JPH0548612B2 - - Google Patents

Info

Publication number
JPH0548612B2
JPH0548612B2 JP59079085A JP7908584A JPH0548612B2 JP H0548612 B2 JPH0548612 B2 JP H0548612B2 JP 59079085 A JP59079085 A JP 59079085A JP 7908584 A JP7908584 A JP 7908584A JP H0548612 B2 JPH0548612 B2 JP H0548612B2
Authority
JP
Japan
Prior art keywords
optical system
wavelength
mask pattern
chromatic aberration
projection optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59079085A
Other languages
Japanese (ja)
Other versions
JPS60222862A (en
Inventor
Takamasa Hirose
Akyoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59079085A priority Critical patent/JPS60222862A/en
Publication of JPS60222862A publication Critical patent/JPS60222862A/en
Publication of JPH0548612B2 publication Critical patent/JPH0548612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Description

【発明の詳細な説明】 本発明はIC、LSI等の微細構造のマスクパター
ンをウエハー面上に投影結像させる投影光学系と
マスクパターンとウエハーとの相対的位置関係を
調整するアライメント光学系を有する露光装置に
関し、特にマスクパターンを照明する照明用光学
系に発振波長幅を制御することのできる光源S1
用いると共にアライメント光学系に光源S1と異な
る波長を発振する光源を用いた露光装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes a projection optical system that projects and images a mask pattern of a fine structure such as an IC or LSI onto a wafer surface, and an alignment optical system that adjusts the relative positional relationship between the mask pattern and the wafer. In particular, an exposure apparatus that uses a light source S 1 whose oscillation wavelength width can be controlled in an illumination optical system that illuminates a mask pattern, and a light source that oscillates at a wavelength different from that of the light source S 1 in an alignment optical system. It is related to.

従来より露光装置に用いられているIC、LSI等
の微細なパターンをウエハー面上に投影し焼付け
る、主に微細加工を目的とした投影光学系には非
常に高い解像力が要求されている。
Projection optical systems, which are traditionally used in exposure equipment to project and print minute patterns of ICs, LSIs, etc. onto wafer surfaces, are required to have extremely high resolution, primarily for microfabrication.

一般に投影光学系による投影像の解像力は、使
用する波長が短かくなればなる程良くなる為に、
マスクパターンの照明用光源にはなるべく短い波
長を発振する光源が用いられている。例えば現在
波長436nm又は波長365nmの光を主に発振する
超高圧水銀灯が多用されている。
In general, the resolution of images projected by a projection optical system improves as the wavelength used becomes shorter.
A light source that oscillates as short a wavelength as possible is used as a light source for illuminating the mask pattern. For example, currently, ultra-high pressure mercury lamps that mainly emit light with a wavelength of 436 nm or 365 nm are often used.

又露光装置にはマスクパターンをウエハー面に
焼付ける際に、焼付け毎のマスクパターンとウエ
ハーとの相対的位置関係を検知する為のいわゆる
アライメント光学系が用いられている。
Further, the exposure apparatus uses a so-called alignment optical system for detecting the relative positional relationship between the mask pattern and the wafer each time the mask pattern is printed on the wafer surface.

アライメント光学系には装置の簡素化を図る為
に投影用光学系の一部若しくは全部を利用したい
わゆるTTL方式が多用されている。そしてマス
クパターンを照明する為の光源とアライメント光
学系で用いる光源は多くの場合異つた光源を用い
ている。これは前述の如く照明用光学系はなるべ
く短波長を発振する光源を用い、アライメント光
学系には観察する為容易に視覚で認識することの
出来る波長域を発振する光源を用いる必要がある
為である。例えばアライメント光学系には波長
632.8nmを発振するHe−Neレーザー等が用いら
れている。
In order to simplify the apparatus, a so-called TTL method is often used for the alignment optical system, which utilizes part or all of the projection optical system. In many cases, the light source for illuminating the mask pattern and the light source used in the alignment optical system are different. This is because, as mentioned above, the illumination optical system must use a light source that oscillates as short a wavelength as possible, and the alignment optical system must use a light source that oscillates in a wavelength range that can be easily recognized visually for observation. be. For example, the alignment optical system uses wavelength
A He-Ne laser that oscillates at 632.8 nm is used.

一般に投影光学系において投影光学系とアライ
メント光学系の双方の使用波長において色収差補
正を行なえば各々の光学系を共通化することがで
きる。
In general, if chromatic aberration correction is performed in the wavelengths used by both the projection optical system and the alignment optical system in the projection optical system, each optical system can be used in common.

しかしながら投影光学系で使用する波長λ1を例
えば436nmとし、アライメント光学系で使用す
る波長λ2を例えば632.8nmとし2波長で色収差補
正を行うと色収差補正状態は多くの場合第1図に
示すようになる。
However, if the wavelength λ 1 used in the projection optical system is, for example, 436 nm, and the wavelength λ 2 used in the alignment optical system is, for example, 632.8 nm, and chromatic aberration correction is performed using two wavelengths, the chromatic aberration correction state will often be as shown in Figure 1. become.

実際の光源は発振波長にある波長幅を有してお
り、例えば同図の波長幅Δλの如くの波長幅を有
している。従つて波長λ1では色収差は完全に補正
されるが、波長λ1前後の波長幅Δλに相当する波
長においては色収差は大きく、この色収差量は微
細加工を目的とする投影光学系の解像力を大きく
低下させる原因となつてくる。
An actual light source has a wavelength width corresponding to the oscillation wavelength, for example, a wavelength width Δλ in the figure. Therefore, at wavelength λ 1, chromatic aberration is completely corrected, but at wavelengths corresponding to the wavelength width Δλ around wavelength λ 1 , chromatic aberration is large, and this amount of chromatic aberration greatly increases the resolving power of the projection optical system for the purpose of microfabrication. It becomes a cause of decline.

例えば超高圧水銀灯の主たる発振波長が436n
mのとき波長幅は約±5nmであるので波長域10μ
の範囲で色収差を略完全に補正しないと高解像力
が得られない。
For example, the main oscillation wavelength of an ultra-high pressure mercury lamp is 436n.
When m, the wavelength width is approximately ±5 nm, so the wavelength range is 10 μ.
High resolution cannot be obtained unless chromatic aberration is almost completely corrected within the range of .

そこで従来は第2図に示すような曲線となる色
収差補正を行い、波長λ1近傍での波長域Δλの全
範囲にわたり色収差を小さくするようにしてい
た。このような補正をすることにより照明用光源
にある程度の波長幅があつても高い解像力を得る
ことができた。
Therefore, in the past, chromatic aberration correction was performed to form a curve as shown in FIG. 2, in order to reduce the chromatic aberration over the entire wavelength range Δλ near the wavelength λ1 . By performing such correction, it was possible to obtain high resolution even if the illumination light source had a certain wavelength width.

しかしながら第2図より明らかのようにアライ
メント光学系用の波長λ2の色収差は完全に補正出
来ず色収差量はかなり残存してしまう。例えば波
長λ1−432.8nm、波長λ2−632.8nmとすると波長
λ2の軸上色収差量は1.3mm程度にもなる場合があ
る。
However, as is clear from FIG. 2, the chromatic aberration at wavelength λ 2 for the alignment optical system cannot be completely corrected, and a considerable amount of chromatic aberration remains. For example, if the wavelength is λ 1 -432.8 nm and the wavelength λ 2 -632.8 nm, the amount of axial chromatic aberration at wavelength λ 2 may be as high as about 1.3 mm.

そこで従来はアライメントの際投影光学系の一
部に補助光学系を挿入して波長λ1と波長λ2の色収
差を補正していた。この為従来の露光装置は装置
全体が複雑化し又補助光学系と投影光学系との相
対精度がきびしく要求され、わずかのズレがアラ
イメント精度を低下させる原因となつていた。
Therefore, conventionally, during alignment, an auxiliary optical system was inserted into a part of the projection optical system to correct the chromatic aberration at wavelength λ 1 and wavelength λ 2 . For this reason, in the conventional exposure apparatus, the entire apparatus is complicated, and relative accuracy between the auxiliary optical system and the projection optical system is strictly required, and even a slight deviation causes a decrease in alignment accuracy.

本発明は従来の補助光学系を用いず装置全体の
簡素化を図り、アライメント精度を高めた露光装
置の提供を目的とする。
The present invention aims to provide an exposure apparatus that does not use a conventional auxiliary optical system, simplifies the entire apparatus, and improves alignment accuracy.

本発明の目的を達成する為の露光装置の主たる
特徴はマスクパターンを照明し、該マスクパター
ンを介して被露光基板を露光する投影露光装置に
おいて、前記マスクパターンを前記被露光基板上
に結像せしめる、波長λ1と該波長1とは異なる波
長λ2に関して軸上色収差を補正した投影光学系
と、前記波長λ1のレーザー光で前記マスクパター
ンを照明する手段と、前記波長λ2の光で前記投影
光学系を用いて前記マスクパターンと前記被露光
基板の位置関係を検出する位置合わせ光学系と、
前記レーザー光の波長幅を狭める手段とを有する
ことである。
The main feature of an exposure apparatus for achieving the object of the present invention is a projection exposure apparatus that illuminates a mask pattern and exposes a substrate to be exposed through the mask pattern, in which the mask pattern is imaged onto the substrate to be exposed. a projection optical system that corrects axial chromatic aberration with respect to a wavelength λ 1 and a wavelength λ 2 different from the wavelength 1 ; means for illuminating the mask pattern with a laser beam of the wavelength λ 1 ; and light of the wavelength λ 2 . an alignment optical system that detects a positional relationship between the mask pattern and the exposed substrate using the projection optical system;
and means for narrowing the wavelength width of the laser beam.

このように本発明ではマスクパターンの照明用
に波長幅を制御することのできる光源S1を用いる
ことによつて、波長幅をなるべく小さくして投影
像の高解像力化を図つているのである。例えば光
源としてエキシマレーザーを用いてインジエクシ
ヨンロツキング手段によつて波長幅を制御すれば
良好に本発明に適応させることができる。波長幅
の制御は本発明の如く解像線幅が1〜2μm程度
の高解像力が要求される投影光学系においては後
述する実施例においては波長幅を0.1nm以下とす
る必要がある。この点エキシマレーザーは発振波
長を248.5nmとした場合、容易に0.01mm程度の波
長幅に制御することができるので好ましい。
As described above, in the present invention, by using the light source S1 whose wavelength width can be controlled for illuminating the mask pattern, the wavelength width is made as small as possible to achieve high resolution of the projected image. For example, if an excimer laser is used as a light source and the wavelength width is controlled by injection locking means, the present invention can be suitably applied. Regarding the control of the wavelength width, in a projection optical system which requires a high resolution with a resolution line width of about 1 to 2 .mu.m as in the present invention, it is necessary to control the wavelength width to 0.1 nm or less in the embodiments described later. In this respect, excimer lasers are preferable because when the oscillation wavelength is 248.5 nm, the wavelength width can be easily controlled to about 0.01 mm.

次に本発明の露光装置の光学系の一部の概略図
を第3図に示す。同図において1は集積回路パタ
ーンを具えたマスク4の照明用光源でインジエク
シヨンロツキングされたエキシマレーザーの様に
発振波長幅を制御することができる。2は照明用
光学系、6は投影光学系、7は照明用光源に感光
する層を具えたウエハー、8はウエハー載置台で
マスク4とウエハー7を位置合わせするために移
動する。3は顕微鏡対物や反射鏡等からなる光学
部材、9はウエハーを感光させない波長域のアラ
イメント用光源で例えば可視光を発振するレーザ
ーである。光学部材3と投影光学系6によりアラ
イメント光学系を構成し、マスク4とウエハー7
の位置ずれは光電検出器10,10で検出され
る。尚投影光学系6は感光波長域と非感光波長域
との2波長で色収差が補正されている。
Next, FIG. 3 shows a schematic diagram of a part of the optical system of the exposure apparatus of the present invention. In the figure, reference numeral 1 denotes a light source for illuminating a mask 4 having an integrated circuit pattern, and the oscillation wavelength width can be controlled like an excimer laser with injection locking. 2 is an illumination optical system, 6 is a projection optical system, 7 is a wafer having a layer sensitive to the illumination light source, and 8 is a wafer mounting table that moves to align the mask 4 and the wafer 7. 3 is an optical member consisting of a microscope objective, a reflecting mirror, etc., and 9 is a light source for alignment in a wavelength range that does not expose the wafer to light, such as a laser that emits visible light. The optical member 3 and the projection optical system 6 constitute an alignment optical system, and the mask 4 and the wafer 7
The positional deviation is detected by photoelectric detectors 10, 10. In the projection optical system 6, chromatic aberration is corrected in two wavelengths: a sensitive wavelength range and a non-sensitive wavelength range.

従来の露光装置においては投影光学系とアライ
メント光学系の色収差補正状態は第2図の如くな
つていたのでアライメントのために投影光学系6
とマスクパターン4との間で且つパターンの投影
光路の外側に補助光学系を装着して色収差補正を
行なわなければならなかつた。本発明における投
影光学系6とアライメント光学系においては、前
述の如く投影光学系には波長幅を制御することの
できる光源S1を用い、光源1の発振波長λ1とアラ
イメント光学系で使用する波長λ2の2つの波長の
色収差を完全に補正してあるので従来の如く補助
光学系を用いる必要は全くない。
In conventional exposure equipment, the chromatic aberration correction state of the projection optical system and alignment optical system was as shown in Figure 2.
It was necessary to correct chromatic aberration by installing an auxiliary optical system between the mask pattern 4 and the mask pattern 4 and outside the projection optical path of the pattern. In the projection optical system 6 and the alignment optical system in the present invention, as described above, the projection optical system uses the light source S1 whose wavelength width can be controlled, and the oscillation wavelength λ1 of the light source 1 and the alignment optical system use the light source S1. Since the chromatic aberration of the two wavelengths λ 2 is completely corrected, there is no need to use an auxiliary optical system as in the conventional case.

第4図に本発明に係る投影光学系の色収差補正
状態の一例を示す。同図において曲線は従来の
波長632.8nmと波長436nmの2波長を補正した色
収差曲線、曲線は本発明に係る波長632.8nmと
波長248.5nmの2波長を補正した色収差曲線であ
る。
FIG. 4 shows an example of the chromatic aberration correction state of the projection optical system according to the present invention. In the figure, the curve is a chromatic aberration curve corrected for two wavelengths, 632.8 nm and 436 nm, in the conventional case, and the curve is a chromatic aberration curve corrected for two wavelengths, 632.8 nm and 248.5 nm, according to the present invention.

尚本発明の投影光学系は波長248.5nmという短
波長側の光を用いる為に投影光学系には短波長側
での透過率が良くしかも分散の異なる少なくとも
2つ以上のガラス材例えば溶解石英やフツ化カル
シウム等で構成するのが良い。
Since the projection optical system of the present invention uses light with a short wavelength of 248.5 nm, the projection optical system is made of at least two glass materials that have good transmittance on the short wavelength side and have different dispersion, such as fused quartz, etc. It is preferably composed of calcium fluoride or the like.

以上のように本発明によれば投影光学系に波長
幅を制御することのできる光源を用いることによ
つて装置全体の簡素化を図りつつアライメント精
度を高めた露光装置を達成することができる。
As described above, according to the present invention, by using a light source whose wavelength width can be controlled in the projection optical system, it is possible to achieve an exposure apparatus with improved alignment accuracy while simplifying the entire apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般の色収差補正状態の説明図、第2
図は従来の露光装置に用いられている投影光学系
の色収差補正状態の説明図、第3図は本発明の露
光装置の一実施例の概略図、第4図は本発明と従
来の色収差補正状態の説明図である。 図中1は照明用光源、2は照明用光学系、3は
光学部材、4はマスクパターン、6は投影光学
系、7はウエハー、8はウエハー載置台、9はア
ライメント光学系である。
Figure 1 is an explanatory diagram of the general chromatic aberration correction state, Figure 2
The figure is an explanatory diagram of the chromatic aberration correction state of the projection optical system used in a conventional exposure device, FIG. 3 is a schematic diagram of an embodiment of the exposure device of the present invention, and FIG. 4 is a diagram showing the chromatic aberration correction of the present invention and the conventional one. It is an explanatory diagram of a state. In the figure, 1 is an illumination light source, 2 is an illumination optical system, 3 is an optical member, 4 is a mask pattern, 6 is a projection optical system, 7 is a wafer, 8 is a wafer mounting table, and 9 is an alignment optical system.

Claims (1)

【特許請求の範囲】[Claims] 1 マスクパターンを照明し、該マスクパターン
を介して被露光基板を露光する投影露光装置にお
いて、前記マスクパターンを前記被露光基板上に
結像せしめる、波長λ1と該波長λ1とは異なる波長
λ2に関して軸上色収差を補正した投影光学系と、
前記波長λ1のレーザー光で前記マスクパターンを
照明する手段と、前記波長λ2の光で前記投影光学
系を用いて前記マスクパターンと前記被露光基板
の位置関係を検出する位置合わせ光学系と、前記
レーザー光の波長幅を狭める手段とを有すること
を特徴とする露光装置。
1. In a projection exposure apparatus that illuminates a mask pattern and exposes a substrate to be exposed through the mask pattern, a wavelength λ 1 that forms an image of the mask pattern on the substrate to be exposed and a wavelength different from the wavelength λ 1 a projection optical system that corrects axial chromatic aberration with respect to λ 2 ;
means for illuminating the mask pattern with the laser beam of the wavelength λ 1 ; and an alignment optical system for detecting the positional relationship between the mask pattern and the substrate to be exposed using the projection optical system with the light of the wavelength λ 2 . , means for narrowing the wavelength width of the laser beam.
JP59079085A 1984-04-19 1984-04-19 Exposing device Granted JPS60222862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59079085A JPS60222862A (en) 1984-04-19 1984-04-19 Exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59079085A JPS60222862A (en) 1984-04-19 1984-04-19 Exposing device

Publications (2)

Publication Number Publication Date
JPS60222862A JPS60222862A (en) 1985-11-07
JPH0548612B2 true JPH0548612B2 (en) 1993-07-22

Family

ID=13680042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59079085A Granted JPS60222862A (en) 1984-04-19 1984-04-19 Exposing device

Country Status (1)

Country Link
JP (1) JPS60222862A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669014B2 (en) * 1986-02-24 1994-08-31 株式会社ニコン Exposure equipment
JP2650895B2 (en) * 1986-07-02 1997-09-10 松下電器産業株式会社 Exposure apparatus and exposure method

Also Published As

Publication number Publication date
JPS60222862A (en) 1985-11-07

Similar Documents

Publication Publication Date Title
KR100200734B1 (en) Measuring apparatus and method of aerial image
US4492459A (en) Projection printing apparatus for printing a photomask
JP3109852B2 (en) Projection exposure equipment
US4811055A (en) Projection exposure apparatus
JPH06163348A (en) Apparatus and method for projection of mask pattern on substrate
US4798962A (en) Multi-wavelength projection exposure and alignment apparatus
GB2041554A (en) Registration marks for projection copying
JPH10153866A (en) Illuminator and exposure device provided with it
US6023321A (en) Projection exposure apparatus and method
JP2633028B2 (en) Observation method and observation device
US5774205A (en) Exposure and method which tests optical characteristics of optical elements in a projection lens system prior to exposure
JPS62188316A (en) Projection exposure device
JPH0548612B2 (en)
JP2962972B2 (en) Surface condition inspection apparatus and exposure apparatus having the same
JP3019505B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same
JP3517483B2 (en) Position detecting device and method for manufacturing semiconductor device using the same
JPH0612754B2 (en) Projection exposure device
JP3326446B2 (en) Exposure method and apparatus, lithography method, mark printing apparatus, and proximity exposure apparatus
CN217034507U (en) Optical alignment system
JPH04267536A (en) Position detector
JPH06124875A (en) Illuminating apparatus
JP2819592B2 (en) Positioning device
JP3295244B2 (en) Positioning device
JP2591582B2 (en) Projection type exposure equipment
JP2894061B2 (en) Projection exposure apparatus having position detecting means