させた。 80℃で時間、120℃で時間加熱しお埌硬化
し、テスト甚積局板を補造した。 比范䟋  フレヌク・コンパりンド(ã‚€)の塗装を行わない他
は同䞀の詊料、即ちゲルコヌト(ã‚€)のみず裏打ち積
局から同様に成圢しお積局板を補造した。 盎埄100の穎のあいた煮沞テスト甚容噚
に、ゲルコヌト面をシリコンゎムのパツキングを
介しお密着させ、98〜100℃の沞隰氎䞭で連続煮
沞テストを行぀た。 結果は第衚に瀺すように、フレヌク・コンパ
りンド塗装の積局板の結果が頗る優れおい
るこずが立蚌された。
[Table] Production of gel coat (A) Add Erosil Rx- to 100 parts of the side chain unsaturated polymer (A).
200 and 0.05 part of Phthalocyanine Blue were roll-kneaded to obtain gel coat (A). Production of flake compound (a) 100 parts of side chain unsaturated polymer (a), Erosyl Rx-
4 parts of 200, 70 parts of CF-150 as glass flakes
First, 2 parts of the coupling agent (A-174) were mixed with Erosil in three rolls, and the remaining ingredients were mixed in with a mixer to form a flake compound (A). Preparation of test piece (A) Gel coat (A) on glass plate treated with mold release agent.
Add 2 parts of Nippon Oil & Fats Co., Ltd. Perbutyl PV to 100 parts, 0.6
Paint with a bar coater so that it becomes m/m, 60
After gelling by heating for 30 minutes at ℃, apply flake compound (A) prepared by adding 1 part of Parkadox #16 to 100 parts of flake compound to a thickness of about 1 m/m, and The gel was heated at ℃ for 30 minutes. As a polyester resin, a composition of 2.1 mol of propylene glycol, 1 mol of maleic anhydride, and 1 mol of phthalic anhydride was esterified by heating, and oxidized to 35.4 mol.
The unsaturated polyester was then dissolved in 40% styrene by weight containing 300 ppm of hydroquinone to produce a polyester resin. 1 part of Erosil R-200 and 0.5 part of cobalt naphthenate were mixed with 100 parts of this polyester resin, and immediately before use, 1 part of methyl ethyl ketone peroxide was added to prepare a backing resin. On top of the flake compound layer, three layers of #350 glass mat and the aforementioned polyester resin for backing were laminated, followed by adhering and curing Mylar film. It was heated at 80° C. for 2 hours and at 120° C. for 1 hour for post-curing to produce a test laminate ( ). Comparative Example 1 A laminate (2) was produced by molding in the same manner from the same sample except that the flake compound (A) was not applied, that is, only the gel coat (A) and the backing laminate. The gel coated surface was brought into close contact with a boiling test container having holes of 100 m/m in diameter through silicone rubber packing, and a continuous boiling test was conducted in boiling water at 98 to 100°C. As shown in Table 2, the results demonstrated that the flake compound coated laminate (2008) was significantly superior.

【衚】 実斜䟋  実斜䟋ず同様の、偎鎖にヒドロキシ基を有す
るポリマヌに、䞍飜和む゜シアナヌトずしお、む
゜ホロンゞむ゜シアナヌトず−ヒドロキシプロ
ピルメタクリレヌトの反応生成物のかわりに、
116郚のむ゜シアナヌト゚チルメタクリレヌトを
甚いる以倖は、実斜䟋ず同様の反応を行い、偎
鎖䞍飜和ポリマヌ(ロ)を合成した。 ゲルコヌト(ロ)の補造 偎鎖䞍飜和ポリマヌ(ロ)100郚に、゚ロゞルRx−
200を郚、パヌブチルPVを郚、シランカツプ
リング剀−174 郚をロヌル混緎し、ゲルコヌ
ト(ロ)ずした。 泚型甚暹脂(ロ)の補造 偎鎖䞍飜和ポリマヌ(ロ)100郚に、日本プロヌ
(æ ª)補フリツト10Bを170郚、パヌブチルPVを
郚、シランカツプリング剀−174を郚加え、
泚型甚暹脂(ロ)を補造した。 テストピヌスの補造 離型剀凊理をしたガラス板䞊に、ゲルコヌト(ロ)
を0.6〜0.7厚になるようにバヌコヌタヌで
塗装し、60℃30分加熱しおゲル化させた埌、
350マツトを䞀局敷蚭し、ゲルコヌト(ロ)を含浞、
脱泡した埌、60℃30分加熱しおゲル化させる。こ
れを䞀方の偎ずし、別に調敎した厚さ
の、ガラスマツト、ポリ゚ステル暹脂䜿甚アむボ
リヌに着色したFRP板の間10に泚型甚暹
脂(ロ)を枛圧、脱泡しお泚入した。 60℃時間、70℃時間加熱しお硬化させた。 ガラス板より脱型埌、所望の寞法に切断しおテ
ストピヌスずした。 実斜䟋  偎鎖䞍飜和ポリマヌ(ハ)の補造 攪拌機、還流コンデンサヌ、枩床蚈、ガス導入
管を付したセパラブルフラスコに、トル゚ン
1000、スチレン400、む゜シアナヌト゚チル
メタクリレヌト60、α−メチルスチレンダむマ
ヌ、アゟビスむ゜ブチロニトリルを仕蟌
み、30分間、N2眮換する。その間に液の枩床を
90℃に䞊昇させ、この枩床で時間重合させた。 ガスクロによるスチレン、む゜シアナヌト゚チ
ルメタクリレヌトの重合率は、それぞれ63、73
であり、液クロによる重量平均分子量は、5.3
×104であ぀た。液枩を60℃に䜎䞋させ、ヒドロ
キシ゚チルメタクリレヌト130郚、ゞブチル錫ゞ
ラりレヌト郚プノチアゞン0.1を加え、60
℃で時間、む゜シアナヌト基が消倱するたでり
レタン化反応を行぀た。スチレンをさらに60郚添
加し、枛圧䞋にトル゚ンを溜去しお、偎鎖䞍飜和
ポリマヌ(ハ)を埗た。以䞋、実斜䟋ず同様な方法
で煮沞テストを行぀た。 実斜䟋  偎鎖に゚ステル結合を介しおメタアクリロ
むル基を有する偎鎖䞍飜和ポリマヌ(ニ)の補造 䞍飜和゚ポキシ暹脂(a)の補造 攪拌機、ガス導入管付枩床蚈、還流コンデンサ
ヌ、滎䞋ロヌトを備えたセパラブルフラスコ
に゚ポキシ暹脂ずしお䞉菱油化−シ゚ル瀟の゚ピ
コヌト827を360モル、メタクリル酞43
0.5モル、ベンゞルゞメチルアミン1.2、パラ
ベンゟキノン0.08を仕蟌み、120〜130℃窒玠吹
蟌条件䞋で時間反応するず、酞䟡はほずんどれ
ロずなり、䞍飜和゚ポキシ暹脂(a)が淡赀耐色シラ
ツプ状で埗られた。 暹脂(a)は蚈算䞊は次の匏〔〕が223ず、 遊離の゚ポキシ暹脂180ずの混合物である。 偎鎖゚ポキシ暹脂(b)の合成 前述ず同様の装眮にメチル゚チルケトン250、
䞍飜和゚ポキシ暹脂(a)1730.2モル、スチレ
ン100、アゟビスむ゜ブチロニトリル3.5を仕
蟌み、窒玠気流䞭75℃でスチレン87合蚈スチ
レン量1.8モルを滎䞋した。 時間埌に曎にアゟビスむ゜ブチロニトリル
を远加し、曎に10時間重合した。 重合率が96にな぀た時に、ハむドロキノン
0.2を加えお重合を䞭止した。 偎鎖゚ポキシ暹脂(b)のメチル゚チルケトン溶液
固圢分40が淡黄耐色液状で埗られた。 GPC分析の結果、分子量玄䞇の所にピヌク
をも぀ポリマヌず、未反応゚ポキシ暹脂の混合物
であるこずが確認された。 偎鎖䞍飜和ポリマヌ(ニ)の合成 前述した偎鎖゚ポキシ暹脂(b)のメチル゚チルケ
トン溶液党量にメタクリル酞520.60モル、
トリプニルホスフむン0.8を仕蟌み、メチル
゚チルケトンの沞点で16時間反応するず酞䟡は
10.4ずな぀たので、スチレンモノマヌ420を加
え、400〜450mmHgの枛圧䞋加枩しおメチル゚チ
ルケトンを陀去した。 玄時間を芁しおガスクロマトグラフ分析の結
果、メチル゚チルケトンが0.3ずな぀たので加
枩を䞭止するず、偎鎖䞍飜和ポリマヌ(ニ)が黄耐
色、粘床1.9ポむズで埗られた。 偎鎖䞍飜和ポリマヌ(ニ) 100郚 パヌキナアSA日本油脂瀟補過酞化物觊媒
郚 ナフテン酞コバルトCo 0.5郚 の混合物を宀枩で11分間ゲル化するず、最短硬化
時間11.4分、最高発熱枩床157℃であ぀た。 硬化暹脂は䞋蚘の優れた物性をも぀ものであ぀
た 匕匵り匷さKgmm2 6.9〜7.4 曲げ匷さKgmm2 13.7〜15.9 曲げ匟性係数Kgmm2 322〜369 熱倉圢枩床℃ 124 以䞋、実斜䟋ず同様の方法でテストピヌスを
䜜成し煮沞テストを行぀た。 実斜䟋  偎鎖に゚ステル結合を介しおメタアクリロ
むル基を有する偎鎖䞍飜和ポリマヌ(ホ)の補造 スチレン−グリシゞルメタクリレヌト共重合䜓
の補造 圧力調敎噚、圧力蚈、安党匁を具備した内埄
mmφ、長さ1.5のステンレス補反応噚にスチレ
ン76重量、グリシゞルメタクリレヌト23
重量、−ドデシルメルカプタン重量
の混合物を毎分1.7の速床で䟛絊し、200℃、
〜Kgcm2の条件で反応させた。その結果、スチ
レンの反応率は58、グリシゞルメタクリレヌト
の反応率は73であり、無色透明の粘ちような共
重合䜓組成物が埗られた。 偎鎖䞍飜和ポリマヌ(ホ)の補造 攪拌機、枩床蚈、還流冷华噚を具備したセパラ
ブルフラスコ1000mlに䞊蚘共重合䜓組成物
200、スチレン200、メタクリル酞
27.9、0.32モル、ハむドロキノン0.2を
仕蟌み、100℃、時間反応させた。その結果メ
タクリル酞の反応率は95であり、生成した偎鎖
䞍飜和ポリマヌ(ホ)の溶液は淡黄色透明で、25℃粘
床が15ポむズであ぀た。 䞊蚘ポリマヌ溶液100郚に察しお「パヌメツク
」商品名、日本油脂瀟補過酞化物觊媒郚、
ナフテン酞コバルトCo0.5郚を加え、垞
枩ゲル化詊隓を行぀たずころ、ゲル化時間12分、
最短硬化時間14.3分、最高発熱枩床140℃であ぀
た。 たた、硬化暹脂は䞋蚘の物性を有し、透明性に
優れたものであ぀た。 匕匵り匷さ 7.4Kgmm2 曲げ匷さ 15.9Kgmm2 曲げ匟性係数 369Kgmm2 熱倉圢枩床 125℃ 以䞋、䞊蚘偎鎖䞍飜和ポリマヌ(ホ)の溶液を甚
い、実斜䟋ず同様の方法で煮沞テストを実斜し
た。 実斜䟋  偎鎖に゚ステル結合を介しおメタアクリロ
むル基を有する偎鎖䞍飜和ポリマヌ(ヘ)の補造 スチレン−メタクリル酞共重合䜓の補造 圧力調敎噚、圧力蚈、安党匁を具備した内埄
mmφ、長さ1.5のスチレン補反応噚にスチレン
76重量、メタクリル酞23重量、−ド
デシルメルカプタン重量の混合物を毎分
2.0の速床で䟛絊し、200℃、〜Kgcm2の条
件で反応させた。その結果、スチレンの反応率は
57、メタクリル酞の反応率は72であり、無色
透明の粘ちような共重合䜓組成物が埗られた。 偎鎖䞍飜和ポリマヌ(ヘ)の補造 攪拌機、枩床蚈、還流冷华噚を具備したセパラ
ブルフラスコ1000mlに䞊蚘共重合䜓組成物
200、スチレン200、グリシゞルメタク
リレヌト76.0、ハむドロキノン0.2を
仕蟌み、100℃、時間反応させた。その結果グ
リシゞルメタクリレヌトの反応率は93であり、
生成した偎鎖䞍飜和ポリマヌ(ヘ)の溶液は淡黄色透
明で、25℃粘床がポむズであ぀た。 䞊蚘ポリマヌ溶液100郚に察しお「パヌメツク
」商品名、日本油脂瀟補過酞化物觊媒郚、
ナフテン酞コバルトCo0.5郚を加え、垞
枩ゲル化詊隓を行぀たずころ、ゲル化時間11分、
最短硬化時間11.4分、最高発熱枩床156℃であ぀
た。 たた、硬化暹脂は䞋蚘の物性を有し、透明性に
優れたものであ぀た。 匕匵り匷さ 7.0Kgmm2 曲げ匷さ 13.8Kgmm2 曲げ匟性係数 323Kgmm2 熱倉圢枩床 125℃ 以䞋、䞊蚘偎鎖䞍飜和ポリマヌ(ヘ)の溶液を甚い
お、実斜䟋ず同様の方法で煮沞テストを実斜し
た。 実斜䟋  偎鎖に゚ステル結合を介しおメタクリロむル基
を有する偎鎖䞍飜和ポリマヌ(ト)の合成、攪拌機、
還流コンデンサヌ、枩床蚈付ガス導入管、滎䞋ロ
ヌトを付したセパラブルフラスコに、スチレ
ン728、−ブチルドデシルメルカプタン10、
を仕蟌み、窒玠気流䞭枩床100℃でメチルメタク
リレヌト200、無氎マレむン酞98の混合物を
滎䞋した。 滎䞋開始埌枩床を120℃に䞊昇させ、同枩床で
時間を芁しお滎䞋を終了させた。滎䞋終了埌、
曎に時間同枩床で加熱を続けるず、固圢分は45
ずな぀た。GPCによる分子量枬定では
28000の所にピヌクがあ぀た。枩床を100℃に䞋
げ、ハむドロキノン0.2、−ヒドロキシ゚チ
ルメタクリレヌト130、パラトル゚ンスルホン
酞を加え、同枩床で時間反応するず、赀倖
分析の結果ポリマヌ䞭の酞無氎物の吞収は玄70
皋床消倱したものず刀断された。 偎鎖䞍飜和ポリマヌ(ト)が粘床5.4ポむズ、ハヌ
れン色数300で埗られた。 以䞋、実斜䟋ず同じ方法で煮沞テストを行぀
た。 比范䟋  次の凊方のポリ゚ステル暹脂(チ)、を補造した。 氎玠化ビスプノヌルA240モル、ネオ
ペンチルグリコヌル1251.2モル、む゜フタ
ル酞166モル、を反応容噚に秀取、200〜
210℃、窒玠気流䞭で゚ステル化しお酞䟡30.1ず
した埌、フマル酞116モルを加え、曎に
同䞀条件で゚ステル化を進め酞䟡34.7でハむドロ
キノン0.15を加え、枩床155℃でスチレン525
に溶解、ポリ゚ステル暹脂(チ)ずした。 粘床4.7ポむズ、ハヌれン色数350であ぀た。 実斜䟋ず同様の煮沞テストを行぀た。 以䞊の結果を第衚にたずめお瀺す。
[Table] Example 2 In the same polymer as in Example 1 having a hydroxyl group in the side chain, as an unsaturated isocyanate, instead of the reaction product of isophorone diisocyanate and 2-hydroxypropyl methacrylate,
A side chain unsaturated polymer (b) was synthesized by carrying out the same reaction as in Example 1 except for using 116 parts of isocyanatoethyl methacrylate. Production of gel coat (b) Add Erosyl Rx- to 100 parts of side chain unsaturated polymer (b).
200, 2 parts of Perbutyl PV, and 1 part of silane coupling agent A-174 were roll-kneaded to obtain a gel coat (B). Production of casting resin (b) 100 parts of side chain unsaturated polymer (b), Nippon Ferro
170 parts of Fritz 10B manufactured by Co., Ltd., 2 parts of Perbutyl PV
1 part, add 2 parts of silane coupling agent A-174,
A casting resin (b) was manufactured. Manufacture of test piece Gel coat (RO) is applied on a glass plate treated with a mold release agent.
was coated with a bar coater to a thickness of 0.6 to 0.7 m/m, heated at 60°C for 30 minutes to gel, and then #
Lay a layer of 350 pine and impregnate it with gel coat (b).
After defoaming, heat at 60°C for 30 minutes to gel. Use this as one side and adjust the thickness separately to 2m/m.
The casting resin (b) was injected under reduced pressure and defoamed at 10 m/m between glass mats and ivory-colored FRP boards using polyester resin. It was cured by heating at 60°C for 2 hours and at 70°C for 2 hours. After removing the mold from the glass plate, it was cut into desired dimensions to obtain test pieces. Example 3 Production of side chain unsaturated polymer (c) Toluene was placed in a two-separable flask equipped with a stirrer, reflux condenser, thermometer, and gas inlet tube.
1000 g of styrene, 400 g of styrene, 60 g of isocyanate ethyl methacrylate, 5 g of α-methylstyrene dimer, and 1 g of azobisisobutyronitrile were charged, and the mixture was replaced with N2 for 30 minutes. Meanwhile, the temperature of the liquid
The temperature was increased to 90°C and polymerization was carried out at this temperature for 4 hours. The polymerization rates of styrene and isocyanatoethyl methacrylate by gas chromatography were 63% and 73%, respectively.
%, and the weight average molecular weight by liquid chromatography is 5.3
It was ×10 4 . Lower the liquid temperature to 60°C, add 130 parts of hydroxyethyl methacrylate, 1 part of dibutyltin dilaurate, and 0.1 g of phenothiazine.
The urethanization reaction was carried out at ℃ for 5 hours until the isocyanate group disappeared. An additional 60 parts of styrene was added, and toluene was distilled off under reduced pressure to obtain a side chain unsaturated polymer (iii). Hereinafter, a boiling test was conducted in the same manner as in Example 2. Example 4 Production of side chain unsaturated polymer (2) having a (meth)acryloyl group via an ester bond in the side chain Production of unsaturated epoxy resin (a) Stirrer, thermometer with gas introduction tube, reflux condenser, dropping In a separable flask equipped with a funnel, 360 g (1 mol) of Mitsubishi Yuka-Ciel's Epicote 827 as an epoxy resin and 43 g of methacrylic acid.
(0.5 mol), benzyldimethylamine 1.2 g, and parabenzoquinone 0.08 g are reacted for 3 hours at 120-130°C under nitrogen blowing conditions. The acid value becomes almost zero and the unsaturated epoxy resin (a) turns into a light reddish brown syrup. Obtained as follows. For resin (a), the following formula [] is calculated as 223g, It is a mixture with 180 g of free epoxy resin. Synthesis of side chain epoxy resin (b) Into the same apparatus as above, 250 g of methyl ethyl ketone,
173 g (0.2 mol) of unsaturated epoxy resin (a), 100 g of styrene, and 3.5 g of azobisisobutyronitrile were charged, and 87 g of styrene (total amount of styrene: 1.8 mol) was added dropwise at 75° C. in a nitrogen stream. After 6 hours, add 2 more azobisisobutyronitrile
g was added, and the polymerization was further continued for 10 hours. When the polymerization rate reaches 96%, hydroquinone
Polymerization was stopped by adding 0.2 g. A solution of side chain epoxy resin (b) in methyl ethyl ketone (solid content 40%) was obtained in the form of a pale yellowish brown liquid. As a result of GPC analysis, it was confirmed that it was a mixture of a polymer with a peak at a molecular weight of about 50,000 and unreacted epoxy resin. Synthesis of side chain unsaturated polymer (d) Add 52 g (0.60 mol) of methacrylic acid to the entire methyl ethyl ketone solution of the side chain epoxy resin (b) described above.
When 0.8 g of triphenylphosphine is charged and reacted for 16 hours at the boiling point of methyl ethyl ketone, the acid value is
10.4, 420 g of styrene monomer was added and heated under reduced pressure of 400 to 450 mmHg to remove methyl ethyl ketone. After about 6 hours, gas chromatographic analysis showed that methyl ethyl ketone was 0.3%, so heating was discontinued, and side chain unsaturated polymer (d) was obtained with a yellowish brown color and a viscosity of 1.9 poise. Side chain unsaturated polymer (d) 100 parts Perkyure SA (manufactured by NOF Corporation) (peroxide catalyst)
A mixture of 1 part cobalt naphthenate (6% Co) and 0.5 parts was gelled at room temperature for 11 minutes, with a minimum cure time of 11.4 minutes and a maximum exotherm temperature of 157°C. The cured resin had the following excellent physical properties: Tensile strength (Kg/mm 2 ) 6.9-7.4 Bending strength (Kg/mm 2 ) 13.7-15.9 Bending modulus of elasticity (Kg/mm 2 ) 322- 369 Heat distortion temperature (°C) 124 Test pieces were prepared in the same manner as in Example 2, and a boiling test was conducted. Example 5 Production of a side chain unsaturated polymer (e) having a (meth)acryloyl group via an ester bond in the side chain [Production of styrene-glycidyl methacrylate copolymer] Equipped with a pressure regulator, a pressure gauge, and a safety valve. Inner diameter 4
Styrene (76% by weight) and glycidyl methacrylate (23% by weight) were placed in a stainless steel reactor with mmφ and length of 1.5m.
wt%), n-dodecyl mercaptan (1 wt%)
The mixture was fed at a rate of 1.7 g/min,
The reaction was carried out under conditions of ~7 Kg/cm 2 . As a result, the reaction rate of styrene was 58%, the reaction rate of glycidyl methacrylate was 73%, and a colorless and transparent sticky copolymer composition was obtained. [Production of side chain unsaturated polymer (e)] In a separable flask (1000 ml) equipped with a stirrer, thermometer, and reflux condenser, add the above copolymer composition (200 g), styrene (200 g), and methacrylic acid (27.9 g). , 0.32 mol) and hydroquinone (0.2 g) were added and reacted at 100°C for 5 hours. As a result, the reaction rate of methacrylic acid was 95%, and the resulting solution of the side chain unsaturated polymer (e) was pale yellow and transparent, and the viscosity at 25°C was 15 poise. 1 part of "Permec N" (trade name, peroxide catalyst manufactured by NOF Corporation) per 100 parts of the above polymer solution,
When 0.5 part of cobalt naphthenate (6% Co) was added and a room temperature gelling test was performed, gelation time was 12 minutes,
The shortest curing time was 14.3 minutes, and the maximum exothermic temperature was 140°C. Furthermore, the cured resin had the following physical properties and was excellent in transparency. Tensile strength 7.4Kg/mm 2 Bending strength 15.9Kg/mm 2 Flexural modulus 369Kg/mm 2 Heat deformation temperature 125°C Below, using the solution of the above side chain unsaturated polymer (e), the same procedure as in Example 2 was carried out. A boiling test was conducted using the method. Example 6 Production of side chain unsaturated polymer (f) having a (meth)acryloyl group via an ester bond in the side chain [Production of styrene-methacrylic acid copolymer] Equipped with a pressure regulator, pressure gauge, and safety valve. Inner diameter 4
A mixture of styrene (76% by weight), methacrylic acid (23% by weight), and n-dodecyl mercaptan (1% by weight) was fed into a styrene reactor with mmφ and length of 1.5 m every minute.
It was fed at a rate of 2.0 g and reacted at 200° C. and 5 to 7 Kg/cm 2 . As a result, the reaction rate of styrene is
The reaction rate of methacrylic acid was 72%, and a colorless and transparent sticky copolymer composition was obtained. [Production of side chain unsaturated polymer (f)] The above copolymer composition (200 g), styrene (200 g), and glycidyl methacrylate (76.0 g) were placed in a separable flask (1000 ml) equipped with a stirrer, thermometer, and reflux condenser. ) and hydroquinone (0.2 g) were added and reacted at 100°C for 5 hours. As a result, the reaction rate of glycidyl methacrylate was 93%,
The resulting solution of the side chain unsaturated polymer (f) was pale yellow and transparent, and had a viscosity of 9 poise at 25°C. 1 part of "Permec N" (trade name, peroxide catalyst manufactured by NOF Corporation) per 100 parts of the above polymer solution,
When 0.5 part of cobalt naphthenate (6% Co) was added and a room temperature gelling test was performed, gelation time was 11 minutes,
The shortest curing time was 11.4 minutes, and the maximum exothermic temperature was 156°C. Furthermore, the cured resin had the following physical properties and was excellent in transparency. Tensile strength 7.0Kg/mm 2Bending strength 13.8Kg/mm 2Bending modulus of elasticity 323Kg/mm 2Heat distortion temperature 125℃ Below, the same procedure as in Example 2 was carried out using the solution of the above side chain unsaturated polymer (f). A boiling test was conducted using the following method. Example 7 Synthesis of side chain unsaturated polymer (g) having methacryloyl group in side chain via ester bond, stirrer,
In a two-separable flask equipped with a reflux condenser, a gas inlet tube with a thermometer, and a dropping funnel, add 728 g of styrene, 10 g of t-butyldodecyl mercaptan,
A mixture of 200 g of methyl methacrylate and 98 g of maleic anhydride was added dropwise at a temperature of 100° C. in a nitrogen stream. After the dropwise addition was started, the temperature was raised to 120°C, and the dropwise addition was completed at the same temperature for 4 hours. After finishing dropping,
If you continue heating at the same temperature for another hour, the solid content will be 45
(%) In molecular weight measurement by GPC
It peaked at 28,000. Lower the temperature to 100℃, add 0.2g of hydroquinone, 130g of 2-hydroxyethyl methacrylate, and 2g of para-toluenesulfonic acid, and react at the same temperature for 6 hours. As a result of infrared analysis, the absorption of acid anhydride in the polymer was approximately 70%.
(%) was determined to have disappeared. A side chain unsaturated polymer (T) was obtained with a viscosity of 5.4 poise and a Hazen color number of 300. Hereinafter, a boiling test was conducted in the same manner as in Example 2. Comparative Example 2 A polyester resin (H) having the following formulation was produced. Weigh out 240 g (1 mol) of hydrogenated bisphenol A, 125 g (1.2 mol) of neopentyl glycol, and 166 g (1 mol) of isophthalic acid into a reaction vessel.
After esterification at 210℃ in a nitrogen stream to give an acid value of 30.1, 116g (1 mol) of fumaric acid was added, further esterification was carried out under the same conditions, and when the acid value was 34.7, 0.15g of hydroquinone was added, and styrene was added at a temperature of 155℃. 525g
It was dissolved in to form a polyester resin (H). It had a viscosity of 4.7 poise and a Hazen color number of 350. A boiling test similar to Example 2 was conducted. The above results are summarized in Table 3.

【衚】 実斜䟋  ゲルコヌト甚ビニル゚ステル暹脂(リ)の補造 攪拌機、還流コンデンサヌ、ガス導入管、枩床
蚈を付したセパラブルフラスコに、゚ポキシ
暹脂ずしお゚ポキシ圓量175のビスプノヌル型
液状暹脂油化シ゚ル゚ポキシ(æ ª)゚ピコヌト827
を360、む゜フタル酞75を仕蟌み、窒玠気流
äž­170〜190℃で時間反応した埌、枩床を135℃
に䞋げ、ハむドロキノン0.3、メタアクリル酞
86、トリメチルベンゞルアンモニりムクロラむ
ド0.5、ナフテン酞クロム1.5を仕蟌み、空気
気流䞭130〜135℃で時間反応した埌、スチレン
100を加え、さらに115〜120℃で時間反応を
続けるず、酞䟡9.1ずな぀た。この段階でさらに
スチレン380を远加し、ゲルコヌト甚ビニル゚
ステル暹脂(リ)を合成した。この暹脂のハヌれン色
数は350、粘床は11.4ポむズであ぀た。 泚型甚暹脂(リ)りレタン型䞍飜和ポリマヌの
補造 攪拌機、還流コンデンサヌ、ガス導入管、枩床
蚈を付したセパラブルフラスコに、スチレン
936、−ヒドロキシ゚チルメタクリレヌト
HEMA130を秀取し、窒玠気流䞭120℃で
時間加熱するず反応率は玄42に達し、遊離の
HEMAはガスクロマトグラフ分析の結果玄圓初
仕蟌量の14にな぀たものず刀断された。 ハむドロキノン0.2を加え枩床を70℃に䞋げ、
空気気流に切替えおむ゜シアナヌト゚チルメタク
リレヌト140、ゞブチル錫ゞラりレヌトを
加え70℃で時間反応し、ハヌれン色数30、粘床
11.4ポむズの泚型甚暹脂(リ)が埗られた。赀倖分析
の結果、遊離のむ゜シアナヌトは消倱したこずが
確認された。 ゲルコヌト局の圢成 ビニル゚ステル暹脂(リ)100重量郚以䞋同様
に、゚ロゞル−200を郚加え䞉本ロヌルで混
緎し、チク゜トロピヌ性を付䞎した。 この暹脂100郚に、カツプリング剀日東ナニ
カヌ(æ ª)−174を0.5郚、光開始剀ずしおメルク
瀟補“Darocure 1173”を郚、化薬ヌヌリヌ
瀟補“パヌカドツクス 16”を郚加え本発明の
ゲルコヌトを補造、これをゲルコヌト甚組成物(リ)
ずした。 離型剀を塗垃した30cm×30cm×mmのガラス板
䞊に、ゲルコヌト(リ)を0.5mmになるようにバヌコ
ヌタヌで塗装し、塗面が均䞀になるのを埅぀お、
出力250Wのサンランプスタンレヌ電気(æ ª)補
例30cmで玄15分照射したずころ、ゲルコヌト局は
指觊也燥皋床に硬化した。 泚型および加熱、硬化 これの䞀方の偎ずし、別に厚さmm、癜く着色
したガラスマツト䜿甚のFRPを眮き、その間隔
を10mmずしお、この間に次のプロセスで補造した
泚型甚暹脂(リ)100郚、日本プロヌ瀟補フリ
ツト−10を200郚、日本油脂(æ ª)パヌブチルPVを
1.5郚、混合し、脱泡泚型の䞊70℃時間、80℃
時間硬化させた。冷华、脱型埌成圢品(リ)が埗ら
れた。 比范䟋  ビニル゚ステル暹脂(リ)100郚に、有機過酞化物
ずしお化薬ヌヌリヌ(æ ª)328Eを1.5郚、ナフテン酞
コバルトCo0.3郚、硬化促進剀ずしお日
本フアむンケミカル(æ ª)STキナア0.3郚、゚ロゞル
−200を郚加えおゲルコヌト甚組成物(ヌ)ずし、
これを実斜䟋ず同様にしお、ガラス板に塗装
し、光硬化させた埌、暹脂(リ)で泚型し、加熱硬化
しお成圢品(ヌ)が埗られた。 実斜䟋および比范䟋で埗た各成圢品を、15
cm×15cmに切断し、盎埄10cmの円圢開孔郚を片面
でケ所有する耐煮沞テスト容噚にゲルコヌト局
が内偎になるように敷蚭し、枩床98〜99℃で煮沞
テストを行぀た。結果を第衚に瀺す。第衚か
ら刀るように、本発明により補造された成圢品の
方が優れおいた。
[Table] Example 8 [Manufacture of vinyl ester resin (li) for gel coat] In a 1 g separable flask equipped with a stirrer, reflux condenser, gas inlet tube, and thermometer, a bisphenol type liquid resin with an epoxy equivalent of 175 was added as an epoxy resin. (Yuka Ciel Epoxy Co., Ltd. Epicote 827)
and 75 g of isophthalic acid, reacted at 170 to 190℃ for 3 hours in a nitrogen stream, and then lowered the temperature to 135℃.
0.3g of hydroquinone, methacrylic acid
86g of trimethylbenzylammonium chloride, 0.5g of chromium naphthenate, and 1.5g of chromium naphthenate were charged, and after reacting for 3 hours at 130-135℃ in an air stream, styrene
When 100 g was added and the reaction was further continued at 115-120°C for 1 hour, the acid value became 9.1. At this stage, 380 g of styrene was further added to synthesize vinyl ester resin (li) for gel coat. This resin had a Hazen color number of 350 and a viscosity of 11.4 poise. [Manufacture of casting resin (urethane type unsaturated polymer)] Styrene was placed in a two-separable flask equipped with a stirrer, reflux condenser, gas inlet tube, and thermometer.
Weighed out 936 g and 130 g of 2-hydroxyethyl methacrylate (HEMA), and heated them at 120°C in a nitrogen stream for 6 hours.
After heating for a period of time, the reaction rate reaches approximately 42%, and free
As a result of gas chromatography analysis, it was determined that HEMA amounted to about 14% of the initial amount. Add 0.2g of hydroquinone and lower the temperature to 70℃.
Switch to air flow, add 140 g of isocyanate ethyl methacrylate and 3 g of dibutyltin dilaurate, and react at 70°C for 5 hours, resulting in a Hazen color number of 30 and a viscosity.
A casting resin (Li) of 11.4 poise was obtained. Infrared analysis confirmed that free isocyanate had disappeared. (Formation of gel coat layer) 100 parts by weight of vinyl ester resin (the same applies below)
5 parts of Erosil R-200 was added to the mixture and kneaded with a three-roll mill to impart thixotropy. To 100 parts of this resin, 0.5 part of a coupling agent (Nitto Unicar Co., Ltd. A-174), 2 parts of "Darocure #1173" manufactured by Merck & Co. as a photoinitiator, and 1 part of "Parkadox #16" manufactured by Kayaku Nury Co., Ltd. were added as photoinitiators. The gel coat of the present invention is produced by adding a part to the gel coat composition (re).
And so. On a 30cm x 30cm x 5mm glass plate coated with a release agent, apply gel coat (re) to a thickness of 0.5mm using a bar coater, wait until the coated surface becomes uniform,
Sun lamp with output of 250W (manufactured by Stanley Electric Co., Ltd.)
When irradiated for about 15 minutes at a position 30 cm below, the gel coat layer was hardened to the extent that it was dry to the touch. (Casting, heating, and curing) On one side of this, another 2 mm thick FRP made of white colored glass mat was placed, and the interval between them was 10 mm. ) 100 parts, 200 parts of Fritz B-10 manufactured by Nippon Ferro Co., Ltd., Perbutyl PV manufactured by Nippon Oil & Fats Co., Ltd.
1.5 parts, mixed, degassed and cast at 70℃ for 2 hours, 80℃
It was allowed to cure for 2 hours. After cooling and demolding, a molded product (Re) was obtained. Comparative Example 2 To 100 parts of vinyl ester resin (Li), 1.5 parts of Kayaku Nouri Co., Ltd. 328E as an organic peroxide, 0.3 parts of cobalt naphthenate (6% Co), and Nippon Fine Chemical Co., Ltd. as a curing accelerator. ) 0.3 parts of ST Cure and 5 parts of Erosil R-200 were added to prepare a gel coat composition (nu),
This was coated on a glass plate in the same manner as in Example 1, photocured, cast with resin (Li), and heated and cured to obtain a molded article (N). Each molded article obtained in Example 1 and Comparative Example 2 was
The material was cut into pieces of cm x 15 cm, placed in a boiling test container with four circular openings each side having a diameter of 10 cm, with the gel coat layer facing inside, and a boiling test was conducted at a temperature of 98 to 99°C. The results are shown in Table 4. As can be seen from Table 4, the molded articles produced according to the present invention were superior.

【衚】【table】

【衚】 発明の効果 本発明方法によれば、䜎コストで、クラツクの
無い、非垞に優れた耐煮沞性を瀺す成圢品が補造
可胜ずなり、济槜、掗面化粧台、タむルなどの矎
感ず耐氎性を芁求される甚途に極めお有甚であ
る。
[Table] [Effects of the Invention] According to the method of the present invention, it is possible to produce molded products at low cost, without cracking, and exhibiting excellent boiling resistance, which improves the aesthetic appearance of bathtubs, washstands, tiles, etc. Extremely useful for applications requiring water resistance.

Claims (1)

【特蚱請求の範囲】[Claims]  型にゲルコヌトを斜し、その次に局に繊維補
匷材の局を蚭けるか蚭けずに、偎鎖にりレタン結
合又ぱステル結合を介しおメタアクリロむ
ル基を有し䞻鎖が炭玠−炭玠結合である偎鎖䞍飜
和ポリマヌず充おん材ずの混合物を、䞭間局ずし
お蚭定し、曎に繊維補匷材の裏打ち局を蚭けるこ
ずを特城ずする成圢品の補造方法。
1 Gel coat is applied to the mold, and then a layer of fiber reinforcing material is provided or not, and the main chain has a (meth)acryloyl group via a urethane bond or an ester bond, and the main chain is a carbon-carbon bond. A method for producing a molded article, characterized in that a mixture of a side chain unsaturated polymer and a filler is set as an intermediate layer, and a backing layer of a fiber reinforcing material is further provided.
JP63165749A 1988-07-01 1988-07-01 Manufacture of molded form Granted JPH0216016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63165749A JPH0216016A (en) 1988-07-01 1988-07-01 Manufacture of molded form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63165749A JPH0216016A (en) 1988-07-01 1988-07-01 Manufacture of molded form

Publications (2)

Publication Number Publication Date
JPH0216016A JPH0216016A (en) 1990-01-19
JPH0549009B2 true JPH0549009B2 (en) 1993-07-23

Family

ID=15818346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63165749A Granted JPH0216016A (en) 1988-07-01 1988-07-01 Manufacture of molded form

Country Status (1)

Country Link
JP (1) JPH0216016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220478B (en) * 2012-03-19 2016-03-02 Dic株匏䌚瀟 Actinic-radiation curable composition, the active energy ray-curable coating using it and active energy ray-curable printing ink

Also Published As

Publication number Publication date
JPH0216016A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
JP3718295B2 (en) Vinyl ester resin composition and cured product
EP0497511A2 (en) Moulded composite polyester articles having improved thermal shock resistance
JP2002138121A (en) Thermosetting resin composition and artificial marble using the same
JPH0549009B2 (en)
JPH0375012B2 (en)
JPS63277264A (en) Curable resin composition
JP2002293847A (en) Unsaturated resin composition and its molded article
JPH0550967B2 (en)
JPH0375013B2 (en)
JPH0542930B2 (en)
JPS63286415A (en) Resin composition for casting
JP2592024B2 (en) Resin composition for artificial marble
JPS6043852B2 (en) Curable resin composition
JP2002161124A (en) Polyurethane (meth)acrylate resin and radically polymerizable resin composition
JP2860113B2 (en) Composition for artificial marble
JPS6088021A (en) Fiber-reinforced resin composition
JPH0448327B2 (en)
JP2556763B2 (en) Urethane (meth) acrylate polymerizable composition
JP2850234B2 (en) Resin composition
JPH05155993A (en) Resin for artificial marble
JPH0339316A (en) Curable resin composition
JPH04164911A (en) Polyester resin composition, production of resin used therein, moldings comprising same, and production of the moldings
JPH0145411B2 (en)
JPH0212486B2 (en)
JPH0374148B2 (en)