JPH0548974A - Solid-state image pickup device - Google Patents
Solid-state image pickup deviceInfo
- Publication number
- JPH0548974A JPH0548974A JP3200696A JP20069691A JPH0548974A JP H0548974 A JPH0548974 A JP H0548974A JP 3200696 A JP3200696 A JP 3200696A JP 20069691 A JP20069691 A JP 20069691A JP H0548974 A JPH0548974 A JP H0548974A
- Authority
- JP
- Japan
- Prior art keywords
- memory
- output signal
- defective
- solid
- address
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000015654 memory Effects 0.000 claims abstract description 66
- 230000002950 deficient Effects 0.000 claims abstract description 53
- 230000007547 defect Effects 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 18
- 230000010354 integration Effects 0.000 claims description 10
- 230000002411 adverse Effects 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract 1
- 239000007787 solid Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000007257 malfunction Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、固体撮像素子の各画素
のバラツキを補正する固体撮像装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device for correcting variations in each pixel of a solid-state image pickup device.
【0002】撮像視野内の目標物体の位置、及びその動
きを自動的に判別する追尾装置として応用される赤外線
固体撮像装置では、赤外線固体撮像素子の出力信号にバ
ラツキが有るばあい、目標物体判別において誤りの原因
となるので、このバラツキを補正するため信号補正処理
が行なわれている。In an infrared solid-state image pickup device applied as a tracking device for automatically discriminating the position and movement of a target object within an imaging visual field, if the output signal of the infrared solid-state image pickup device has a variation, the target object discrimination is performed. Therefore, signal correction processing is performed in order to correct this variation.
【0003】[0003]
【従来の技術】図4に、従来の固体撮像装置のブロック
図を示す。図4(A)は装置のブロック図であり、図4
(B)は欠陥素子補正処理回路のブロック図である。2. Description of the Related Art FIG. 4 shows a block diagram of a conventional solid-state image pickup device. FIG. 4A is a block diagram of the apparatus.
(B) is a block diagram of a defective element correction processing circuit.
【0004】図4(A)において、固体撮像装置10
は、撮像対象からの入射赤外光は集光レンズ11で赤外
線検知素子12上に集光され、固体撮像素子12中の各
画素で光電変換される。この例では、k個の画素を二次
元配列した、二次元赤外線CCD(Charge Coupled Dev
ice )を固体撮像素子12として用いている。この固体
撮像素子12からの出力信号はA/D変換器13でディ
ジタルデータに変換され、信号補正処理回路14に入力
される。In FIG. 4A, a solid-state image pickup device 10 is provided.
The incident infrared light from the imaging target is condensed on the infrared detection element 12 by the condenser lens 11, and photoelectrically converted by each pixel in the solid-state imaging element 12. In this example, a two-dimensional infrared CCD (Charge Coupled Dev.
ice) is used as the solid-state image sensor 12. The output signal from the solid-state image sensor 12 is converted into digital data by the A / D converter 13 and input to the signal correction processing circuit 14.
【0005】信号補正処理回路14は、固体撮像素子1
2(A/D変換器13)からの出力信号のバラツキを補
正し、また、該出力信号をフレームごとに積算してS/
N比を改善する。The signal correction processing circuit 14 includes a solid-state image pickup device 1
2 (A / D converter 13) corrects the variation of the output signal, and integrates the output signal for each frame to obtain S / D.
Improve the N ratio.
【0006】信号補正処理回路14によりバラツキ補正
及び感度改善がされた出力信号は、欠陥素子補正処理回
路15に入力されて、欠陥素子が補正された出力信号が
目標判別追尾回路16に送られる。欠陥素子補正処理回
路15は、図4(B)に示すように、フレームメモリ1
7,制御回路18及びアドレス変換用メモリ19により
構成される。The output signal corrected for variations and improved in sensitivity by the signal correction processing circuit 14 is input to the defective element correction processing circuit 15, and the output signal in which the defective element is corrected is sent to the target discrimination tracking circuit 16. As shown in FIG. 4B, the defective element correction processing circuit 15 uses the frame memory 1
7, a control circuit 18, and an address conversion memory 19.
【0007】ここで、図5に、従来の固体撮像装置の処
理を説明するための図を示す。図5(A)は、固体撮像
素子12の一例を示したもので、図5(B)は、図5
(A)に対応する各素子の出力信号を示したものであ
る。FIG. 5 is a diagram for explaining the processing of the conventional solid-state image pickup device. FIG. 5A shows an example of the solid-state image sensor 12, and FIG.
It shows the output signal of each element corresponding to (A).
【0008】図5において、固体撮像素子12は、図5
(A)に示すように、16個の素子121 〜1216がマ
トリクス状に配列されており、素子123 ,125 を欠
陥素子とし、その出力信号を図5(B)に示す状態とす
る。この場合、素子123 は感度がない状態を示してお
り、素子125 が雑音の多い状態を示している。In FIG. 5, the solid-state image pickup device 12 is shown in FIG.
As shown in (A), 16 elements 12 1 to 12 16 are arranged in a matrix, and the elements 12 3 and 12 5 are defective elements, and their output signals are as shown in FIG. 5 (B). To do. In this case, the element 12 3 shows a state where there is no sensitivity, and the element 12 5 shows a state where there is much noise.
【0009】そこで、予め、欠陥素子と判定されている
素子123 ,125 のメモリアドレスを、隣接する正常
な素子122 及び126 等のメモリアドレスで置き換え
るように、アドレス変換用メモリ19にこれらのメモリ
アドレスをデータとして記憶しておく。Therefore, in the address conversion memory 19, the memory addresses of the elements 12 3 and 12 5 which are determined to be defective elements are replaced with the memory addresses of the adjacent normal elements 12 2 and 12 6 in advance. These memory addresses are stored as data.
【0010】いま、欠陥素子補正処理回路15における
フレームメモリ17のアドレスA1 〜A16に、素子12
1 〜1216の出力信号がそれぞれ記憶されている場合、
アドレス変換用メモリ19に例えばA1 ,A2 ,A2 ,
A4 ,A6 ,A6 ,…A16のようにアドレスを記憶させ
ておき、当該アドレスでフレームメモリ17のデータを
読み出す。これにより、素子123 ,125 の出力信号
は、それぞれ素子12 2 ,126 の出力信号で置き換え
るものである。Now, in the defective element correction processing circuit 15,
Address A of frame memory 171~ A16Element 12
1~ 1216If the output signals of are stored respectively,
For example, in the address conversion memory 19, A1, A2, A2,
AFour, A6, A6、… A16Memorize the address like
The data of the frame memory 17 is stored at the address.
read out. Thereby, the element 123, 12FiveOutput signal of
Are the elements 12 2, 126Replace with the output signal of
It is something.
【0011】このように、欠陥素子の置き換え補正処理
により、目標判別追尾回路16での誤動作を減少させる
ことができるものである。As described above, the defective element replacement correction process can reduce malfunctions in the target determination and tracking circuit 16.
【0012】[0012]
【発明が解決しようとする課題】しかし、固体撮像素子
の中で欠陥素子のないものは現状では得難い。従って、
上述の場合における素子123 ,125 の位置に撮像視
野中の目標物体が存在する場合に発見することができ
ず、また、発見された目標物が素子123 ,125 の位
置に移動して見失う場合があり、欠陥素子による悪影響
を生じるという問題がある。However, it is difficult to obtain a solid-state image sensor without a defective element at present. Therefore,
When the target object in the imaging field of view exists at the positions of the elements 12 3 and 12 5 in the above case, it cannot be found, and the found target moves to the positions of the elements 12 3 and 12 5. There is a problem in that the defective element may cause an adverse effect.
【0013】そこで、本発明は上記課題に鑑みなされた
もので、欠陥素子の出力信号置き換えによる影響を減少
させる固体撮像装置を提供することを目的とする。Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a solid-state imaging device that reduces the influence of replacement of output signals of defective elements.
【0014】[0014]
【課題を解決するための手段】上記課題は、撮像対象か
らの光を複数の受光素子で受光して光電変換する固体撮
像素子のうち、存在する欠陥素子の出力信号を隣接する
正常な該受光素子の出力信号と置き換える固体撮像装置
において、前記欠陥素子の欠陥特性に対応した該欠陥素
子のアドレスをそれぞれ記憶する所定数のメモリを有す
るアドレス記憶手段と、該欠陥素子の前記出力信号に応
じて、対応する欠陥特性の該欠陥素子が記憶された、該
アドレス記憶手段の該メモリを選択するメモリ切換手段
と、該メモリ切換手段により選択された該アドレス記憶
手段の該メモリ内のアドレスを置き換えて、該欠陥素子
の前記出力信号を置き換える制御手段と、を有する構成
とすることにより解決される。SUMMARY OF THE INVENTION Among the solid-state image pickup devices in which light from an object to be imaged is received by a plurality of light receiving elements and photoelectrically converted, the output signal of an existing defective element is adjacent to the normal light receiving element. In a solid-state imaging device that replaces an output signal of an element, in accordance with the output signal of the defective element, an address storage unit having a predetermined number of memories that respectively store addresses of the defective element corresponding to defect characteristics of the defective element. Replacing the address in the memory of the address storage means selected by the memory switching means with the memory switching means for selecting the memory of the address storage means in which the defective element of the corresponding defect characteristic is stored And a control means for replacing the output signal of the defective element.
【0015】また、適宜、前記メモリ切換手段は、前記
欠陥素子の入射光強度または出力信号レベルに応じて、
前記アドレス記憶手段の前記メモリを選択し、または、
前記受光素子の出力信号をフレーム毎に積算処理を行う
信号処理手段を設け、前記メモリ切換手段が前記信号処
理手段におけるフレーム積算に応じて、前記アドレス記
憶手段の前記メモリを選択する。In addition, the memory switching means may appropriately respond to the incident light intensity or the output signal level of the defective element,
Selecting the memory of the address storage means, or
A signal processing unit that performs an integration process of the output signal of the light receiving element for each frame is provided, and the memory switching unit selects the memory of the address storage unit according to the frame integration in the signal processing unit.
【0016】[0016]
【作用】上述のように、アドレス記憶手段のそれぞれの
メモリに、欠陥特性に応じた欠陥素子のアドレスを記憶
する。そして、メモリ切換手段がアドレス記憶手段のメ
モリを、欠陥素子の出力信号に応じて選択し、選択され
たメモリのアドレスに従って、制御手段で欠陥素子の出
力信号を隣接する正常な受光素子の出力信号に置き換え
る。As described above, the address of the defective element corresponding to the defect characteristic is stored in each memory of the address storage means. Then, the memory switching means selects the memory of the address storage means according to the output signal of the defective element, and the control means outputs the output signal of the defective element to the output signal of the adjacent normal light receiving element according to the address of the selected memory. Replace with.
【0017】すなわち、固体撮像素子の欠陥素子の特性
に合わせて欠陥置き換えが可能となり、必要最少の欠陥
置き換えを行うことが可能となる。これにより、欠陥素
子の出力信号置き換えによる悪影響を減少させることが
可能となる。In other words, it is possible to replace defects according to the characteristics of defective devices of the solid-state image pickup device, and it is possible to replace the minimum required defects. As a result, it is possible to reduce the adverse effects of replacing the output signal of the defective element.
【0018】この場合、メモリ切換手段は、他に受光素
子の入射光強度または出力信号レベルにより選択を行
い、また、フレーム積算を行う場合にその有無または積
算回数に応じて選択を行うことにより、より欠陥置き換
え数を減少させることが可能となる。In this case, the memory switching means also makes a selection according to the incident light intensity or the output signal level of the light receiving element, and when performing frame integration, the selection is made according to the presence or absence of the frame integration or the number of integrations. It is possible to further reduce the number of defect replacements.
【0019】[0019]
【実施例】図1に、本発明の一実施例の構成図を示す。
なお、図4(A)と同一の構成部分には同一の符合を付
す。図1において、固体撮像装置1は、撮像対象からの
入射赤外光が集光レンズ11により、固体撮像素子であ
る赤外線検知素子12中の各受光素子で光電変換され
る。本実施例では、16個の受光素子(例えば、CC
D)を二次元に配列する(図2参照)。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of an embodiment of the present invention.
The same components as those in FIG. 4A are designated by the same reference numerals. In FIG. 1, in the solid-state imaging device 1, incident infrared light from an imaging target is photoelectrically converted by a condenser lens 11 in each light-receiving element in an infrared detection element 12 which is a solid-state imaging element. In this embodiment, 16 light receiving elements (for example, CC
D) is arranged two-dimensionally (see FIG. 2).
【0020】赤外線検知素子12からの出力信号はA/
D変換器13でディジタルデータに変換され、信号補正
処理回路14に入力される。信号補正処理回路14は、
各受光素子の出力信号のバラツキを補正する補正処理回
路や、S/N比改善のためのフレーム積算を行う信号処
理手段(図示せず)を有する。The output signal from the infrared detecting element 12 is A /
It is converted into digital data by the D converter 13 and input to the signal correction processing circuit 14. The signal correction processing circuit 14 is
It has a correction processing circuit for correcting variations in the output signal of each light receiving element and a signal processing means (not shown) for performing frame integration for improving the S / N ratio.
【0021】信号補正処理回路14からの出力信号は欠
陥素子補正処理回路20に入力され、該欠陥素子補正処
理回路20の出力信号が目標判別追尾回路16に送られ
る。The output signal from the signal correction processing circuit 14 is input to the defective element correction processing circuit 20, and the output signal of the defective element correction processing circuit 20 is sent to the target discrimination tracking circuit 16.
【0022】欠陥素子補正処理回路20は、フレームメ
モリ21及び制御回路22により構成される制御手段、
複数のメモリA,B,C,…を有するアドレス記憶手段
であるアドレスメモリ23及びメモリ切換手段であるメ
モリ切換制御回路24により構成される。このメモリ切
換制御回路24は、出力信号レベル、目標判別追尾回路
16又は信号補正処理回路14からの処理状態信号によ
りアドレスメモリ23のメモリA,B,…を選択する。The defective element correction processing circuit 20 is a control means composed of a frame memory 21 and a control circuit 22,
An address memory 23 having a plurality of memories A, B, C, ... Is an address storage means and a memory switching control circuit 24 is a memory switching means. The memory switching control circuit 24 selects the memories A, B, ... Of the address memory 23 according to the output signal level and the processing state signal from the target discrimination tracking circuit 16 or the signal correction processing circuit 14.
【0023】ここで、図2に、赤外線検知素子12にお
ける欠陥素子の一例の図を示す。図2(A)において赤
外線検知素子12は、前述のように各受光素子121 〜
12 6 を二次元配置したものであり、欠陥素子123 ,
125 ,128 ,1213を欠陥素子とする。Now, referring to FIG.
The figure of an example of the defective element which fails to show. 2 (A) red
As described above, the outside line detection element 12 is provided for each light receiving element 121~
12 6Are arranged two-dimensionally, and the defective element 123,
12Five, 128, 1213Is a defective element.
【0024】また、図3に、赤外線検知素子の特性の一
例のグラフを示す。そこで、上記欠陥素子123 ,12
5 ,128 ,1213はそれぞれ異なる欠陥特性を有して
おり、例えば素子128は入射光強度Iの低いときに感
度がない(出力信号レベルが変化しない)もので、素子
1213は入射光強度Iの高いときに感度がないものとす
る。なお、素子123 は全域で感度がなく、素子125
は雑音が多い場合を示す。従って、図3に示すように、
欠陥素子128 ,1213は入射光強度I1 からI2 の範
囲で、出力信号レベルがV1 からV2 の間では正常な受
光素子と同様な出力信号となる。FIG. 3 is a graph showing an example of characteristics of the infrared detecting element. Therefore, the defective elements 12 3 and 12
5 , 12 8 and 12 13 have different defect characteristics, for example, the element 12 8 has no sensitivity (the output signal level does not change) when the incident light intensity I is low, and the element 12 13 is incident. There is no sensitivity when the light intensity I is high. Incidentally, the element 12 3 is no sensitivity throughout, element 12 5
Indicates that there is a lot of noise. Therefore, as shown in FIG.
The defective elements 12 8 and 12 13 have the same output signal as that of a normal light receiving element within the range of the incident light intensities I 1 to I 2 and the output signal level between V 1 and V 2 .
【0025】まず、欠陥素子補正処理回路20における
アドレスメモリ23のメモリAに、図2(A)に示す4
ヶ所の欠陥素子123 ,125 ,128 ,1213を置き
換えるための置換アドレスを記憶させる。そして、受光
素子128 ,1213の出力信号がメモリ切換制御回路2
4で出力信号レベルV1 からV2 (図3)の間にあると
きは、受光素子128 ,1213は置換えせず、図2
(B)に示す素子123 ,125 を置き換える置換アド
レスをメモリBに記憶させる。First, in the memory A of the address memory 23 in the defective element correction processing circuit 20, 4 shown in FIG.
The replacement addresses for replacing the defective elements 12 3 , 12 5 , 12 8 , and 12 13 at various locations are stored. The output signals of the light receiving elements 12 8 and 12 13 are output to the memory switching control circuit 2
4 is between the output signal levels V 1 and V 2 (FIG. 3), the light receiving elements 12 8 and 12 13 are not replaced, and
The replacement address for replacing the elements 12 3 and 12 5 shown in (B) is stored in the memory B.
【0026】いま撮像状態において、例えば素子1
28 ,1213の出力信号レベルがV1 からV2 の間のと
きは、メモリ切換制御回路24でアドレスメモリ23の
うち、メモリBを選択する。そして、制御回路22によ
り、置き換える書込みアドレス(隣接する素子122,
126 のアドレス)をフレームメモリ21に送出すると
共に、アドレスメモリ23のメモリBより読出アドレス
をフレームメモリ21に送出させて、当該欠陥素子12
3 ,125 の出力信号を置き換える。こうして欠陥置換
えが行われた赤外線検知素子12の画像信号が目標判別
追尾回路16に送出されるものである。In the image pickup state, for example, the element 1
When the output signal levels of 2 8 and 12 13 are between V 1 and V 2 , the memory B of the address memory 23 is selected by the memory switching control circuit 24. Then, the write address to be replaced (the adjacent element 12 2 ,
Address 12 6 ) is sent to the frame memory 21, and the read address is sent from the memory B of the address memory 23 to the frame memory 21.
The output signals of 3 and 12 5 are replaced. The image signal of the infrared detecting element 12 thus subjected to the defect replacement is sent to the target discriminating and tracking circuit 16.
【0027】これにより、従来であれば欠陥素子1
23 ,125,128 ,1213の総ての出力信号を置き
換えるべきところを、素子128 ,1213が欠陥素子で
あっても正常レベルにあることから、置き換える素子の
数を減少させることができるものである。Thus, in the conventional case, the defective element 1
Since all the output signals of 2 3 , 12 5 , 12 8 , and 12 13 should be replaced, even if the elements 12 8 and 12 13 are defective, the number of replaced elements is reduced. Is something that can be done.
【0028】一方、撮像対象が遠方にあって移動速度が
遅いときは、出力信号のS/N比を改善するべく信号補
正処理回路14でフレーム積算回数を増加させる。すな
わち、欠陥素子125 が雑音の多い場合、雑音の大きさ
が、目標判別追尾回路16で誤動作の起きないレベルま
で減少させるようフレーム積算回数を増加させることに
より、置換対象の欠陥素子は素子123 のみとなる。従
って、図2(C)に示すように、素子123 のみを欠陥
置換えするように置換アドレスをメモリCに記憶させ
る。On the other hand, when the object to be imaged is distant and the moving speed is slow, the signal correction processing circuit 14 increases the number of frame integrations in order to improve the S / N ratio of the output signal. That is, when defective element 12 5 is noisy, the size of the noise, by increasing the frame number of integration so as to reduce the target discriminating tracking circuit 16 to occur without level malfunctions, defective elements to be replaced is element 12 Only 3 Therefore, as shown in FIG. 2C, the replacement address is stored in the memory C so that only the element 12 3 is defectively replaced.
【0029】そして、メモリ切換制御回路24は、目標
判別追尾回路16からの遠方の撮像対象を追尾している
信号、及び信号補正処理回路14からのフレーム積算回
数の信号の処理状態信号により、メモリCを選択し、上
述と同様の出力信号の置換処理を行うものである。これ
により、欠陥置換数は本実施例では一つとなり、より減
少させることができるものである。Then, the memory switching control circuit 24 uses the processing state signal of the signal tracking the distant image pickup target from the target discrimination tracking circuit 16 and the processing state signal of the signal of the number of times of frame integration from the signal correction processing circuit 14. C is selected and the same output signal replacement process as described above is performed. As a result, the number of defect replacements becomes one in this embodiment, and can be further reduced.
【0030】このように、固体撮像装置1の撮像動作状
態と欠陥素子の欠陥特性に合わせて、欠陥置換えを切り
換えることができ、必要最少の欠陥置換えを行うことが
できる。As described above, the defect replacement can be switched according to the image pickup operation state of the solid-state image pickup device 1 and the defect characteristic of the defective element, and the necessary minimum defect replacement can be performed.
【0031】なお、上記実施例では欠陥特性を4つに分
けてメモリA〜Cを用いた場合を示したが、さらに細分
してメモリ数を増加させることにより、効率のよい欠陥
置換えを行うことができる。In the above embodiment, the defect characteristics are divided into four and the memories A to C are used. However, by further subdividing and increasing the number of memories, efficient defect replacement can be performed. You can
【0032】[0032]
【発明の効果】以上のように本発明によれば、欠陥素子
の欠陥特性に対応して複数のメモリに置換アドレスを記
憶させ、出力信号レベルや撮像状態に応じて該置換アド
レスを選択することにより、必要最少の欠陥置き換えを
行うことができ、欠陥置換えによる悪影響を減少させる
ことができる。As described above, according to the present invention, the replacement address is stored in a plurality of memories corresponding to the defect characteristics of the defective element, and the replacement address is selected according to the output signal level and the imaging state. As a result, it is possible to perform the minimum necessary defect replacement, and reduce the adverse effects due to the defect replacement.
【図1】本発明の一実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.
【図2】赤外線検知素子における欠陥素子の一例を示し
た図である。FIG. 2 is a diagram showing an example of a defective element in an infrared detection element.
【図3】赤外線検知素子の特性の一例を示したグラフで
ある。FIG. 3 is a graph showing an example of characteristics of an infrared detection element.
【図4】従来の固体撮像装置のブロック図である。FIG. 4 is a block diagram of a conventional solid-state imaging device.
【図5】従来の固体撮像装置の処理を説明するための図
である。FIG. 5 is a diagram for explaining processing of a conventional solid-state imaging device.
1 固体撮像装置 11 集光レンズ 12 赤外線検知素子 13 A/D変換器 14 信号補正処理回路 16 目標判別追尾回路 20 欠陥素子補正処理回路 21 フレームメモリ 22 制御回路 23 アドレスメモリ 24 メモリ切換制御回路 1 Solid-State Imaging Device 11 Condensing Lens 12 Infrared Detector 13 A / D Converter 14 Signal Correction Processing Circuit 16 Target Discrimination Tracking Circuit 20 Defective Element Correction Processing Circuit 21 Frame Memory 22 Control Circuit 23 Address Memory 24 Memory Switching Control Circuit
Claims (3)
21 〜1216)で受光して光電変換する固体撮像素子
(12)のうち、存在する欠陥素子の出力信号を隣接す
る正常な該受光素子の出力信号と置き換える固体撮像装
置において、 前記欠陥素子(123 ,125 ,128 ,1213)の欠
陥特性に対応した該欠陥素子(123 ,125 ,1
28 ,1213)のアドレスをそれぞれ記憶する所定数の
メモリ(A,B,C,…)を有するアドレス記憶手段
(23)と、 該欠陥素子(123 ,125 ,128 ,1213)の前記
出力信号に応じて、対応する欠陥特性の該欠陥素子(1
23 ,125 ,128 ,1213)が記憶された該アドレ
ス記憶手段(23)の該メモリ(A,B,C,…)を選
択するメモリ切換手段(24)と、 該メモリ切換手段(24)により選択された該アドレス
記憶手段(23)の該メモリ(A,B,C,…)内のア
ドレスを置き換えて、該欠陥素子(123 ,125 ,1
28 ,1213)の前記出力信号を置き換える制御手段
(21,22)と、 を有することを特徴とする固体撮像装置。1. A plurality of light receiving elements (1) for receiving light from an imaging target.
2 1-12 16) of the solid-state imaging device by receiving and photoelectrically converts (12), in the solid-state imaging device to replace the output signal of the defective elements that are present as the output signal of the normal light receiving elements adjacent the defective element The defective element (12 3 , 12 5 , 1 8 ) corresponding to the defect characteristic of (12 3 , 12 5 , 12 8 , 12 13 ).
Address storage means (23) having a predetermined number of memories (A, B, C, ...) For respectively storing addresses of 2 8 , 12 13 ) and defective elements (12 3 , 12 5 , 12 8 , 12 13). ) Corresponding to the output signal of the defective element (1
Memory switching means (24) for selecting the memory (A, B, C, ...) Of the address storage means (23) in which 2 3 , 12 5 , 12 8 , 12 13 ) are stored, and the memory switching means By replacing the address in the memory (A, B, C, ...) Of the address storage means (23) selected by (24), the defective element (12 3 , 12 5 , 1) is replaced.
2 8 , 12 13 ) and a control means (21, 22) for replacing the output signal of the solid-state image pickup device.
射光強度または出力信号レベルに応じて、前記アドレス
記憶手段(23)の前記メモリ(A,B,C,…)を選
択することを特徴とする請求項1記載の固体撮像装置。2. The memory switching means (24) stores the address storage means (23) in accordance with the incident light intensity or the output signal level of the defective elements (12 3 , 12 5 , 12 8 , 12 13 ). The solid-state imaging device according to claim 1, wherein the memory (A, B, C, ...) Is selected.
信号をフレーム毎に積算処理を行う信号処理手段(1
4)を設け、 前記メモリ切換手段(24)が前記信号処理手段(1
4)におけるフレーム積算に応じて、前記アドレス記憶
手段(23)の前記メモリ(A,B,C,…)を選択す
ることを特徴とする請求項1又は2記載の固体撮像装
置。3. A signal processing means (1) for integrating the output signals of the light receiving elements (12 1 to 12 16 ) for each frame.
4) is provided, and the memory switching means (24) is provided with the signal processing means (1).
3. The solid-state imaging device according to claim 1, wherein the memory (A, B, C, ...) Of the address storage means (23) is selected according to the frame integration in 4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200696A JPH0548974A (en) | 1991-08-09 | 1991-08-09 | Solid-state image pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3200696A JPH0548974A (en) | 1991-08-09 | 1991-08-09 | Solid-state image pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0548974A true JPH0548974A (en) | 1993-02-26 |
Family
ID=16428721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3200696A Withdrawn JPH0548974A (en) | 1991-08-09 | 1991-08-09 | Solid-state image pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0548974A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003298949A (en) * | 2002-04-05 | 2003-10-17 | Mitsubishi Electric Corp | Method for detecting flicker defect, video correction method, and solid-state image pickup apparatus |
KR100430572B1 (en) * | 1998-09-30 | 2004-05-12 | 인피니언 테크놀로지스 아게 | Method and device for correcting defective pixels of an image sensor |
JP2011106942A (en) * | 2009-11-17 | 2011-06-02 | Nohmi Bosai Ltd | Apparatus and method for identifying location of missed element in infrared camera |
-
1991
- 1991-08-09 JP JP3200696A patent/JPH0548974A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100430572B1 (en) * | 1998-09-30 | 2004-05-12 | 인피니언 테크놀로지스 아게 | Method and device for correcting defective pixels of an image sensor |
JP2003298949A (en) * | 2002-04-05 | 2003-10-17 | Mitsubishi Electric Corp | Method for detecting flicker defect, video correction method, and solid-state image pickup apparatus |
JP2011106942A (en) * | 2009-11-17 | 2011-06-02 | Nohmi Bosai Ltd | Apparatus and method for identifying location of missed element in infrared camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6181830B1 (en) | Image signal correction device | |
US9071762B2 (en) | Image sensor including real-time automatic exposure control and swallowable pill including the same | |
US7532240B2 (en) | Imaging apparatus and imaging methods | |
US5995145A (en) | Image capture apparatus for selectively causing a stepped reduction in video image signal values | |
JP3748267B2 (en) | Imaging device | |
US5363137A (en) | Focus adjusting apparatus which reads a selected portion of an image pickup plane | |
US4684995A (en) | Simultaneous exposure/focus control in a video camera using a solid state image sensor | |
WO2003103275A1 (en) | Method and apparatus for real time identification and correction of pixel defects for image sensor arrays | |
JPH0795804B2 (en) | Image reader | |
EP0553850A1 (en) | Automatic focussing apparatus for automatically matching focus in response to video signal | |
JP2021063976A (en) | Focus detector and method for controlling the same, program, and storage medium | |
JPH0548974A (en) | Solid-state image pickup device | |
JP6759088B2 (en) | Imaging device and its control method and program | |
JP3128485B2 (en) | Detecting device for defective pixels of solid-state image sensor | |
JP2927970B2 (en) | Imaging device | |
JP2000101924A (en) | Defect detection correction device in image input device | |
JP2008312169A (en) | Image processing apparatus and method, and imaging apparatus | |
JP3441741B2 (en) | Solid-state imaging device | |
JP2007028292A (en) | Infrared imaging apparatus | |
JPH10160566A (en) | Infrared-ray image pickup device | |
JPH0787372A (en) | Image pickup device | |
JPH1038961A (en) | Detecting apparatus for defect of pixel in two-dimensional solid-state image sensing device | |
JP3227809B2 (en) | Defect correction device for solid-state imaging device and solid-state imaging device | |
JPH06224762A (en) | Picture input device | |
JP2003333430A (en) | Defective pixel detecting device for solid-state image pickup element and solid-state image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19981112 |