JPH054877B2 - - Google Patents

Info

Publication number
JPH054877B2
JPH054877B2 JP57126392A JP12639282A JPH054877B2 JP H054877 B2 JPH054877 B2 JP H054877B2 JP 57126392 A JP57126392 A JP 57126392A JP 12639282 A JP12639282 A JP 12639282A JP H054877 B2 JPH054877 B2 JP H054877B2
Authority
JP
Japan
Prior art keywords
region
conductivity type
color
photoelectric conversion
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57126392A
Other languages
Japanese (ja)
Other versions
JPS5916483A (en
Inventor
Takahiro Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57126392A priority Critical patent/JPS5916483A/en
Priority to US06/515,277 priority patent/US4654685A/en
Publication of JPS5916483A publication Critical patent/JPS5916483A/en
Publication of JPH054877B2 publication Critical patent/JPH054877B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、色分解用フイルタ(以下色フイルタ
と略称)を用いずに、単板構成でカラー化が可能
な固体撮像装置に関するものである。 これまでのカラー化固体撮像装置は、小型化に
最も有利な単板構成を中心に開発されて来てお
り、カラー化のために色フイルタを画素に合わせ
てモザイク状に配置する方法が採用されている。
ところが、この様な方法では、信頼性、性能の面
で、解決しがたい次のような幾つかの問題が残
る。 (1) 現在用いられている色フイルタはゼラチン膜
で構成する有機フイルタであるため、耐熱性、
耐光性が不十分で、半導体ほどの長寿命は得ら
れない。 (2) 色フイルタの製作精度が半導体に比べて遥か
に低いので、固体撮像素子の小型化、画素数増
加(高解像度化)による画素寸法の微小化と共
に色フイルタの製造が極めて困難になる。 (3) 色再現に必要な三原色(又は補色も含めた複
数の色)をモザイク状に配置する関係で、1つ
の色が2画素あるいは3画素に1個となるた
め、色の解像度が極めて不十分となる。 上記問題点(3)の解像度はカメラの最も重要な性
能であり、画質を大きく左右する要素である。一
般に固体撮像素子の解像度は、画素となるフオト
ダイオード(などの光電変換部)の数で決まる
が、現状は2/3インチサイズの受光面積に、垂直
方向に約500個、水平方向に約400個というのが代
表的である。ところが、この固体撮像素子でカラ
ーネガフイルム並みの解像度を実現するには、従
来の様なモザイク状の色フイルタを用いる限り最
低でも、垂直約2200個、水平約2200個、画素数と
して2/3インチ受光面積に500万画素は必要であ
る。(実際には、フイルムのr,m,s粒状度を
考慮しなければならず、この値の更に20〜30倍に
なる。)上記の様な画素数になると、1個の画素
を含むセルサイズは、(2/3インチ受光面積の場
合)垂直方向に約3μm、水平方向に約4μmとなる
為、色フイルタの製作精度は超LSIの製作精度を
要求され、極めて困難になる。 この時、もし1画素から色再現に必要な色信号
がすべて得られるならば、カラーネガフイルム並
みの解像度を実現するために、2/3インチ受光面
積で垂直方向に約1300個、水平方向に約1300個の
画素、画素数として170万個もあればよいことに
なる。この場合、1画素を含むセルサイズは、垂
直方向に約5.1μm、水平方向に約6.8μmとなり、
固体撮像素子の製作寸法も遥かに容易なものとな
ることが分かる。 ところが、これまで、1画素から複数の色信号
を同時に読出す様な固体撮像素子は提案されては
いるが(例えば特開昭53−118932号公報参照)、
実用化レベルにはほど遠い。これは、複数の色信
号を得る手段とそれを2次元情報として読出す手
段を同時に実現する事が極めて困難なためであ
る。 本発明の目的は、1画素の光電変換部から色再
現に必要な複数の色信号を得る手段と、それらを
2次元情報として各色同時に読み出す手段とを共
に備えた新しい固体撮像装置を実現することにあ
る。 本発明の構成は、複数の色信号を得るため、
基板に垂直な厚み方向に層状に形成した光電変換
部と、各層からの色信号を同時に読み出すため
に、埋め込まれた複数の抵抗性ゲート電極
(Resistiue Gate電極、以下RG電極と略記する。)
を中心に構成された信号読出し部とから成る。 まず、光電変換部について検討する。一般にp
−n接合フオトダイオードの分光感度特性R(λ)
は、 R(λ)=e・η(λ)/(hc/λ) ・U(λG−λ) …(1) 但し、Eg:真性半導体のバンドギヤツプ λG=hc/Eg:バンドギヤツプEgに対するカツ トオフ波長 η(λ):有効量子効率 U(λG−λ)=1(λ≦λG) =0(λ>λG) また、量子効率η(λ)は、吸収係数α(λ)、
拡散深さxjを用いると、近似的に次式で表わされ
る。 η(λ)1−exp{−α(λ)・xj} …(2) (1)、(2)式から、光電変換部の波長選択性を決め
るのに次の2つの方法が考えられる。 () p−n接合の拡散深さxjにより決まる分光
感度特性を利用する。 () Egの異なる半導体で構成されるヘテロ接合
の分光感度特性を利用する。 ()に示した拡散深さxjの分光感度特性の影
響を考える前に、代表的な例としてSi(シリコン)
の分光感度特性を調べると、第1図に示す様にな
つている。破線で表わされる理想的な分光感度特
性に対し実際は、表面トラツプのために短波長側
(λ<400nm)が減衰し、バルクトラツプのため
に長波長側(λ>800nm)が減衰する。この様な
分光感度特性が拡散深さxjでどう変化するかを示
したのが第2図である。第2図からxjが小さくな
ると共に短波長側の改善の様子が分かる。 従つて層状に形成された光電変換部の拡散深さ
xjの違いを利用すれば、異なる複数の色信号が得
られることになる。 次に()に示したヘテロ接合のEgの影響を
考えるために、(1)式をEg1Eg2の半導体のヘテロ
接合の場合に適用すると、次式の様になる。 R(λ)=e・η(λ)/(hc/λ) ・〔U(λG1−λ)+U(λG2−λ) …(3) 但し、λG1=hc/Eg1<λG2=hc/Eg2 U(λG1−λ)=1(λ≦λG1) =0(λ>λG1) U(λG2−λ)=1(λ≦λG2) =0(λ>λG2) 光が入射する表面の半導体のバンドギヤツプが
Eg1である場合、光の波長λが、λ>λG1のとき
に、U(λG1−λ)=0となるということは、λ>
λG1の光の波長λに対して表示の半導体は透明に
なる事を表わす。(これを一般に窓効果と称する)
これは第3図aに示す様なヘテロ接合を用いて光
電変換を行なうと第3図bに示すような分光感度
特性が得られる事を意味する。従つて層状に形成
された光電変換部のドンドギヤツプEgの組合わ
せを利用すれば、異なる複数の色信号が得られる
ことになる。 次に信号読出し部に用いる抵抗性ゲート
(RG)電極について検討する。 抵抗性ゲート電極の基本構成を第4図aに示
す。p基板401上に形成されたn-領域402
の上に絶縁膜403を介して抵抗性ゲート電極4
04が作られ、その両端に電圧Eが印加される
と、第4図bに示すようなn-領域402のポテ
ンシヤル分布が得られる。この時、n-領域40
2の空乏化電位をψ=ψ0とすると、Aで示され
た範囲が空乏化する領域に対応する。 この様な抵抗性ゲート電極を用して走査機能を
実現するには、第5図aに示すように最低2本の
抵抗性ゲート電極があればよい。 第5図a,bは、それぞれ上面図、断面図を表
わし、第5図cはポテンシヤル分布を示す。 p基板501上に形成されたn-領域502の
上に、絶縁膜503を介して、抵抗性ゲート電極
504及び505が作られている。 抵抗性ゲート電極504の両端の端子B−C間
に電圧E1を印加した時、そのポテンシヤル分布
はψ1となり、抵抗性ゲート電極505の両端の
端子D−E間に電圧E2を印加した時、そのポテ
ンシヤル分布はψ2となる。 この時、n-領域502の空乏化電位をψ=ψ0
とすると抵抗性ゲート電極504に対してはFで
示された範囲が空乏化領域となり、抵抗性ゲート
電極505に対しては、Gで示された範囲が空乏
化領域となる。 従つて、抵抗性ゲート電極504,505に直
角な方向でn-領域502を眺めると、Hで示さ
れる範囲にその幅でチヤネル(第5図b、n-
域502のハツチング部)が形成されることにな
る。 この様なチヤネルを例えば右側に走査させるに
は、鋸歯状波R1,R2をそれぞれB−C端子間、
D−E端子間に容量を介して供給すればよい。 以上述べたような、複数の色信号を得るための
光電変換部と、複数の色信号を読出すための抵抗
性ゲート電極を用いた信号読出し部とで構成され
る本発明の詳細を実施例を用いて説明する。 第6図は、本発明の光電変換部の1実施例で1
個の画素に関するa上面図、b X−X′断面図、
c Y−Y′断面図を示している。 この画素はY−Y′方向に連続となる部分(例
えばn+領域615,609,603など)が存
在するので、固体撮像素子は、Y−Y′方向に作
られた複数画素のユニツトをX−X′方向に並べ
ていくことによつて構成される。 第6図は、p基板602上に絶縁物601で分
離されたn+領域603、n+領域603の上に埋
め込まれたn+型抵抗性ゲート電極604,60
5を含むp領域606、p領域606の上に絶縁
物601で分離されたn+領域607、n+領域6
07の上にp+領域608、p+領域608の上に
絶縁物601で分離されたn+領域609、n+
域609の上に埋め込まれたn+型抵抗性ゲート
電極610,611を含むp領域612、p領域
612の上に絶縁物601で分離されたn+領域
613、n+領域613の上にp+領域614、p+
領域614の上に絶縁物601で分離されたn+
領域615、n+領域615の上に埋め込まれた
n+型抵抗性ゲート電極616,617を含むp
領域618、p領域618の上に絶縁物601で
分離されたn+領域619、n+領域619の上に
保護膜620という順に構成された画素の構造を
示している。 第6図に示した単位画素は厚み方向にB,G,
Rの3領域に分けられ、3種の色信号を読み出す
ことが可能である。 B領域ではn+領域619が主な光電変換部で
あり、400nm〜550nm(青色光に相当)を含む波
長の光に対応して光電変換を行ない、その結果、
生じた信号電荷は抵抗性ゲート電極616,61
7で走査された時にn+領域619からn+領域6
15に向かつて形成される厚み方向のチヤネル
(点線で表示)を通つて信号線SLBに相当するn+
領域615に第1の色信号として読出される。 G領域では、n+領域613が主な光電変換部
であり、500nm〜600nm(緑色光に相当)を含む
波長の光に対応して光電変換を行ない、その結
果、生じた信号電荷は抵抗性ゲート電極610,
611で走査された時にn+領域613からn+
域609に向かつて形成される厚み方向のチヤネ
ル(点線で示す)を通つて信号線SLGに相当する
n)領域609に第2の色信号として読出され
る。 R領域では、n+領域607が主な光電変換部
であり、550nm〜700nm(赤色光に相当)を含む
波長の光に対応して光電変換を行ないその結果生
じた信号電荷は抵抗性ゲート電極604,605
で走査された時にn+領域607からn+領域60
3に向かつて形成される厚み方向のチヤネル(点
線で表示)を通つて信号線SLRに相当するn+領域
603に第3の色信号として読出される。なお、
接地電位のp領域602,606,608,61
2,614,618に対して信号線となるn+
域603,609,615には正の電圧が印加さ
れている。 上記第1〜第3の色信号を得るための具体的な
方法として、 () 拡散深さxjによる分光特性の違いを利用。 () バンドギヤツプエネルギーEgの異なるヘテ
ロ接合の分光特性の違いを利用。 の2つが可能なことはすでに述べた。 第6図の単位画素に対して、()の拡散深さ
xjの効果を適用する具体例を以下に述べる。 第6図の単位画素がSi(シリコン)だけで構成
される場合、第2図を参考にして、B領域を1μm
以内の深さ方向に形成し、G領域を2μm以内の深
さ方向に形成し、R領域を4μm以内の深さ方向に
形成すれば、B領域で得られる第1の色信号C1
は、青色光b、緑色光g、赤色光rの全てに対応
するので、 C1=r+g+b …(4) 同様にG領域で得られる第2の色信号C2は、 C2=r+g …(5) R領域で得られる第3の色信号C3も又、同様
に、 C3=r …(6) (4)、(5)、(6)式から、g=C2−C3,b=C1−C2
r=C3と三原色に対応する色信号が得られるの
で、第6図に示す単位画素で得られる第1〜第3
の色信号を用いれば、色再現が可能であることが
分る。 以上の様に、拡散深さxjの違いに伴なう分光特
性の変化を利用すれば色再現に必要な複数の色信
号も同時に1画素から得られることが明らかにな
つた。この場合の画素部は基板と同じ半導体だけ
で形成できるため、通常のエピタキシヤル結晶成
長技術を主体としたプロセスを用いれば作り易
く、しかも清浄な界面を得やすいという特徴をも
つ。 しかしながら、理論的には(2)式、定性的には
(4)、(5)式から分かる様に、色再現に必要な複数の
色信号を狭帯域の波長領域で得にくいため、信号
処理が必要になるという問題が生じる。 この問題は、()のバンドギヤツプエネルギ
ーEgの異なるヘテロ接合で得られる分光特性の
変化を利用すれば、解決できるので、その具体例
を以下に述べる。 はじめに第3図を用いて基本原理を説明する。
第3図aはp+nn+構造のヘテロ接合フオトダイオ
ードで、トツプコンタクトとなるp+領域301
とn+基板303とは−族の2元化合物InPで
形成されており、ドリフト領域(空乏化領域)と
なるn領域302は−族の3元化合物
GaAsSbで形成されている。InPのバンドギヤツ
プエネルギー(以下Egと略す)をEgをEg1とす
れば、カツトオフ波長λG1はλG1=hc/Eg1となる。
また、GaAsSbのEgをEg2とすれば、そのカツト
オフ波長λG2はλG2=hc/Eg2で与えられる。 この時、Eg1>Eg2であるから色信号に対応す
る光の波長λは、第3図bに示すように λG1<λ<λG2 となる。 また、n領域302は−族の4元化合物
(例えば、InGgAsP)を用いることも可能であ
る。 この他に固定された多元化合物のモル比とそれ
に対応する固定したカツトオフ波長の制限から離
れて設定の自由度を増すために混合勾配
(Compositional grading)という方法も利用さ
れる。(これは清浄な界面を得るためにも役立つ)
これは第7図に示すヘテロ接合フオトダイオード
のように、トツプコンタクトのp+領域702と
n+基板701とがInPで、ドリフト領域であるn
型領域703がInxGa1-xAsYP1-Yである時、混合
勾配は領域704,705のように、InxGa1-x
AsyP1-yで表わされInPと接するところではx=
1,y=0で、InXGa1-XASYP1-Yと接するところ
ではX=x,y=Yとなるようにモル比の勾配で
作られている。勾配の作り方はパラメータx,y
は連続的に変化するかステツプ状に変化させるの
が一般的である。 もちろん混合勾配によらず、InxGa1-xASYP1-Y
だけで十分な場合もあり、用途に応じて使い分け
ればよい。 以上の方法を第6図の単位画素に適用する具体
例として、B領域に青色光、G領域に緑色光、R
領域に赤色光を割当てる場合を説明する。 簡単のため、λG1400nm(EG13eVに対応)、
λG2500nm(EG22.4eVに対応)、λG3600nm
(EG32eVに対応)、λG4700nm(EG41.7eVに
対応)を仮定し、B領域の第1色信号CB、G領
域の第2色信HCG、R領域の第3色信号CRが応答
する波長は、 CB;λG1〜λG2,CG;λG2〜λG3,CR;λG3〜λG4 である場合を考える。 上記条件を満足するために第6図でカツトオフ
波長λG1〜λG4を割当てるには、例えば、n+領域6
19にλG1、P領域618にλG2、n+領域613に
λG3、n+領域607にλG4とすればよい。B領域の
λG1がなくても第1図で示したと同様、表面準位
によつて短波長の応答が減衰させられる筈だから
n+領域619にλG2、n+領域613にλG3、n+領域
607にλG4と割当てもよい。なお、λG2〜λG4
割当てには混合勾配で形成してもよい。指定以外
の部分は、λG1又はλG2を割当てればよい。特に信
号伝送用のn+領域615,609,603を、
光電変換される波長に対して、窓効果を表わすよ
うな、化合物半導体で形成すれば、擬似信号の発
生の心配が不要になる。 次に、具体的にどの様な材料を用いるかについ
て説明する。 第8図は−族の多元化合物のEgと格子定
数との関係を示すものである。 第8図から、上記λG1〜λG4に対応する化合物半
導体で格子定数の揃つたものが見出せないが、
λG2〜λG4に対応する化合物半導体では格子定数を
揃えることが可能である。格子定数が揃う程、界
面特性がよくなるので素子特性そのものが理想的
になる。 たとえば、λG2にはAlPxSb1-x、λG3にはGay
Al1-yAs、λG4にはGay′Al1-y′Asを用いればよい。
この時、第6図の各部は、p基板602、p領域
606,608,612,614,618及び、
n+型抵抗性ゲート電極604,605,610,
611,616,617、さらにn+領域603,
609,615,619がAlPxSb1-xとなり、n+
領域613がGayAl1-yAsとなり、n+領域607
がGay′Al1-y′Asとなる。実際の製造には、MBE
(Molecular Beam Epitaxy)法によるエピタキ
シヤル結晶成長技術を用いればよい。 なお、上述のような化合物半導体を用いて、バ
ンドギヤツプエネルギーEgを設定できるが、不
純物ドーピングにより若干の補正は可能である。
−族化合物に用いる不純物は下表に示す通り
であり、上述したAlPxSb1-xをn+型とするには
Li,Se,Teなどが用いられ、GayAl1-yAsをn+
とするにはLi,Sn,Pb,O,S,Se,Teなどが
用い得る。この時、不純物ドーピングが高くなる
と、第9図に示すように縮退ドーピングa又は不
純物テイルbという状態を実現しうる。
The present invention relates to a solid-state imaging device that can perform color imaging with a single-chip configuration without using a color separation filter (hereinafter abbreviated as a color filter). Up until now, color solid-state imaging devices have been developed with a focus on single-chip configurations, which are most advantageous for miniaturization, and methods have been adopted in which color filters are arranged in a mosaic pattern to match the pixels. ing.
However, with this method, the following problems remain that are difficult to solve in terms of reliability and performance. (1) The color filters currently in use are organic filters composed of gelatin films, so they are heat resistant and
Due to insufficient light resistance, it does not have the same long lifespan as semiconductors. (2) Since the manufacturing precision of color filters is much lower than that of semiconductors, it becomes extremely difficult to manufacture color filters as solid-state image sensors become smaller and pixel dimensions become smaller due to an increase in the number of pixels (higher resolution). (3) Because the three primary colors (or multiple colors including complementary colors) necessary for color reproduction are arranged in a mosaic pattern, one color appears in every two or three pixels, resulting in extremely poor color resolution. Enough is enough. The resolution of problem (3) above is the most important performance of a camera, and is an element that greatly influences image quality. Generally, the resolution of a solid-state image sensor is determined by the number of photodiodes (photoelectric conversion units such as photodiodes) that serve as pixels, but currently the resolution is approximately 500 in the vertical direction and 400 in the horizontal direction in a 2/3-inch light receiving area. An individual is a typical example. However, in order to achieve resolution comparable to color negative film with this solid-state image sensor, as long as conventional mosaic color filters are used, the number of pixels must be at least 2,200 vertically and 2,200 horizontally, or 2/3 inch. The light-receiving area requires 5 million pixels. (Actually, the r, m, s granularity of the film must be taken into account, and the value will be 20 to 30 times more.) When the number of pixels is as above, a cell containing one pixel The size is approximately 3 μm in the vertical direction and approximately 4 μm in the horizontal direction (in the case of a 2/3-inch light receiving area), so the manufacturing precision of the color filter requires the precision of a VLSI, which is extremely difficult. At this time, if all the color signals necessary for color reproduction can be obtained from one pixel, in order to achieve a resolution comparable to that of color negative film, approximately 1,300 signals in the vertical direction and approximately 1,300 signals in the horizontal direction with a 2/3-inch light-receiving area can be obtained. 1,300 pixels, or 1.7 million pixels, would be sufficient. In this case, the cell size including one pixel is approximately 5.1 μm in the vertical direction and approximately 6.8 μm in the horizontal direction.
It can be seen that the manufacturing dimensions of the solid-state image sensing device are also much easier. However, although solid-state imaging devices that read out multiple color signals simultaneously from one pixel have been proposed so far (for example, see Japanese Patent Application Laid-Open No. 118932/1983),
It is far from a practical level. This is because it is extremely difficult to simultaneously realize means for obtaining a plurality of color signals and means for reading them as two-dimensional information. An object of the present invention is to realize a new solid-state imaging device that is equipped with means for obtaining a plurality of color signals necessary for color reproduction from a photoelectric conversion section of one pixel, and means for simultaneously reading out each color signal as two-dimensional information. It is in. In the configuration of the present invention, in order to obtain a plurality of color signals,
The photoelectric conversion section is formed in layers in the thickness direction perpendicular to the substrate, and multiple resistive gate electrodes (hereinafter abbreviated as RG electrodes) are embedded in order to simultaneously read out color signals from each layer.
It consists of a signal readout section mainly composed of. First, let's consider the photoelectric conversion section. Generally p
-Spectral sensitivity characteristic R(λ) of n-junction photodiode
R(λ) = e・η(λ)/(hc/λ) ・U(λ G −λ) …(1) However, Eg: band gap of the intrinsic semiconductor λ G = hc/Eg: cutoff for the band gap Eg Wavelength η (λ): Effective quantum efficiency U (λ G - λ) = 1 (λ≦λ G ) = 0 (λ > λ G ) In addition, the quantum efficiency η (λ) is the absorption coefficient α (λ),
Using the diffusion depth xj, it can be approximately expressed by the following equation. η(λ)1−exp{−α(λ)·xj} (2) From equations (1) and (2), the following two methods can be considered to determine the wavelength selectivity of the photoelectric conversion section. () Utilizes the spectral sensitivity characteristic determined by the diffusion depth xj of the pn junction. () Utilizes the spectral sensitivity characteristics of a heterojunction composed of semiconductors with different Eg. Before considering the influence of the spectral sensitivity characteristics of the diffusion depth xj shown in (), let us consider Si (silicon) as a typical example.
The spectral sensitivity characteristics of the spectral sensitivity are as shown in Fig. 1. In contrast to the ideal spectral sensitivity characteristic represented by the broken line, in reality, the short wavelength side (λ<400 nm) is attenuated due to surface traps, and the long wavelength side (λ>800 nm) is attenuated due to bulk traps. FIG. 2 shows how such spectral sensitivity characteristics change with the diffusion depth xj. From FIG. 2, it can be seen that as xj becomes smaller, there is an improvement on the short wavelength side. Therefore, the diffusion depth of the photoelectric conversion section formed in layers
By utilizing the difference in xj, a plurality of different color signals can be obtained. Next, in order to consider the influence of Eg on the heterojunction shown in (), when formula (1) is applied to the case of a semiconductor heterojunction with Eg 1 Eg 2 , the following formula is obtained. R (λ) = e・η (λ) / (hc / λ) ・[U (λ G1 - λ) + U (λ G2 - λ) ... (3) However, λ G1 = hc / Eg 1 < λ G2 = hc/Eg 2 U(λ G1 −λ)=1(λ≦λ G1 ) =0(λ>λ G1 ) U(λ G2 −λ)=1(λ≦λ G2 )=0(λ>λ G2 ) The bandgap of the semiconductor on the surface where light enters is
Eg 1 , when the wavelength λ of light is λ>λ G1 , U(λ G1 - λ)=0, which means that λ>
λ This indicates that the displayed semiconductor becomes transparent with respect to the wavelength λ of light of G1 . (This is generally called the window effect)
This means that when photoelectric conversion is performed using a heterojunction as shown in FIG. 3a, spectral sensitivity characteristics as shown in FIG. 3b can be obtained. Therefore, by using a combination of dongap Eg of photoelectric conversion sections formed in layers, a plurality of different color signals can be obtained. Next, we will consider the resistive gate (RG) electrode used in the signal readout section. The basic structure of the resistive gate electrode is shown in FIG. 4a. n - region 402 formed on p substrate 401
A resistive gate electrode 4 is placed on the resistive gate electrode 4 with an insulating film 403 thereon.
04 is created and a voltage E is applied across it, a potential distribution of the n - region 402 as shown in FIG. 4b is obtained. At this time, n - area 40
Assuming that the depletion potential of 2 is ψ=ψ 0 , the range indicated by A corresponds to the region to be depleted. To realize the scanning function using such resistive gate electrodes, at least two resistive gate electrodes are required as shown in FIG. 5a. FIGS. 5a and 5b show a top view and a sectional view, respectively, and FIG. 5c shows the potential distribution. Resistive gate electrodes 504 and 505 are formed on an n - region 502 formed on a p-substrate 501 with an insulating film 503 interposed therebetween. When a voltage E 1 is applied between terminals B and C at both ends of the resistive gate electrode 504, the potential distribution becomes ψ 1 , and when a voltage E 2 is applied between terminals D and E at both ends of the resistive gate electrode 505. Then, the potential distribution becomes ψ 2 . At this time, the depletion potential of the n -region 502 is ψ=ψ 0
Then, for the resistive gate electrode 504, the range indicated by F becomes the depletion region, and for the resistive gate electrode 505, the range indicated by G becomes the depletion region. Therefore, when looking at the n - region 502 in a direction perpendicular to the resistive gate electrodes 504 and 505, a channel (the hatched portion of the n - region 502 in FIG. 5b) is formed in the range indicated by H with the width. That will happen. To scan such a channel, for example, to the right, the sawtooth waves R 1 and R 2 are applied between the B and C terminals, respectively.
It may be supplied between the D and E terminals via a capacitor. The details of the present invention, which is composed of a photoelectric conversion section for obtaining a plurality of color signals and a signal readout section using a resistive gate electrode for reading out a plurality of color signals, as described above will be described in detail in an embodiment. Explain using. FIG. 6 shows one embodiment of the photoelectric conversion section of the present invention.
a top view, b X-X′ cross-sectional view regarding each pixel,
c shows a Y-Y' cross-sectional view. Since this pixel has continuous parts in the Y-Y' direction (for example, n + areas 615, 609, 603, etc.), the solid-state image sensor can It is constructed by arranging them in the −X′ direction. FIG. 6 shows an n + region 603 separated by an insulator 601 on a p-substrate 602, and n + type resistive gate electrodes 604 and 60 buried on the n + region 603.
5, an n + region 607 separated by an insulator 601 on the p region 606, and an n + region 6
07, an n + region 609 separated by an insulator 601 above the p + region 608, and an n+ type resistive gate electrode 610, 611 buried above the n + region 609. A p region 612, an n+ region 613 separated by an insulator 601 on the p region 612, a p+ region 614 on the n + region 613, a p + region 614 on the n + region 613 ,
n + separated by an insulator 601 on top of the region 614
region 615, embedded above n + region 615
p including n + type resistive gate electrodes 616, 617
A pixel structure is shown in which a region 618, an n + region 619 separated by an insulator 601 on the p region 618, and a protective film 620 on the n + region 619 are formed in this order. The unit pixels shown in Fig. 6 are B, G,
It is divided into three areas of R, and three types of color signals can be read out. In region B, the n + region 619 is the main photoelectric conversion section, and performs photoelectric conversion in response to light with wavelengths including 400 nm to 550 nm (equivalent to blue light), and as a result,
The generated signal charge is transferred to the resistive gate electrodes 616, 61.
n + area 619 to n + area 6 when scanned with 7
n + corresponding to the signal line SL B through the channel (indicated by a dotted line) in the thickness direction formed toward 15
The signal is read out to area 615 as a first color signal. In the G region, the n + region 613 is the main photoelectric conversion section, and performs photoelectric conversion in response to light with wavelengths including 500 nm to 600 nm (equivalent to green light), and the resulting signal charge is resistive. gate electrode 610,
A second color signal is transmitted to the n ) area 609 corresponding to the signal line SL G through a channel (indicated by a dotted line) in the thickness direction formed from the n+ area 613 to the n + area 609 when the image is scanned by the n+ area 611. It is read as . In the R region, the n + region 607 is the main photoelectric conversion section, which performs photoelectric conversion in response to light with wavelengths ranging from 550 nm to 700 nm (equivalent to red light), and the resulting signal charge is transferred to the resistive gate electrode. 604,605
n + area 607 to n + area 60 when scanned with
The third color signal is read out to the n + region 603 corresponding to the signal line SLR through a channel (indicated by a dotted line) in the thickness direction formed toward the third color signal. In addition,
P regions 602, 606, 608, 61 at ground potential
A positive voltage is applied to the n + regions 603, 609, and 615, which serve as signal lines for the signals 2, 614, and 618. As a specific method for obtaining the above-mentioned first to third color signals, () Utilize the difference in spectral characteristics depending on the diffusion depth xj. () Utilizes the difference in spectral characteristics of heterojunctions with different band gap energies Eg. I have already mentioned that two of these are possible. For the unit pixel in Figure 6, the diffusion depth of ()
A specific example of applying the effect of xj will be described below. If the unit pixel in Fig. 6 is composed of only Si (silicon), the area B should be 1 μm with reference to Fig. 2.
If the G region is formed in the depth direction within 2 μm, and the R region is formed in the depth direction within 4 μm, the first color signal C 1 obtained in the B region is obtained.
corresponds to all of blue light b, green light g, and red light r, so C 1 = r + g + b ... (4) Similarly, the second color signal C 2 obtained in the G region is C 2 = r + g ... ( 5) Similarly, the third color signal C 3 obtained in the R region is also calculated as follows: C 3 = r...(6) From equations (4), (5), and (6), g = C 2 - C 3 , b= C1C2 ,
Since r=C 3 and color signals corresponding to the three primary colors are obtained, the first to third color signals obtained by the unit pixel shown in FIG.
It can be seen that color reproduction is possible by using the color signal. As described above, it has become clear that a plurality of color signals necessary for color reproduction can be simultaneously obtained from one pixel by utilizing changes in spectral characteristics due to differences in diffusion depth xj. Since the pixel portion in this case can be formed using only the same semiconductor as the substrate, it is easy to manufacture using a process based on ordinary epitaxial crystal growth technology, and has the characteristics that it is easy to obtain a clean interface. However, theoretically, equation (2), qualitatively,
As can be seen from equations (4) and (5), it is difficult to obtain a plurality of color signals necessary for color reproduction in a narrow wavelength range, resulting in the problem that signal processing is required. This problem can be solved by utilizing the change in spectral characteristics obtained by heterojunctions with different band gap energies Eg (), and a specific example will be described below. First, the basic principle will be explained using FIG.
Figure 3a shows a heterojunction photodiode with a p + nn + structure, with a p + region 301 serving as the top contact.
The n + substrate 303 is formed of a - group binary compound InP, and the n region 302, which becomes a drift region (depletion region), is a - group ternary compound.
Made of GaAsSb. If Eg is the bandgap energy (hereinafter abbreviated as Eg) of InP, the cutoff wavelength λ G1 is λ G1 = hc/Eg 1 .
Further, if Eg of GaAsSb is Eg 2 , its cutoff wavelength λ G2 is given by λ G2 =hc/Eg 2 . At this time, since Eg 1 >Eg 2 , the wavelength λ of the light corresponding to the color signal becomes λ G1 <λ<λ G2 as shown in FIG. 3b. Further, it is also possible to use a - group quaternary compound (for example, InGgAsP) for the n region 302. In addition, a method called compositional grading is also used to move away from the limitations of a fixed molar ratio of multiple components and a corresponding fixed cutoff wavelength and to increase the degree of freedom in setting. (This also helps to get a clean interface)
This is similar to the top contact p + region 702, as in the heterojunction photodiode shown in FIG.
The n + substrate 701 is InP, and the drift region n
When the mold region 703 is In x Ga 1-x As Y P 1-Y , the mixing gradient is In x Ga 1-x as in the regions 704 and 705.
As y P 1-y, where it touches InP, x=
1, y=0, and the molar ratio is made with a gradient so that X = x , y= Y where it contacts In How to create a gradient is the parameters x, y
Generally, it changes continuously or in steps. Of course, regardless of the mixing gradient, In x Ga 1-x AS Y P 1-Y
In some cases, it is sufficient to use just one, and you can use it depending on the purpose. As a specific example of applying the above method to the unit pixel in FIG. 6, blue light is applied to the B area, green light is applied to the G area, and R
A case in which red light is assigned to an area will be explained. For simplicity, λ G1 400nm (corresponds to E G1 3eV),
λ G2 500nm (compatible with E G2 2.4eV), λ G3 600nm
(corresponding to E G3 2eV), λ G4 700nm (corresponding to E G4 1.7eV), the first color signal C B in the B region, the second color signal HC G in the G region, and the third color signal in the R region Consider the case where the wavelengths to which CR responds are C B ; λ G1 to λ G2 , C G ; λ G2 to λ G3 , and CR ; λ G3 to λ G4 . In order to allocate the cutoff wavelengths λ G1 to λ G4 in FIG. 6 to satisfy the above conditions, for example, the n + region 6
19, λ G2 in the P region 618, λ G3 in the n + region 613, and λ G4 in the n + region 607. Even without λ G1 in the B region, the short wavelength response should be attenuated by the surface states, as shown in Figure 1.
It is also possible to allocate λ G2 to the n + region 619, λ G3 to the n + region 613, and λ G4 to the n + region 607. Note that the allocation of λ G2 to λ G4 may be formed using a mixed gradient. For parts other than those specified, λ G1 or λ G2 may be assigned. In particular, the n + regions 615, 609, 603 for signal transmission,
If it is formed of a compound semiconductor that exhibits a window effect with respect to the wavelength to be photoelectrically converted, there is no need to worry about generation of false signals. Next, the specific materials to be used will be explained. FIG. 8 shows the relationship between Eg and lattice constant of - group multicomponents. From FIG. 8, we cannot find a compound semiconductor with uniform lattice constants corresponding to λ G1 to λ G4 above, but
In compound semiconductors corresponding to λ G2 to λ G4 , it is possible to make the lattice constants uniform. The more uniform the lattice constants are, the better the interface properties will be, and the more ideal the device properties will be. For example, AlP x Sb 1-x for λ G2 and Ga y for λ G3
Ga y ′Al 1- y ′As may be used for Al 1-y As and λ G4 .
At this time, each part in FIG. 6 includes a p substrate 602, p regions 606, 608, 612, 614, 618, and
n + type resistive gate electrodes 604, 605, 610,
611, 616, 617, further n + area 603,
609,615,619 becomes AlP x Sb 1-x , n +
The region 613 becomes Ga y Al 1-y As, and the n + region 607
becomes Ga y ′Al 1-y ′As. For actual manufacturing, MBE
Epitaxial crystal growth technology using the (Molecular Beam Epitaxy) method may be used. Note that the band gap energy Eg can be set using the above-mentioned compound semiconductor, but it can be slightly corrected by doping with impurities.
The impurities used in the − group compound are as shown in the table below.
Li, Se, Te, etc. are used, and Li, Sn, Pb, O, S, Se, Te, etc. can be used to make Ga y Al 1-y As n + type. At this time, when the impurity doping becomes high, a state called degenerate doping a or impurity tail b can be realized as shown in FIG.

【表】【table】

【表】 第9図から、Egを大きくするには縮退ドーピ
ング状態を実現すればよいし、Egを小さくする
には不純物テイル状態を実現すればよいことが分
かる。 これまで、−族の多元化合物で第6図の単
位画素を構成することを述べた来たが、−族
の多元化合物を用いることも可能である。 第10図は−族の多元化合物のEgと格子
定数との関係を示すものである。 一例として、第6図のn+領域619にλG3
500nm(EG22.4eVに対応)、n+領域613にλG3
600nm(EG32eVに対応)、n+領域607にλG4
700nm(EG41.7eVに対応)を割当てる場合を
考えると、第10図から、λG2にはZnxCd1-xSy
Te1-y、λG3にはZnx′Cd1-x′SyTe1-y、λG4には
Znx″Cd1-x″Teを用いればよい。但し、モル比の
変化に伴ない結晶構造が閃亜鉛鉱型からウルツ鉱
型に変わるため、混合勾配によつて作る方が望ま
しい。 以上、述べた来た様にEgの異なるヘテロ接合
により決まる分光特性の変化を利用しても、色再
現に必要な複数の色信号を同時に一画素から読み
出し得ることが明らになつた。 次に、第6図の様な光電変換部を用いて構成さ
れる固体撮像素子を具体例により説明する。 第11図は、単位画素の断面構造とその等価回
路を示している。第11図aは、第6図bと同じ
で、バイアス電圧の印加状態を示している。 第11図bは、単位画素の等価回路で、フオト
ダイオードDB1はn+領域619とp領域618の
p−n+接合フオトダイオードに対応し、フオト
ダイオードDB2はn+領域613とp領域612の
p−n+接合フオトダイオードに対応し、フオト
ダイオードDB3はn+領域607とp領域606の
p−n+接合フオトダイオードに対応する。 また、抵抗性ゲート電極GB1,GB′1はn+ゲー
ト領域617,616に対応し、抵抗性ゲート電
極GG1,GG′1はn+ゲート領域611,610に
対応し、抵抗性ゲート電極GR1,GR′1はn+ゲー
ト領域605,604に対応する。さらに、信号
線LBは電圧EBが印加されたn+領域615に対応
し、信号線LGは電圧EGが印加されたn+領域60
9に対応し、信号線LRは電圧ERが印加されたn+
領域603に対応する。フオトダイオードDB1
信号は、2本の抵抗性ゲート電極GB1,GB′1
ハツチング部がオーバーラツプしているところで
形成されるチヤネルを通して、信号線LBに読出
され、負荷抵抗RLBで検出される。同様に、フオ
トダイオードDG1,DR1の信号は、負荷抵抗RLG
RLRで検出される。 第11図bの等価回路を用いて構成した固体撮
像素子の実施例を第12図に示す。 第12図において、第11図の単位画素が、水
平方向にm列、垂直方向にn行の行列配置されて
いる。抵抗性ゲートGB1,GB′1は、水平方向に
並ぶm個のフオトダイオードDB1lからDB1mの信
号を走査するのに用いられる。同様に、抵抗性ゲ
ート電極GG1,GG′1はm個のフオトダイオード
DG1lからDG1mの信号を走査するのに用い、抵抗
性ゲート電極GR1,GR′1はm個のフオトダイオ
ードDR1lからDR1mの信号を走査するのに用いら
れる。 なお、抵抗性ゲート電極GB1,GG1,GR1は端
子A1,A1′は共通接続され、抵抗性ゲート電極
GB′1,GG′1,GR′1は端子B1,B′1に共通接続さ
れる。 更に、フオトダイオードの信号を読出すために
端子A1,A′1間に電圧E1が印加され、容量を介し
て、鋸歯状波RO1が印加されると共に、端子B1
B′1間に電圧E2が印加され、容量を介して鋸歯状
波RO2が印加されることにより、水平方向に走査
が行なわれ、フオトダイオードDB1lからDB1mの
信号は信号線LB1に読出され、フオトダイオード
DG1lからDG1mの信号は信号線LG1に読出され、
フオトダイオードDR1lからDR1mの信号は信号線
LR1に読み出される。 これを、n行に並ぶ抵抗性ゲート電極の端子
(A1,A′1)〜(An,A′n)及び(B1,B′1)〜
(Bn〜B′n)に同時に実施すれば、全ての信号線
(LB1〜LBn)、(LG1〜LGn)、(LR1〜LRn)から
同時並列に信号が読出される。もし、垂直方向に
も走査が必要なら、垂直走査回路を導入すればよ
い。具体的には、第13図の様に、垂直走査回路
1401から順次、パルス伝送線X1,X2,……
Xnにパルスが印加されることにより、MOSスイ
ツチ(Q1,Q′1,R1,P′1)、(Q1,Q2′,P2,P2′)

……(Qn,Q′n,Pn,Pn′)が順次オンとなるこ
とで垂直走査が行なわれる。 以上の様に、本発明によれば、1画素の光電変
換部から色再現に必要な複数の色信号を得る手段
と、それらを2次元情報として各色同時に読出す
手段とを共に備えた新規な固体撮像装置が実現で
きる。 また、本発明は、厚み方向に3個の光電変換部
を設けた実施例で説明したが、用途に応じて光電
変換部の個数を増して分光特性を細かく分けて割
り当ててもよい。 さらに、厚み方向に並ぶ光電変換部の分光特性
を変えずに、純粋に3次元情報検出用撮像素子と
して用いてよいことは勿論であり、この場合には
分光特性の配慮がなくなるため極めて容易に、固
体撮像素子を実現できる。 以上、述べて来た本発明は1画素から、色再現
に必要な複数の色信号を得ることが可能なため、
カラー用固体撮像素子として次の効果を持つ。 (1) 熱的に不安定な色分解用有機(ゼラチン)フ
イルタが不要になる。 (2) 色信号を独立に読出せるのでカラー化方式の
自由度が増す。 (3) 半導体材料だけでカラー用撮像素子が構成で
きるので高信頼性が実現できる。 (4) カラー化時の解像度が白黒時と全く等しいの
で、従来の固体撮像素子と同じ画素数ならば大
幅な高解像度化が実現できる。具体的には、水
平1300個X垂直1300個の画素数で従来の色フイ
ルタを用いてカラー化する場合の水平2200個×
垂直2200個の画素数に匹敵する。 さらに、信号読出しを抵抗性ゲート電極の組
合せで行なうため次の効果を持つ。 (5) 水平走査の高周波のクロツクパルスが不要。
バイアス電源と低周波の鋸歯状波があれば水平
走査が可能。 (6) 垂直走査回路を用いなければ全ての行から並
列信号読出しも可能で、情報処理用の高速読出
しイメージセンサとして利用できる。 これは、電子ステイルカメラ、放送用カラー固
体カメラ、リアルタイム処理用のホログラフイ情
報検出カメラなどの分野に対して十分な性能が発
揮でき、撮像管を凌駕する固体撮像装置を実現で
きる。
[Table] From FIG. 9, it can be seen that to increase Eg, it is sufficient to achieve a degenerate doping state, and to decrease Eg, it is sufficient to achieve an impurity tail state. Up to now, it has been described that the unit pixel in FIG. 6 is constructed from a - group multi-element compound, but it is also possible to use a - group multi-element compound. FIG. 10 shows the relationship between Eg and lattice constant of - group multicomponent compounds. As an example, in the n + region 619 of FIG.
500nm (corresponding to E G2 2.4eV), λ G3 in n + region 613
600nm (corresponding to E G3 2eV), λ G4 in n + region 607
Considering the case of allocating 700nm (corresponding to E G4 1.7eV), from Fig. 10, λ G2 has Zn x Cd 1-x S y
Te 1-y , λ G3 has Zn x ′Cd 1-x ′S y Te 1-y , λ G4 has
Zn x ″Cd 1-x ″Te may be used. However, since the crystal structure changes from zincblende to wurtzite as the molar ratio changes, it is preferable to use a mixing gradient. As mentioned above, it has become clear that multiple color signals necessary for color reproduction can be simultaneously read out from one pixel even by utilizing changes in spectral characteristics determined by heterojunctions with different Eg. Next, a solid-state image sensing device constructed using a photoelectric conversion section as shown in FIG. 6 will be explained using a specific example. FIG. 11 shows the cross-sectional structure of a unit pixel and its equivalent circuit. FIG. 11a is the same as FIG. 6b, and shows the state of application of the bias voltage. FIG. 11b is an equivalent circuit of a unit pixel, where photodiode DB 1 corresponds to a p-n + junction photodiode of n + region 619 and p region 618, and photodiode DB 2 corresponds to n + region 613 and p region. 612, and photodiode DB 3 corresponds to the pn + junction photodiodes of n + region 607 and p region 606 . Furthermore, the resistive gate electrodes GB 1 , GB′ 1 correspond to the n + gate regions 617, 616, the resistive gate electrodes GG 1 , GG′ 1 correspond to the n + gate regions 611, 610, and the resistive gate electrodes GR 1 and GR' 1 correspond to n + gate regions 605 and 604. Furthermore, the signal line LB corresponds to the n + region 615 to which the voltage E B was applied, and the signal line LG corresponds to the n + region 615 to which the voltage E G was applied.
9, the signal line LR is n + to which the voltage E R is applied.
Corresponds to area 603. The signal from the photodiode DB 1 is read out to the signal line LB through a channel formed where the hatching portions of the two resistive gate electrodes GB 1 and GB' 1 overlap, and is detected by the load resistor R LB. Ru. Similarly, the signals of photodiodes DG 1 and DR 1 are connected to load resistors R LG ,
Detected by R LR . FIG. 12 shows an embodiment of a solid-state imaging device constructed using the equivalent circuit shown in FIG. 11b. In FIG. 12, the unit pixels of FIG. 11 are arranged in a matrix of m columns in the horizontal direction and n rows in the vertical direction. The resistive gates GB 1 and GB' 1 are used to scan the signals of m photodiodes DB 1 l to DB 1 m arranged in the horizontal direction. Similarly, the resistive gate electrodes GG 1 , GG' 1 are composed of m photodiodes.
It is used to scan the signals from DG 1 l to DG 1 m, and the resistive gate electrodes GR 1 and GR' 1 are used to scan the signals from m photodiodes DR 1 l to DR 1 m. Note that terminals A 1 and A 1 ' of resistive gate electrodes GB 1 , GG 1 , and GR 1 are commonly connected, and resistive gate electrodes GB 1 , GG 1 , and GR 1 are
GB′ 1 , GG′ 1 , and GR′ 1 are commonly connected to terminals B 1 and B′ 1 . Furthermore, a voltage E 1 is applied between the terminals A 1 and A′ 1 in order to read out the signal of the photodiode, a sawtooth wave RO 1 is applied via the capacitance, and the terminals B 1 and
A voltage E 2 is applied across B′ 1 and a sawtooth wave RO 2 is applied through the capacitance to perform horizontal scanning, and the signals from the photodiodes DB 1 l to DB 1 m are transferred to the signal line Read out to LB 1 , photodiode
The signals from DG 1 l to DG 1 m are read out to signal line LG 1 ,
The signal from photodiode DR 1 l to DR 1 m is the signal line
Read to LR 1 . This is connected to the terminals (A 1 , A' 1 ) ~ (An, A'n) and (B 1 , B' 1 ) ~ of the resistive gate electrodes arranged in n rows.
(Bn to B'n) simultaneously, signals are simultaneously read out from all signal lines (LB 1 to LBn), (LG 1 to LGn), and (LR 1 to LRn) in parallel. If scanning is also required in the vertical direction, a vertical scanning circuit may be introduced. Specifically, as shown in FIG. 13, pulse transmission lines X 1 , X 2 , . . . are sequentially connected to the vertical scanning circuit 1401.
By applying a pulse to _ _ _

Vertical scanning is performed by sequentially turning on (Qn, Q′n, Pn, Pn′). As described above, according to the present invention, a novel method is provided which includes means for obtaining a plurality of color signals necessary for color reproduction from a photoelectric conversion section of one pixel, and means for simultaneously reading out the signals for each color as two-dimensional information. A solid-state imaging device can be realized. Furthermore, although the present invention has been described with reference to an embodiment in which three photoelectric conversion sections are provided in the thickness direction, the number of photoelectric conversion sections may be increased depending on the application, and the spectral characteristics may be divided into fine sections and assigned. Furthermore, it goes without saying that it can be used purely as an image sensor for detecting three-dimensional information without changing the spectral characteristics of the photoelectric conversion parts arranged in the thickness direction; in this case, there is no need to consider the spectral characteristics, so , a solid-state image sensor can be realized. The present invention described above is capable of obtaining multiple color signals necessary for color reproduction from one pixel.
It has the following effects as a color solid-state image sensor. (1) Eliminates the need for thermally unstable organic (gelatin) filters for color separation. (2) Color signals can be read out independently, increasing the degree of freedom in colorization methods. (3) High reliability can be achieved because the color image sensor can be constructed using only semiconductor materials. (4) Since the resolution in color is exactly the same as in black and white, a significantly higher resolution can be achieved with the same number of pixels as a conventional solid-state image sensor. Specifically, when colorizing using a conventional color filter with 1300 pixels horizontally x 1300 pixels vertically, 2200 pixels horizontally x 1300 pixels vertically.
Equivalent to 2200 vertical pixels. Furthermore, since signal reading is performed using a combination of resistive gate electrodes, the following effects are achieved. (5) High-frequency clock pulses for horizontal scanning are not required.
Horizontal scanning is possible with a bias power supply and a low frequency sawtooth wave. (6) It is possible to read out signals in parallel from all rows without using a vertical scanning circuit, and it can be used as a high-speed readout image sensor for information processing. This can exhibit sufficient performance in fields such as electronic still cameras, color solid-state cameras for broadcasting, and holographic information detection cameras for real-time processing, and can realize solid-state imaging devices that surpass image pickup tubes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiのp−n接合フオトダイオードの分
光特性の理論曲線と実験曲線を示す特性図、第2
図はSiのp−n接合フオトダイオードの分光特性
と拡散長xjとの関係を表わす特性図、第3図は2
元及び3元の−族化合物半導体のヘテロ接合
フオトダイオードの構造aと分光特性bを表わす
図、第4図は基本的な抵抗性ゲート電極の断面図
aとポテンシヤル分布bを表す図、第5図は2本
の抵抗性ゲート電極を用いた走査回路の上面図
a、断面図b、ポテンシヤル分布cを表わす図、
第6図a,b,cは本発明の一実施例における固
体撮像装置の単位画素の上面図、X−X′断面図、
Y−Y′断面図、第7図は混合勾配をもつヘテロ
接合フオトダイオードの断面構造を表わす図、第
8図は−族化合物半導体のバンドギヤツプエ
ネルギーEgと格子定数の関係を表わす特性図、
第9図は高不純物状態でEgが変化する事を示す
もので縮退ドーピングaと不純物テイルbと呼ば
れる状態を表わす図、第10図は−化合物半
導体のバンドギヤツプエネルギーEgと格子定数
の関係を表わす図、第11図は本発明の一実施例
における固体撮像装置の単位画素の等価回路を表
わす図、第12図は本発明の一実施例の単位画素
を用いて構成された固体撮像装置の実施例を表わ
す図、第13図は垂直走査機能を有する本発明の
固体撮像装置の実施例を示す回路図である。 619,613,607……n+領域(光電変
換部)、615,609,603……n+領域(信
号伝送手段)、617,616,611,610,
605,604……n+領域(走査領域)。
Figure 1 is a characteristic diagram showing the theoretical and experimental curves of the spectral characteristics of a Si p-n junction photodiode.
The figure shows the relationship between the spectral characteristics and the diffusion length xj of a Si p-n junction photodiode.
Figure 4 is a diagram showing the structure a and spectral characteristics b of a heterojunction photodiode made of elemental and ternary - group compound semiconductors. Figure 4 is a cross-sectional view a and potential distribution b of a basic resistive gate electrode. The figure shows a top view a, a cross-sectional view b, and a diagram showing the potential distribution c of a scanning circuit using two resistive gate electrodes.
6a, b, and c are top views and sectional views taken along line X-X' of a unit pixel of a solid-state imaging device according to an embodiment of the present invention;
Y-Y' cross-sectional view, Figure 7 is a diagram showing the cross-sectional structure of a heterojunction photodiode with a mixed gradient, and Figure 8 is a characteristic diagram showing the relationship between bandgap energy Eg and lattice constant of - group compound semiconductor. ,
Figure 9 shows how Eg changes in a highly impurity state, and shows a state called degenerate doping a and impurity tail b. Figure 10 shows the relationship between band gap energy Eg and lattice constant of a compound semiconductor. FIG. 11 is a diagram showing an equivalent circuit of a unit pixel of a solid-state imaging device according to an embodiment of the present invention, and FIG. 12 is a diagram showing a solid-state imaging device configured using a unit pixel according to an embodiment of the present invention. FIG. 13 is a circuit diagram showing an embodiment of the solid-state imaging device of the present invention having a vertical scanning function. 619,613,607...n + area (photoelectric conversion section), 615,609,603...n + area (signal transmission means), 617,616,611,610,
605, 604...n + area (scanning area).

Claims (1)

【特許請求の範囲】 1 一方導電型の半導体基板に行列状に割り当て
られた各々の画素領域に対応して形成された他方
導電型の光電変換部と、前記画素領域の中央部を
除いて前記光電変換部下に離れて形成された上下
一対の他方導電型の抵抗性ゲート部と、前記抵抗
性ゲート部下に離れて形成された他方導電型の信
号線部とからなる撮像素子を前記半導体基板の深
さ方向に3個重ねて形成したことを特徴とする固
体影像装置。 2 一方導電型の半導体基板上に行列状に割り当
てられた各々の画素領域が、信号線となる他方導
電型の第1の領域と、画素領域の中央部を除いて
前記第1の領域上に形成された上下一対の他方導
電型の抵抗性ゲートが埋め込まれた読み出し領域
となる一方導電型の第2の領域と、その上に形成
された光電変換部となる他方導電型の第3の領域
とを一組とし間に一方導電型の第4の領域を挾ん
だ複数個の画素部が半導体基板の深さ方向に重ね
て形成されたものである固体撮像装置。
[Scope of Claims] 1. A photoelectric conversion section of one conductivity type formed corresponding to each pixel region allocated in a matrix on a semiconductor substrate of one conductivity type, and a photoelectric conversion section of the other conductivity type formed corresponding to each pixel region allocated in a matrix on a semiconductor substrate, An image pickup device consisting of a pair of upper and lower resistive gate portions of the other conductivity type formed separately below the photoelectric conversion and a signal line portion of the other conductivity type formed separately below the resistive gate is mounted on the semiconductor substrate. A solid-state imaging device characterized in that three pieces are stacked one on top of the other in the depth direction. 2 Each pixel region allocated in a matrix on a semiconductor substrate of one conductivity type is arranged on the first region except for a first region of the other conductivity type which becomes a signal line and a central part of the pixel region. A second region of one conductivity type serving as a readout region in which a pair of upper and lower resistive gates of the other conductivity type is embedded, and a third region of the other conductivity type forming a photoelectric conversion section formed thereon. A solid-state imaging device in which a plurality of pixel portions are formed so as to be stacked in the depth direction of a semiconductor substrate, with a fourth region of one conductivity type sandwiched between a set of pixel portions.
JP57126392A 1982-07-19 1982-07-19 Solid-state image pickup device Granted JPS5916483A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57126392A JPS5916483A (en) 1982-07-19 1982-07-19 Solid-state image pickup device
US06/515,277 US4654685A (en) 1982-07-19 1983-07-19 Solid-state photoelectrical image transducer which operates without color filters both as an imager and as a visual display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126392A JPS5916483A (en) 1982-07-19 1982-07-19 Solid-state image pickup device

Publications (2)

Publication Number Publication Date
JPS5916483A JPS5916483A (en) 1984-01-27
JPH054877B2 true JPH054877B2 (en) 1993-01-21

Family

ID=14933999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126392A Granted JPS5916483A (en) 1982-07-19 1982-07-19 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS5916483A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118932A (en) * 1977-03-24 1978-10-17 Eastman Kodak Co Device for detecting color image
JPS53135224A (en) * 1977-04-29 1978-11-25 Sony Corp Color pickup element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118932A (en) * 1977-03-24 1978-10-17 Eastman Kodak Co Device for detecting color image
JPS53135224A (en) * 1977-04-29 1978-11-25 Sony Corp Color pickup element

Also Published As

Publication number Publication date
JPS5916483A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
US4613895A (en) Color responsive imaging device employing wavelength dependent semiconductor optical absorption
US4214264A (en) Hybrid color image sensing array
US4758734A (en) High resolution image sensor array using amorphous photo-diodes
US7208811B2 (en) Photo-detecting device
US4354104A (en) Solid-state image pickup device
EP2239777A2 (en) Imaging device
JPH0566746B2 (en)
US4514755A (en) Solid-state color imager with two layer three story structure
JPS5941351B2 (en) Color solid-state image sensor
US20060042677A1 (en) Solid-state image pickup device
JPH01134966A (en) Solid-state image pickup device
US5138416A (en) Multi-color photosensitive element with heterojunctions
EP0509820B1 (en) Image pickup apparatus
KR960002645B1 (en) Charge transferring device and solid state image picking-up device
US5298771A (en) Color imaging charge-coupled array with photosensitive layers in potential wells
JP2005347599A (en) Color photo detector and imaging device
JPH01205465A (en) Manufacture of solid-state image sensing device
US4443813A (en) Solid-state color imager with two layer three story structure
JPH04343470A (en) Solid-state image pickup device
JPH0416948B2 (en)
JPH054877B2 (en)
JPH09213923A (en) Solid-state image pickup apparatus
JP2521789B2 (en) Photosensitive unit structure of solid-state imaging device
Aihara et al. Trend in research on organic imaging devices
JPS62134966A (en) Interline type ccd image pickup element