JPH0548169B2 - - Google Patents

Info

Publication number
JPH0548169B2
JPH0548169B2 JP59005526A JP552684A JPH0548169B2 JP H0548169 B2 JPH0548169 B2 JP H0548169B2 JP 59005526 A JP59005526 A JP 59005526A JP 552684 A JP552684 A JP 552684A JP H0548169 B2 JPH0548169 B2 JP H0548169B2
Authority
JP
Japan
Prior art keywords
screw
resin
section
extrusion
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59005526A
Other languages
Japanese (ja)
Other versions
JPS60149448A (en
Inventor
Yoshiaki Fukuda
Takeshi Myasaka
Iori Matsumoto
Nobukatsu Kato
Kenji Ema
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59005526A priority Critical patent/JPS60149448A/en
Publication of JPS60149448A publication Critical patent/JPS60149448A/en
Publication of JPH0548169B2 publication Critical patent/JPH0548169B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/63Screws having sections without mixing elements or threads, i.e. having cylinder shaped sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は合成樹脂複合管に関するものである。 ポリ塩化ビニル、ポリエチレン等の熱可塑性樹
脂管は、上下水道管、電気配管、排水管などの建
築土木工事や、農業用等に巾広く使用されてい
る。しかし乍ら、これらの熱可塑性樹脂管は熱に
弱く高温にさらされて変形を起し、また火炎によ
り融解燃焼して焼失する。一方、これらの用途に
一般的に使用される金属管は、耐熱性および耐炎
性には優れているものの断熱性に乏しく、火炎の
場合には管内部の内容物や管の支持体あるいは周
辺へ高熱を伝達して火炎蔓延の原因となる恐れを
有し、更に重く旋工性に劣り且つ腐蝕性を有する
などの欠点を有している。 そこで耐熱性、耐炎性、耐腐蝕性および断熱性
に富み且つ比較的軽量でもある熱硬化性樹脂管を
これらの用途に提供することが考えられるが、従
来の成形法では高価なものとなり、物性的にも問
題があるためこれらの用途には実用化されていな
い。 即ち、熱硬化性樹脂の長尺管は、プランジヤー
押出成形法により形成されているのが一般的であ
るが、この方法による場合は金型部における押出
圧力が高く、しかも間欠押出であるため均一な成
形品を得ることが困難であり、生産性も低い。 かゝる事情からダイスとスクリユー型押出機を
用いる成形法も開発されているが、この方法では
押出装置内において樹脂の滞留が起りやすく、局
部的に硬化反応が進行したり、僅かな圧力や温度
の変化で硬化反応が急激に進行するなどの問題が
あり、連続して安定な成形を行なうことが困難で
あつた。また前記したいずれの押出方法による場
合に於いても管の円周方向の強度が低いものしか
得られず、その結果内外圧に対して弱く、且つ衝
撃に対しては管の軸方向に割れやすい等の実用上
の問題があつた。 その理由は、従来の押出方法では、溶融した樹
脂が金型内へ導びかれ金型内の流路に沿つて移動
する間に賦形および硬化が進行し、その間樹脂の
移動方向は押出方向すなわち管軸方向のみとな
り、樹脂及び充填物などがその方向へ配向するた
めと考えられる。 本発明者らは、かゝる問題を解決し、耐熱性、
耐炎性、耐腐蝕性等に優れ軽量でかつ耐衝撃性を
有する安価な合成樹脂管を得るべく種々検討した
結果、樹脂及び又は充填物が不規則な方向へ配向
した押出成形熱硬化性樹脂管が、管の軸方向及び
軸に直角な方向における圧縮強度のバランスが良
く、その結果内外圧に対して強く且つ衝撃に対し
ても優れた性質を示すことを見出し、更にその表
面に熱可塑性樹脂を被覆して得られる複合管が、
著るしく耐熱性、耐炎性、耐衝撃性に優れること
を見出して本発明に到達した。 供給部、圧縮部、計量部及び平滑部を有するス
クリユー、及び、一定の内径を有するシリンダー
を備えた押出機を用い、該スクリユー平滑部と該
シリンダー内壁との間隙において賦形され、か
つ、樹脂及びまたは充填物が不規則な方向に配向
し管軸に対し直角方向の圧縮強度と管軸方向の圧
縮強度の比が0.4〜1.5、破壊応力が300〜700Kg/
cm2である熱硬化性樹脂管の表面に熱可塑性樹脂を
被覆してなる合成樹脂複合管である。 本発明の合成樹脂複合管は、押出成形、特にス
クリユーを内蔵する押出成形機を使用しその先端
部おいて押出后自己形状を保持できる程度にまで
賦形硬化させた熱硬化性樹脂管に熱可塑性樹脂を
被覆することにより製造される。その方法は、例
えば先端部に平滑部を有するスクリユーを使用
し、平滑部に於て熱硬化性樹脂を自己形状を保持
できる程度にまで賦形し、その表面に熱可塑性樹
脂を被覆する方法であり、その具体的方法として
は先端部に平滑部を有するスクリユーを使用して
平滑部に於いて自己形状を保持できる程度にまで
熱硬化性樹脂を賦形しその熱硬化性樹脂が賦形さ
れる帯域に熱可塑性樹脂を圧入被覆して押し出す
第1の方法、または同様に先端部に平滑部を有す
るスクリユーを使用し平滑部に於いて自己形状を
保持できる程度にまで熱硬化性樹脂を賦形して押
出し、引きつづき他の押出機の金型内へ導入して
熱可塑性樹脂を被覆する第2の方法が採用でき
る。 本発明の複合管の内層を形成する熱硬化性樹脂
管は、押出成形、特にスクリユーを内蔵する押出
成形機を使用しその先端部において押出後自己形
状を保持できる程度に迄賦形硬化させることによ
り得られるものであり、更に好ましくは例えば特
願昭58−51526に記載した方法より製造されるが、
この方法による場合は先端に平滑部を有するスク
リユーを使用し、平滑部に於いて押出後、自己形
状を保持できる程度にまで賦形される。 すなわち、押出機内に投入された熱硬化性樹脂
材料は、スクリユー供給部から圧縮部を経るうち
に加熱溶融され計量部を経て計量部のフライト先
端部よりラセン状で平滑部に移行し、そこでシリ
ンダー内壁との摩擦抵抗により、スクリユーフラ
イトによつて生ずる間隙部分が狭められついには
圧融着される。ついで樹脂は平滑部を移行する間
に硬化賦形されてシリンダー先端より連続した管
となつて押出される。この間樹脂は供給部から計
量部に至る間はスクリユー溝に大むね沿つた方向
のせん断をうけながら移動するため樹脂自体や充
填物は管の押出方向に対し特に定まつた方向には
配向することはなく、不規則な方向へ配向し平滑
部に移行した後、硬化が進むために結果として樹
脂自体や充填物は管の軸方向と円周方向に特に表
面層においてバランス良く配向され、得られる管
の軸方向及び管軸に直角な方向における圧縮強度
のバランスが良くなるものと考えられる。 本発明の管における樹脂および充填物の配向は
例えば電子顕微鏡によつて観察することができ
る。 第1図は従来の押出成形方法(プランジヤー
式)により押出成形されたフエノール樹脂管の管
軸方向の断面の電子顕微鏡写真であり、第2図
は、同管軸に直角な方向における断面図であり、
第3図および第4図は本発明の熱硬化性樹脂管の
一つであるフエノール樹脂管の夫々の断面の電子
顕微鏡写真である。 第1図および第2図に於いては、ガラス繊維
が、管軸方向に配向していることが明白であるの
に対し、第3図および第4図では繊維は特に一定
の方向には配向することなく不規則に配向してい
ることがわかる。 後述の第1表には、これらの管軸に対し直角方
向の圧縮強度(A)と管軸方向の圧縮強度(B)及びA/
Bの比の測定結果並びに水圧試験結果を記載し
た。 この表からも判るとおり、従来法による管は
A/B比が0.37と小さく縦割れを生じやすいのに
比べ、本発明の管は例えばA/B比が0.4〜1.5、
より好ましくは0.5〜1.5と大きく、縦割れを生ず
ることなく、内圧に対しても強いことが判る。 上記した管軸方向の圧縮強度とは、JIS−K−
6911の5.19.5.項による試験(圧縮強度試験)を行
ない管が破壊(亀裂が入つた場合も含む)した時
の強さを言い管軸に対し直角方向の圧縮強度とは
JISK6741の5.6項による試験(へん平試験)を行
なつて管が破壊した時の強さを表わすものであ
る。 本発明の熱硬化性樹脂管を成形するのに使用さ
れる押出機としては、単軸スクリユー押出機のみ
ならず、二軸スクリユーあるいは多軸スクリユー
押出機であつても先端部が最終的に単軸に集約さ
れる押出機のいずれも使用できる。本発明に使用
されるこれらの押出機の内部構造として、押出機
の供給部から先端の計量部に至る間に脱気孔を設
けたり、特殊な混練機構を設けることは何ら差し
支えない。 本発明の熱硬化性樹脂管の成形に使用されるス
クリユーの代表的なものは第5図に示す様に先端
部に平滑部4を有するスクリユー(以下特殊スク
リユーと略称する)であり、このスクリユーは、
例えば供給部1、圧縮部2、計量部3よりなる。
平滑部4は第5図の様に供給部の終了したところ
から、また第6図の様に圧縮部の終了したところ
からあるいは第7図の様に計量部の途中から始ま
る様な型式でも良い。 また平滑部4のスクリユー径は、フライトを有
する部位のスクリユー底部の径とは別個に所望す
る成形品の内径に合わせて拡大または縮小して調
整することができる。 本発明に使用される特殊スクリユーのL/D
は、通常7〜40、好ましくは10〜35、更に好まし
くは15〜25、圧縮比は1.0〜5.0、好ましくは1.2〜
4.0、更に好ましくは1.5〜3.0、スクリユー先端部
の平滑部の長さは1〜16D、好ましくは2〜
12D、更に好ましくは2〜9Dの範囲から適宜選
択することができる。 先端に平滑部のない通常のフルフライトスクリ
ユーではパイプ状の成形品は得られず、ラセン状
の成形品が得られるのみである。更に平滑部の長
さが1D未満の場合は、押出後得られる成形品に
変形が生じ連続して良好な成形品を得ることが困
難である。また、平滑部の長さが16D以上となる
場合は、成形圧力が大きくなり、押出機の機械強
度の点からも実用的でない。スクリユーの圧縮比
と平滑部の長さは、平滑部のスクリユーとバレル
の間隙、換言すれば成形品の肉厚、押出速度及び
使用する材料の特性等の組合せによつて種々の制
限を受ける。而してスクリユーの圧縮比と平滑部
の長さは、それらが大きい程、あるいは小さい程
背圧付与機能が大きくあるいは小さい。 背圧が大きすぎるとフライトを有する部分で過
度の混練が起り、その結果として材料の過度の発
熱と硬化が起るので好ましくない。一方、背圧が
小さすぎると材料の圧縮充填及び混練が不充分と
なるので同様に好ましくない。適度な背圧が材料
の圧縮充填と適当な混練のために必要である。 即ち、安定した押出と良好な製品を得るために
は適度のスクリユーの圧縮比と平滑部の長さが要
求される。 そして平滑部のスクリユーとバレルの間隙が大
きい程あるいは小さい程、押出速度が小さい程あ
るいは大きい程、使用する材料の粘度が小さい程
あるいは大きい程、また使用する材料の硬化速度
が小さい程あるいは大きい程、スクリユーの圧縮
比と平滑部の長さは大きくあるいは小さくする必
要がある。 本発明の合成樹脂複合管を製造するにあたつて
熱硬化性樹脂を成形するための押出機各部の温度
設定は、使用する材料の特性やスクリユーの圧縮
比、スクリユー平滑部とバレルの間隙、平滑部の
長さと押出速度等の組合せにより当然変るが、ス
クリユーの圧縮部、計量部及び平滑部に対応する
シリンダー部位の温度設定は通常50〜200℃好ま
しくは、60〜150℃の範囲である。 而して、設定温度が50℃以下の場合は、樹脂の
硬化反応が充分に進行しないため良好な成形品は
得難い傾向があり、一方200℃までの温度で通常
用いられる熱硬化性樹脂は充分に熱硬化するので
それ以上にする必要はない。 上述した方法により形成された熱硬化性樹脂管
は例えば前記した第1の方法または第2の方法に
より熱可塑性樹脂で被覆され複合管が得られる。 第1の方法において、熱可塑性樹脂管の回りに
熱可塑性樹脂を被覆する部位の構造及び熱可塑性
樹脂用押出機は、熱可塑性樹脂を被覆するために
通常使用されるもので良い。しかし乍ら、熱可塑
性樹脂の供給部の位置は熱可塑性樹脂を成形する
押出機のスクリユーの平滑部が始まる位置から
1D以上離れていることが必要であり、好ましく
は2D〜12D、更に好ましくは2D〜9D離れた位置
の範囲から適宜選択される。 この方法に於いては熱硬化性樹脂はラセン状で
計量部より平滑部に移行したのち相互に融着し、
管を形成する。したがつて平滑部が始まる部位か
ら1D以内の位置で熱可塑性樹脂が供給されると
内層の熱硬化性樹脂層に間隙が残り易く不均一と
なるので好ましくない。 また熱硬化性樹脂層と熱可塑性樹脂とが合流し
たあとの平滑部の長さは、熱硬化性樹脂が押出後
自己形状を保持できる程度にまで賦形するに必要
な長さを有し、かつ熱可塑性樹脂が充分に被覆さ
れる長さがあれば良く、0〜15D、好ましくは0
〜7Dの範囲から適宜選択される。 前記した第2の方法では、熱硬化性樹脂は熱硬
化性樹脂を押出すための押出機により、押出後、
自己形状を保持できる程度にべは賦形される必要
があり、そのためのスクリユー先端の平滑部の長
さは1〜16D好ましくは2〜12D更に好ましくは
2〜9Dの範囲から適宜選択することができる。 而して押出された熱硬化性樹脂管は、そのまま
或は適当な間隙をおいて引きつづきクロスヘツド
ダイを有する熱可塑性樹脂用押出機の金型部へ導
入され、熱可塑性樹脂により被覆される。この熱
可塑性樹脂を被覆するための熱可塑性樹脂用押出
機は所定の肉厚の熱可塑性樹脂を被覆し得るクロ
スヘツドダイを有する通常の熱可塑性樹脂押出成
形用押出機が適用可能である。 上記した第1の方法および第2の方法のいずれ
の方法に於いても熱可塑性樹脂の押出条件は使用
される熱可塑性樹脂に通常適用される条件がその
まま適用できる。 上記した合成樹脂複合管の第1の製造方法に好
適な装置としては、供給部、圧縮部、計量部およ
び平滑部から成るスクリユー、該供給部、圧縮部
および計量部に対応する熱制御機構を有するシリ
ンダー部分、および該計量部の最終スタリユー径
Dに等しいか又は異なる径を有する該平滑部に対
応する熱供給機能を有するシリンダー部分より成
り、該平滑部とそれに対応するシリンダー部分と
によつて形成される間隙部において硬化反応を促
進させ押出後自己形状を保持できる程度にまで賦
形する様にした熱硬化性樹脂のスクリユー型押出
成形装置と、該押出成形装置の平滑部に移行した
位置から1D以上スクリユー先端側の位置に対応
するシリンダー内周部分に熱可塑性樹脂の供給部
分を設けた熱可塑性樹脂のスクリユー型押出成形
装置からなる合成樹脂複合管の製造装置が挙げら
れる。 而して第2の製造方法に好適な装置としては、
供給部、圧縮部、計量部および平滑部から成るス
クリユー、該供給部、圧縮部および計量部に対応
する熱制御機構を有するシリンダー部分、および
該計量部の最終スクリユー径に等しいか又は異な
る径を有する該平滑部に対応する熱供給機能を有
するシリンダー部分より成り、該平滑部とそれに
対応するシリンダー部分とによつて形成される間
隙部において硬化反応を促進させ押出後自己形状
を保持できる程度にまで賦形する様にした熱硬化
性樹脂のスクリユー型押出成形装置と、該押出成
形装置のスクリユー軸線上にクロスヘツドダイを
付設した熱可塑性樹脂用押出機より成る合成樹脂
複合管の製造装置が挙げられる。 上記した熱硬化性樹脂複合管の製造装置は、前
記した第1の方法および第2の方法の採用によつ
て容に複合管製造用として利用することができ
る。 本発明に使用される熱硬化性樹脂としては、フ
エノール樹脂、メラミン樹脂、尿素樹脂、不飽和
ポリエステル樹脂、エポキシ樹脂、シリコン樹
脂、アリル樹脂、キシレン樹脂、アニリン樹脂等
が挙げられる。なかでもフエノール樹脂、メラミ
ン樹脂および尿素樹脂の利用が好適である。 本発明に用いられる熱硬化性樹脂には必要に応
じて熱硬化性樹脂の成形に於いて一般に用いられ
る充填剤、離型剤、増粘剤、着色剤、分散剤、発
泡剤あるいはまた重合開始剤、硬化促進剤、重合
禁示剤などを添加することができる。 また更に他種のポリマーあるいは有機または無
機の繊維状物、例えば硝子等を加えることもでき
る。 本発明に用いられる熱可塑性樹脂としては、例
えばポリエチレン、ポリプロピレン、ポリ塩化ビ
ニル、ポリスチレン、ポリカーボネート、アクリ
ロニトリル−ブタジエン−スチレン共重合体、ポ
リメチルアクリレート、ポリエチレテレフタレー
トなどが挙げられる。これら熱可塑性樹脂には必
要に応じて安定剤、充填剤、加工助剤、酸化防止
剤、強化剤、着色剤、滑剤などの熱可塑性樹脂の
成形に於いて一般的に用いられる添加剤を添加す
ることができる。 第8図は本発明に於いて、熱硬化性樹脂管へ熱
可塑性樹脂を被覆する第1の方法を実施するのに
好ましい装置の1例を示す平面図であり、スクリ
ユー部分の透視図を含む。第9図は熱可塑性樹脂
を被覆する第2の方法を実施するのに好ましい装
置の1例を示す平面図である。 第8図に於いて、ホツパー5より供給された熱
硬化性樹脂樹脂材料は、シリンダー6内でヒータ
ー7により加熱溶融され、スクリユー8のフライ
ト先端部よりラセン状で平滑部4へ移行し、シリ
ンダーとの摩擦抵抗により、スクリユーフライト
によつて生ずる間隙部分が狭められついには圧融
着される。次いで融着樹脂は、スクリユー平滑部
を移動する間に、押出後自己形状を保持できる程
度まで賦形される。この間に、熱可塑性樹脂用押
出機9から供給部10を経て圧入された熱可塑性
樹脂により被覆され、熱硬化性樹脂管11が熱可
塑性樹脂12により被覆された複合管13となつ
てシリンダー先端より連続して押出される。 第9図に於いては、ホツパー5より供給された
熱硬化性樹脂材料は、シリンダー6内でヒーター
7により加熱溶融され、スクリユー8のフライト
先端部よりラセン状で平滑部4へ移行し、シリン
ダーとの摩擦抵抗により、スクリユーフライトに
よつて生ずる間隙部分が狭められついには圧融着
される。次いで融着樹脂は、スクリユー平滑部を
移動する間に、押出後自己形状を保持できる程度
にまで賦形され、シリンダー先端より連続した熱
硬化性樹脂管11となつて押出される。 押出された熱硬化性樹脂管は引きつづきクロス
ヘツドダイ14を装着した熱可塑性樹脂用押出機
9のダイ内へ導入され、熱可塑性樹脂により被覆
されて、複合管となり押出される。 通常、熱硬化性樹脂の押出成形法に於いては、
シリンダー内で加熱溶融された樹脂は、アダプタ
ーを経て金型内へ導入され最終形状に賦形される
が、この過程に於いて樹脂の流れはアダプターで
絞られ、スパイダーで固定されたマンドレルの回
りに再展張されるなど樹脂の流路が複雑に変化す
るために、樹脂の滞留が起りやすく、局部的に硬
化反応が進行したり、僅かな圧力や温度の変化で
硬化反応が急激に起るなどの問題を引き起す。ま
た複雑な流路による抵抗に打ち勝ち滞留を防止し
つつ樹脂を押出すためには、強大な押出圧力を要
し特殊な押出装置を必要とする。而してかかる成
形法による場合の押出速度は高さ30cm/min程度
であり、且つ真円度及び肉厚分布の良いものを得
ることは困難である。 これに対して前記した方法及び装置によればス
クリユ平滑部とその部位のシリンダー部とが金型
の役割を果たし、樹脂の流路はシリンダーとスク
リユーとの間隙のみであるため、樹脂の滞留は全
くなく局部的な硬化反応や圧力および温度の変化
による急激な硬化反応を引き起すことがない。 本発明のスクリユーは先端が開放されており、
その全長において昇圧機能部分と背圧付与機能部
分を有するため、両者の力が相殺し、スクリユー
のスラストベアリングにかかる力はスクリユーと
金型を用いる一般的成形法にくらべ本質的に小さ
い。また一般的成形法に於ける金型内のマンドレ
ルに相当する本発明のスクリユー平滑部は回転し
ているため、硬化した樹脂と金属部分との摩擦抵
抗が比較的小さく押出圧力も通常のスクリユー押
出機で得られる圧力で充分である。この様な本発
明の方法による場合は例えば80cm/minのような
押出速度が容易に得られる。 前述の方法および装置によれば、熱硬化性樹脂
の成形が通常のスクリユー押出機により得られる
押出圧力で、連続して安定かつ生産性良く行なわ
れ、しかも容易に熱可塑性樹脂を被覆することが
できるため、熱硬化性樹脂の表面に熱可塑性樹脂
を被覆した複合管を容易に製造することができ
る。 前述の方法により得られた複合管は、熱硬化性
樹脂が押出された時点で既に自己形状を保持する
に充分にまで成形条件を制御して硬化、賦形さ
れ、しかも熱硬化性樹脂の硬化温度より高い温度
で熱可塑性樹脂が被覆されることにより硬化は充
分完了しているため、変形、反り、曲り、脹れな
どの現象を起すことがない。 また、得られる複合管は内層が耐熱性、難燃性
に優れた熱硬化性樹脂、外層が耐衝撃性に優れた
熱可塑性樹脂から成るため、耐熱性、難燃性、耐
衝撃性共に優れたものとなる。 以上説明した如く、前述の方法および装置によ
れば、耐熱性、難燃性および耐衝撃性の優れた合
成樹脂複合管を容易に生産性良く製造することが
できる。 上記した本発明の合成樹脂複合管は耐熱性、難
燃性および耐衝撃性に優れるため、例えば電機或
は建築および土木材料などとして有用である。 以下、参考例および製造例により更に本発明を
説明する。 参考例 1 口径30mm、L/D=22の押出機によりスクリユ
ー底部の径が26mmの計量部に続く先端部に径が26
mm長さが105mm(3.5D)の平滑部を有する圧縮比
が2.0のスクリユーを用い、成形材料としてフエ
ノール樹脂(日本オイルシール(株)製、商品名ロジ
ヤースRX−6684)を使用してパイプを連続的に
押出成形した。 シリンダー各部の温度は C1(0〜2D)……水冷 C2(3D〜10D)……80℃ C3(11D〜18D)……100℃ C4(19D〜22D)……120℃ に設定し、スクリユー回転数35rpmの条件で押出
成形を行なつて、外径30mm肉厚2.0mmのパイプを
得た。 参考例 2 参考例1と同じ押出装置により、成形材料とし
てフエノール樹脂(日本合成化工(株)製、商品名ニ
ツカライト950−J)を使用して、パイプを押出
成形した。 シリンダー各部の温度は、C1=水冷、C2=80
℃、C3=110℃、C4=120℃に設定し、スクリユ
ー回転数35rpmの条件で成形を行ない外径30mm、
肉厚2.0mmのパイプを得た。 参考例 3 参考例1と同じ押出装置を使用し、成形材料と
してフエノール樹脂(住友ベークライト(株)製、商
品名PM−795J)を用いてパイプを押出成形し
た。 シリンダー各部の温度はC1=水冷、C2=80℃、
C3=105℃、C4=120℃に設定し、スクリユー回
転数35rpmの条件で成形を行ない、外径30mm、肉
厚2.0mmのパイプを得た。 参考例 4 口径40mm、L/D=24の押出機により、スクリ
ユー底部の径が35mm、長3Dの計量部に続いて径
35mm長さ3Dの平滑部を有するスクリユーを用い、
成形材料としてフエノール樹脂(住友ベークライ
ト(株)製、商品名PM−795J)を用いてパイプを押
出成形した。シリンダー各部の温度はC1=(0〜
2D)=水冷、C2(3〜10D)=60℃、C3(11〜16D)
=80℃、C4(17〜20D)=110℃、C5(21〜24D)=
120℃に設定しスクリユー回転数25rpmで外径40
mm、肉厚2.5mmのパイプを得た。 参考例 5 参考例1と同じ押出装置を使用し、成形材料と
してメラミン樹脂(オタライト(株)製、商品名ON
−600)を用いてパイプを連続的に押出成形した。 シリンダー各部の温度はC1=水冷、C2=85℃、
C3=115℃、C4=130℃に設定し、スクリユー回
転数35rpmの条件で成形を行ない、外径30mm、肉
厚2.0mmのパイプを得た。 評価結果: 上記の製造例により得られたパイプの圧縮強度
(管軸に対し直角方向、管軸方向、及びこれらの
比)及び水圧試験の結果は第1表に示したとおり
であつた。 製造例 1 ホツパー下より2Dの長さに水冷ジヤケツトを
備え、続いて3〜9D、10〜15D、16〜19Dの各部
に熱制御装置を有し、更に続いて先端より2Dの
位置で熱可塑性樹脂が肉厚1.5mmで供給されるよ
うにした第8図に示された様な被覆装置(長さ
5D)を備えた口径40mm、L/D=24(被覆装置部
分を含む)のシリンダーを有する押出機(A)、供給
部3D、圧縮部12D及びスクリユー底部の径が35
mm長さ4Dの計量部に続いて径35mm長さ5Dの平滑
部を有する圧縮比1.8のスクリユー(B)、及び圧縮
比2.5のスクリユーを内装した口径30mmL/D=
22の押出機(C)を用いて複合管を成形した。 スクリユー(B)を内装した押出機(A)の被覆装置部
に押出機(C)を連結し、成形材料として押出機(A)に
フエノール樹脂(住友ベークライト(株)製、商品名
PM−795J)、押出機(C)にポリ塩化ビニルコンパ
ウンド(三井東圧化学(株)製、商品名ビニクロン
EREK−1015)を投入し、押出機(A)はC1(0〜
2D)=水冷、C2(3〜9D)=80℃、C3(10〜15D)=
95℃、C4(16〜19D)=110℃、被覆装置部(20〜
24D)=180℃、スクリユー回転数25rpm、押出機
(C)は、C1(0〜2D)=水冷、C2(3〜9D)=150℃、
C3(10〜16D)=170℃、C4(17〜22D)=175℃、ア
ダプター=180℃、スクリユー回転数45rpmの条
件で押出を行ない、内層が径40mm肉厚2.5mmのフ
エノール樹脂、外層が径41.5mm肉厚1.5mmのポリ
塩化ビニル樹脂からなる外径41.5mm肉厚4mmの複
合管を得た。 製造例 2 ホツパー下より2Dの長さに水冷ジヤケツトを
備え、続いて3〜10D、11〜16D、17〜20D及び
21〜24Dの各部に熱制御装置を備えた口径40mm
L/D=24のシリンダーを有する押出機により、
供給部3D、圧縮部15D及びスクリユー底部の径
が35mm、長さ3Dの計量部に続いて径35mm、長さ
3Dの平滑部を有するスクリユーを用い、成形材
としてメラミン−フエノール樹脂(松下電工(株)
製、商品名ME−A)を使用してパイプを押出し
た。 シリンダー各部の温度はC1(0〜2D)=水冷、
C2(3〜10D)=60℃、C3(11〜16D)=85℃、C4
(17〜20D)=120℃、C5(21〜24D)=130℃に設定
しスクリユー回転数25rpmで外径40mm肉厚2.5mm
のパイプを押出した。このパイプをそのまま引き
つづき圧縮比3.0のスクリユーを内装した口径30
mmL/D=22の押出機に接着されたクロスヘツド
ダイ内で導入し、温度設定はC1=180℃、C2
210℃、C3=220℃、ダイ=220℃、スクリユー回
転数62rpmの条件でポリプロピレン樹脂(三井東
圧化学(株)製、商品名三井ノープレンBEB−US)
を肉厚1.5mmで被覆して内層が外径40mm内厚2.5mm
のメラミン−フエノール樹脂、外層が外径41.5
mm、肉厚1.5mmのポリプロピレン樹脂より成る外
径41.5mm肉厚4mmの複合管を得た。 比較例 1 実施例2で使用した40mm押出機及びスクリユー
を使用し、成形材料としてフエノール樹脂(住友
ベークライト(株)製、商品名PM795J)を用いて押
出成形を行なつた。シリンダー各部の温度はC1
=水冷、C2=60℃、C3=80℃、C4=110℃、C5
120℃に設定し、スクリユー回転数25rpmで成形
を行なつて外径40mm肉厚2.5mmのフエノールパイ
プを得た。 第2表に各実施例および比較例により得られた
管の性能測定結果を示した。 これらの結果から、本発明の合成樹脂複合管
は、耐熱性、耐燃性、耐衝撃性に優れることがわ
かる。
The present invention relates to a synthetic resin composite pipe. Thermoplastic resin pipes such as polyvinyl chloride and polyethylene are widely used for construction and civil engineering works such as water and sewage pipes, electrical piping, and drainage pipes, as well as for agricultural purposes. However, these thermoplastic resin tubes are sensitive to heat and deform when exposed to high temperatures, and are also melted and burnt by flames. On the other hand, metal tubes commonly used for these applications have excellent heat and flame resistance, but have poor insulation properties, and in the event of a flame, they may damage the contents inside the tube, the tube support, or the surrounding area. It has the disadvantage of transmitting high heat and causing the spread of flame, being heavy, having poor machinability, and being corrosive. Therefore, it is conceivable to provide thermosetting resin pipes that are highly heat resistant, flame resistant, corrosion resistant, and heat insulating, and are also relatively lightweight, but conventional molding methods would be expensive and the physical properties would be poor. However, it has not been put to practical use in these applications due to some problems. In other words, long tubes of thermosetting resin are generally formed by plunger extrusion, but when using this method, the extrusion pressure in the mold section is high, and since it is intermittent extrusion, it is not uniform. It is difficult to obtain molded products, and productivity is low. For these reasons, a molding method using a die and screw-type extruder has been developed, but with this method, the resin tends to stagnate in the extrusion device, causing the curing reaction to proceed locally, or when the resin is exposed to slight pressure or pressure. There were problems such as the curing reaction progressing rapidly due to temperature changes, making it difficult to perform continuous and stable molding. In addition, when using any of the extrusion methods described above, only a tube with low strength in the circumferential direction is obtained, and as a result, it is weak against internal and external pressure and easily cracks in the axial direction of the tube when subjected to impact. There were practical problems such as: The reason for this is that in conventional extrusion methods, molten resin is guided into the mold and shaped and hardened while moving along the flow path within the mold, during which time the resin moves in the extrusion direction. In other words, it is thought that this is because only the tube axis direction exists, and the resin, filler, etc. are oriented in that direction. The present inventors have solved such problems and have achieved heat resistance,
As a result of various studies in order to obtain an inexpensive synthetic resin pipe that is lightweight and impact resistant with excellent flame resistance, corrosion resistance, etc., we have developed an extruded thermosetting resin pipe in which the resin and/or filler is oriented in irregular directions. However, it was discovered that the compressive strength in the axial direction and the direction perpendicular to the axis of the tube is well balanced, and as a result, it is strong against internal and external pressure and exhibits excellent properties against impact. The composite tube obtained by coating
The present invention was achieved by discovering that the material has significantly excellent heat resistance, flame resistance, and impact resistance. Using an extruder equipped with a screw having a feeding section, a compression section, a measuring section, and a smooth section, and a cylinder having a constant inner diameter, the resin is shaped in the gap between the screw smooth section and the inner wall of the cylinder. and/or the filling is oriented in an irregular direction, the ratio of the compressive strength in the direction perpendicular to the tube axis to the compressive strength in the direction of the tube axis is 0.4 to 1.5, and the breaking stress is 300 to 700 kg/
This is a synthetic resin composite tube made by coating the surface of a thermosetting resin tube with a thermoplastic resin. The synthetic resin composite tube of the present invention is manufactured by extrusion molding, in particular, by using an extrusion molding machine with a built-in screw, and applying heat to a thermosetting resin tube that is shaped and hardened to the extent that it can maintain its own shape after extrusion at its tip. Manufactured by coating with plastic resin. For example, this method uses a screw with a smooth part at the tip, shapes the thermosetting resin in the smooth part to the extent that it can maintain its own shape, and then coats the surface with the thermoplastic resin. The specific method is to use a screw with a smooth part at the tip to shape the thermosetting resin to the extent that it can maintain its own shape in the smooth part, and then the thermosetting resin is shaped. The first method is to press-fit and extrude thermoplastic resin into the zone where the resin is to be applied, or similarly, use a screw with a smooth portion at the tip and apply thermosetting resin to the extent that it can maintain its own shape in the smooth portion. A second method can be adopted in which the molded material is shaped and extruded, and subsequently introduced into a mold of another extruder to be coated with a thermoplastic resin. The thermosetting resin tube that forms the inner layer of the composite tube of the present invention is formed by extrusion molding, particularly by using an extrusion molding machine with a built-in screw, and shaping and hardening it at its tip to the extent that it can maintain its own shape after extrusion. More preferably, it is produced by the method described in Japanese Patent Application No. 58-51526,
In this method, a screw having a smooth portion at the tip is used, and after extrusion, the material is shaped to the extent that it can maintain its own shape. In other words, the thermosetting resin material fed into the extruder is heated and melted while passing from the screw supply section to the compression section, passes through the measuring section, moves from the tip of the flight of the measuring section to a smooth part in a helical shape, and there it is transferred to the cylinder. Due to the frictional resistance with the inner wall, the gap created by the screw flight is narrowed and finally pressure fused. The resin is then hardened and shaped while traveling through the smooth section, and is extruded from the tip of the cylinder into a continuous tube. During this time, the resin moves while being subjected to shear in the direction generally along the screw groove from the supply section to the metering section, so the resin itself and the filler must be oriented in a particular direction with respect to the extrusion direction of the tube. After the resin is oriented in an irregular direction and transitions to a smooth part, the resin itself and the filling material are oriented in a well-balanced manner in the axial and circumferential directions of the tube, especially in the surface layer, as the curing progresses. It is considered that the compressive strength in the axial direction of the tube and in the direction perpendicular to the tube axis is better balanced. The orientation of the resin and filler in the tubes of the invention can be observed, for example, by electron microscopy. Figure 1 is an electron micrograph of a cross section in the tube axis direction of a phenolic resin tube extruded by a conventional extrusion method (plunger type), and Figure 2 is a cross section in the direction perpendicular to the tube axis. can be,
FIGS. 3 and 4 are electron micrographs of respective cross sections of a phenolic resin pipe, which is one of the thermosetting resin pipes of the present invention. In Figures 1 and 2, it is clear that the glass fibers are oriented in the direction of the tube axis, whereas in Figures 3 and 4, the fibers are specifically oriented in a certain direction. It can be seen that the particles are oriented irregularly without any distortion. Table 1 below shows the compressive strength in the direction perpendicular to the tube axis (A), the compressive strength in the tube axis direction (B), and A/
The measurement results of the ratio of B and the results of the water pressure test are listed. As can be seen from this table, the pipes made by the conventional method have a small A/B ratio of 0.37 and are prone to vertical cracking, whereas the pipes of the present invention have an A/B ratio of 0.4 to 1.5, for example.
More preferably, it is as large as 0.5 to 1.5, and it can be seen that it is strong against internal pressure without causing vertical cracks. The compressive strength in the tube axis direction mentioned above is JIS-K-
Compressive strength in the direction perpendicular to the pipe axis refers to the strength when the pipe breaks (including cracks) when tested according to Section 5.19.5 of 6911 (compressive strength test).
This indicates the strength of the pipe when it breaks when tested in accordance with Section 5.6 of JISK6741 (flattening test). The extruder used to mold the thermosetting resin tube of the present invention is not limited to a single-screw extruder, but also a twin-screw or multi-screw extruder, in which the tip ends in a single-screw extruder. Any extruder that is integrated into the shaft can be used. As for the internal structure of these extruders used in the present invention, there is no problem in providing a deaeration hole or a special kneading mechanism between the extruder supply section and the measuring section at the tip. A typical screw used for molding the thermosetting resin pipe of the present invention is a screw having a smooth portion 4 at the tip (hereinafter referred to as special screw) as shown in FIG. teeth,
For example, it includes a supply section 1, a compression section 2, and a measuring section 3.
The smooth section 4 may be of a type such that it starts from the end of the supply section as shown in Fig. 5, from the end of the compression section as shown in Fig. 6, or from the middle of the measuring section as shown in Fig. 7. . Further, the screw diameter of the smooth portion 4 can be adjusted by expanding or contracting it in accordance with the desired inner diameter of the molded product, separately from the diameter of the screw bottom of the portion having flights. L/D of special screw used in the present invention
is usually 7 to 40, preferably 10 to 35, more preferably 15 to 25, and the compression ratio is 1.0 to 5.0, preferably 1.2 to
4.0, more preferably 1.5 to 3.0, the length of the smooth part of the screw tip is 1 to 16D, preferably 2 to 3.0D.
It can be appropriately selected from the range of 12D, more preferably 2 to 9D. A normal full-flight screw without a smooth portion at the tip cannot produce a pipe-shaped molded product, but only a spiral-shaped molded product. Furthermore, if the length of the smooth portion is less than 1D, the molded product obtained after extrusion will be deformed, making it difficult to continuously obtain a good molded product. Furthermore, if the length of the smooth portion is 16D or more, the molding pressure will be high and it is not practical in terms of the mechanical strength of the extruder. The compression ratio of the screw and the length of the smooth portion are subject to various restrictions depending on the gap between the screw and the barrel in the smooth portion, in other words, the thickness of the molded product, the extrusion speed, and the characteristics of the material used. As for the compression ratio of the screw and the length of the smooth portion, the larger or smaller the screw, the larger or smaller the back pressure applying function. If the back pressure is too large, excessive kneading will occur in the portions having flights, resulting in excessive heat generation and hardening of the material, which is undesirable. On the other hand, if the back pressure is too low, compression filling and kneading of the material will become insufficient, which is also not preferred. Adequate back pressure is necessary for compaction filling and proper kneading of the material. That is, in order to achieve stable extrusion and a good product, an appropriate compression ratio of the screw and a suitable length of the smooth portion are required. The larger or smaller the gap between the screw and the barrel in the smooth part, the lower or higher the extrusion speed, the lower or higher the viscosity of the material used, the lower or higher the curing speed of the material used, the lower or higher the extrusion speed. , the compression ratio of the screw and the length of the smooth part need to be large or small. In manufacturing the synthetic resin composite pipe of the present invention, the temperature settings of each part of the extruder for molding the thermosetting resin are determined by the characteristics of the material used, the compression ratio of the screw, the gap between the screw smooth part and the barrel, Although it naturally varies depending on the combination of the length of the smooth part and the extrusion speed, etc., the temperature setting of the compression part, metering part, and cylinder part corresponding to the smooth part of the screw is usually in the range of 50 to 200 degrees Celsius, preferably 60 to 150 degrees Celsius. . Therefore, if the set temperature is below 50℃, the curing reaction of the resin will not proceed sufficiently, making it difficult to obtain a good molded product.On the other hand, thermosetting resins commonly used at temperatures up to 200℃ tend to be difficult to obtain. There is no need to heat it any further as it will harden with heat. The thermosetting resin tube formed by the above method is coated with a thermoplastic resin by, for example, the first method or the second method described above to obtain a composite tube. In the first method, the structure of the part for coating the thermoplastic resin around the thermoplastic resin pipe and the extruder for thermoplastic resin may be those commonly used for coating thermoplastic resin. However, the position of the thermoplastic resin supply section is from the point where the smooth part of the screw of the extruder that molds the thermoplastic resin starts.
It is necessary that the distance is 1D or more, and the distance is preferably selected from a range of 2D to 12D, more preferably 2D to 9D. In this method, the thermosetting resin is spiral-shaped and moves from the measuring section to the smooth section, and then fuses to each other.
form a tube. Therefore, if the thermoplastic resin is supplied within 1D from the starting point of the smooth portion, it is not preferable because gaps tend to remain in the inner thermosetting resin layer, resulting in non-uniformity. In addition, the length of the smooth portion after the thermosetting resin layer and the thermoplastic resin merge has a length necessary for shaping the thermosetting resin to the extent that it can maintain its own shape after extrusion, It is sufficient that the length is sufficient to cover the thermoplastic resin, and is 0 to 15D, preferably 0.
Appropriately selected from the range of ~7D. In the second method described above, the thermosetting resin is extruded by an extruder for extruding the thermosetting resin, and then
The base needs to be shaped to the extent that it can maintain its own shape, and the length of the smooth part at the tip of the screw for this purpose can be appropriately selected from the range of 1 to 16D, preferably 2 to 12D, and more preferably 2 to 9D. can. The extruded thermosetting resin tube is then introduced into the mold section of a thermoplastic resin extruder having a cross-headed die, either as it is or with an appropriate gap, and is coated with a thermoplastic resin. . As a thermoplastic resin extruder for coating this thermoplastic resin, a conventional thermoplastic resin extrusion molding extruder having a crosshead die capable of coating a thermoplastic resin of a predetermined thickness can be used. In either of the first method and the second method described above, the extrusion conditions for the thermoplastic resin can be those normally applied to the thermoplastic resin used. The apparatus suitable for the first manufacturing method of the synthetic resin composite pipe described above includes a screw consisting of a supply section, a compression section, a metering section, and a smooth section, and a heat control mechanism corresponding to the supply section, compression section, and metering section. and a cylinder part having a heat supply function corresponding to the smooth part having a diameter equal to or different from the final starieux diameter D of the measuring part, and by the smooth part and the corresponding cylinder part. A screw-type extrusion molding device for thermosetting resin that accelerates the curing reaction in the gap formed and shapes the resin to the extent that it can maintain its own shape after extrusion, and a position that transitions to the smooth portion of the extrusion molding device. An example of this is an apparatus for producing a synthetic resin composite tube, which is comprised of a screw-type extrusion molding apparatus for thermoplastic resin, which has a thermoplastic resin supply section on the inner circumferential portion of the cylinder corresponding to a position on the screw tip side of 1D or more. The apparatus suitable for the second manufacturing method is as follows:
A screw consisting of a feeding section, a compression section, a metering section and a smooth section, a cylinder section having a thermal control mechanism corresponding to the feeding section, the compression section and the metering section, and a diameter equal to or different from the final screw diameter of the metering section. The cylinder part has a heat supply function corresponding to the smooth part, and the curing reaction is promoted in the gap formed by the smooth part and the corresponding cylinder part to the extent that it can maintain its own shape after extrusion. A device for manufacturing synthetic resin composite tubes is comprised of a screw-type extrusion molding device for thermosetting resin, which is designed to shape the thermosetting resin up to Can be mentioned. The apparatus for manufacturing a thermosetting resin composite pipe described above can be effectively used for manufacturing a composite pipe by employing the first method and the second method described above. Examples of thermosetting resins used in the present invention include phenolic resins, melamine resins, urea resins, unsaturated polyester resins, epoxy resins, silicone resins, allyl resins, xylene resins, and aniline resins. Among them, phenolic resin, melamine resin and urea resin are preferably used. The thermosetting resin used in the present invention may contain fillers, mold release agents, thickeners, colorants, dispersants, blowing agents, or polymerization initiators commonly used in the molding of thermosetting resins, as necessary. A curing agent, a curing accelerator, a polymerization inhibitor, etc. can be added. Furthermore, other types of polymers or organic or inorganic fibrous materials such as glass can also be added. Examples of the thermoplastic resin used in the present invention include polyethylene, polypropylene, polyvinyl chloride, polystyrene, polycarbonate, acrylonitrile-butadiene-styrene copolymer, polymethyl acrylate, and polyethylene terephthalate. Additives commonly used in the molding of thermoplastic resins, such as stabilizers, fillers, processing aids, antioxidants, reinforcing agents, colorants, and lubricants, are added to these thermoplastic resins as necessary. can do. FIG. 8 is a plan view showing an example of a preferred apparatus for carrying out the first method of coating a thermosetting resin pipe with a thermoplastic resin in the present invention, including a perspective view of the screw portion. . FIG. 9 is a plan view showing an example of a preferred apparatus for carrying out the second method of coating thermoplastic resin. In FIG. 8, the thermosetting resin material supplied from the hopper 5 is heated and melted by the heater 7 in the cylinder 6, moves from the tip of the flight of the screw 8 to the smooth part 4 in a helical shape, and moves to the smooth part 4 in the cylinder. Due to the frictional resistance, the gap created by the screw flight is narrowed and finally pressure fused. The fusion resin is then shaped while moving through the screw smooth portion to the extent that it can maintain its own shape after extrusion. During this time, the thermosetting resin tube 11 is coated with the thermoplastic resin press-fitted from the extruder 9 for thermoplastic resin through the supply section 10, and the thermosetting resin tube 11 is turned into a composite tube 13 coated with the thermoplastic resin 12. Continuously extruded. In FIG. 9, the thermosetting resin material supplied from the hopper 5 is heated and melted by the heater 7 in the cylinder 6, moves from the tip of the flight of the screw 8 to the smooth part 4 in a helical shape, and then moves to the smooth part 4 in the cylinder. Due to the frictional resistance, the gap created by the screw flight is narrowed and finally pressure fused. Next, the fusion resin is shaped to the extent that it can maintain its own shape after extrusion while moving through the screw's smooth section, and is extruded from the tip of the cylinder as a continuous thermosetting resin tube 11. The extruded thermosetting resin tube is then introduced into the die of a thermoplastic resin extruder 9 equipped with a crosshead die 14, coated with thermoplastic resin, and extruded into a composite tube. Usually, in the extrusion molding method of thermosetting resin,
The resin heated and melted in the cylinder is introduced into the mold via an adapter and shaped into the final shape. During this process, the flow of resin is constricted by the adapter and flows around the mandrel fixed by the spider. Because the flow path of the resin changes in a complicated way, such as when the resin is re-expanded, it is easy for the resin to stagnate, causing the curing reaction to proceed locally, or to cause the curing reaction to occur rapidly with a slight change in pressure or temperature. causing problems such as In addition, in order to overcome the resistance caused by the complicated flow paths and extrude the resin while preventing stagnation, a large extrusion pressure is required and a special extrusion device is required. However, when using such a molding method, the extrusion speed is about 30 cm/min in height, and it is difficult to obtain a product with good roundness and thickness distribution. On the other hand, according to the method and apparatus described above, the smooth part of the screw and the cylinder part in that part play the role of a mold, and the resin flow path is only the gap between the cylinder and the screw, so that the resin does not accumulate. It does not cause any localized curing reactions or rapid curing reactions due to changes in pressure and temperature. The screw of the present invention has an open tip,
Since it has a pressure increasing function part and a back pressure applying function part over its entire length, the forces of the two cancel each other out, and the force applied to the thrust bearing of the screw is essentially smaller than that in a general molding method using a screw and a mold. In addition, since the smooth part of the screw of the present invention, which corresponds to the mandrel in the mold in general molding methods, is rotating, the frictional resistance between the hardened resin and the metal part is relatively small, and the extrusion pressure is lower than that of normal screw extrusion. The pressure obtained by the machine is sufficient. When such a method of the present invention is used, an extrusion speed of, for example, 80 cm/min can be easily obtained. According to the above-mentioned method and apparatus, the thermosetting resin can be molded continuously and stably and with high productivity using the extrusion pressure obtained by a conventional screw extruder, and the thermoplastic resin can be easily coated. Therefore, it is possible to easily manufacture a composite pipe in which the surface of a thermosetting resin is coated with a thermoplastic resin. The composite tube obtained by the above-mentioned method is cured and shaped by controlling the molding conditions to a point where the thermosetting resin is sufficiently controlled to maintain its own shape at the time the thermosetting resin is extruded. Since curing is sufficiently completed by coating the thermoplastic resin at a temperature higher than the above temperature, phenomena such as deformation, warping, bending, and swelling do not occur. In addition, the resulting composite tube has excellent heat resistance, flame retardancy, and impact resistance, as the inner layer is made of a thermosetting resin with excellent heat resistance and flame retardancy, and the outer layer is made of a thermoplastic resin with excellent impact resistance. It becomes something. As explained above, according to the above-mentioned method and apparatus, a synthetic resin composite pipe having excellent heat resistance, flame retardance, and impact resistance can be easily manufactured with high productivity. The synthetic resin composite pipe of the present invention described above has excellent heat resistance, flame retardance, and impact resistance, and is therefore useful as, for example, electrical equipment or construction and civil engineering materials. The present invention will be further explained below using reference examples and production examples. Reference example 1 An extruder with a diameter of 30 mm and L/D = 22 has a diameter of 26 mm at the tip that follows the measuring section where the screw bottom diameter is 26 mm.
A screw with a compression ratio of 2.0 and a smooth part with a length of 105 mm (3.5D) was used, and the pipe was made using phenol resin (manufactured by Nippon Oil Seal Co., Ltd., trade name Logiyas RX-6684) as the molding material. Continuously extruded. The temperature of each part of the cylinder is set to C 1 (0-2D)...Water-cooled C 2 (3D-10D)...80℃ C3 (11D-18D)...100℃ C4 (19D-22D)...120℃ Then, extrusion molding was performed at a screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 mm and a wall thickness of 2.0 mm. Reference Example 2 A pipe was extrusion-molded using the same extrusion apparatus as in Reference Example 1, using a phenol resin (manufactured by Nippon Gosei Kako Co., Ltd., trade name: Nikalite 950-J) as a molding material. The temperature of each part of the cylinder is C 1 = water cooling, C 2 = 80
℃, C 3 = 110℃, C 4 = 120℃, molding was performed under the conditions of screw rotation speed 35 rpm, outer diameter 30 mm,
A pipe with a wall thickness of 2.0 mm was obtained. Reference Example 3 Using the same extrusion apparatus as in Reference Example 1, a pipe was extrusion-molded using phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name PM-795J) as a molding material. The temperature of each part of the cylinder is C 1 = water cooling, C 2 = 80℃,
Molding was carried out under the conditions of setting C 3 = 105°C and C 4 = 120°C and a screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 mm and a wall thickness of 2.0 mm. Reference example 4 Using an extruder with a diameter of 40 mm and L/D = 24, the diameter of the bottom of the screw is 35 mm, and the diameter is
Using a screw with a 35mm long 3D smooth part,
A pipe was extrusion molded using a phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name PM-795J) as a molding material. The temperature of each part of the cylinder is C 1 = (0~
2D) = water cooling, C2 (3~10D) = 60℃, C3 (11~16D)
= 80℃, C 4 (17~20D) = 110℃, C 5 (21~24D) =
Set at 120℃, screw rotation speed 25rpm, outer diameter 40
A pipe with a wall thickness of 2.5 mm was obtained. Reference Example 5 Using the same extrusion equipment as Reference Example 1, melamine resin (manufactured by Otalite Co., Ltd., product name ON) was used as the molding material.
-600) was used to continuously extrude the pipe. The temperature of each part of the cylinder is C 1 = water cooling, C 2 = 85℃,
Molding was carried out under the conditions of setting C 3 = 115°C and C 4 = 130°C and a screw rotation speed of 35 rpm to obtain a pipe with an outer diameter of 30 mm and a wall thickness of 2.0 mm. Evaluation Results: The results of the compressive strength (direction perpendicular to the pipe axis, direction of the pipe axis, and ratio thereof) and water pressure test of the pipe obtained in the above manufacturing example were as shown in Table 1. Manufacturing example 1 A water cooling jacket is provided at a length of 2D from the bottom of the hopper, followed by thermal control devices at each section of 3 to 9D, 10 to 15D, and 16 to 19D, followed by a thermoplastic jacket at a position 2D from the tip. A coating device (length:
Extruder (A) having a cylinder with a diameter of 40 mm and L/D = 24 (including the coating device part), with a diameter of 35 mm at the feed section 3D, a compression section 12D and the screw bottom.
A screw with a compression ratio of 1.8 (B) that has a smooth part with a diameter of 35 mm and a length of 5 D following a measuring part with a length of mm length 4D, and a screw with a compression ratio of 2.5 inside, a diameter of 30 mm L / D =
A composite tube was formed using a 22 extruder (C). The extruder (C) is connected to the coating device part of the extruder (A) equipped with a screw (B), and the extruder (A) is used as a molding material using phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name:
PM-795J), polyvinyl chloride compound (manufactured by Mitsui Toatsu Chemical Co., Ltd., trade name Viniclon) is used in the extruder (C).
EREK-1015), and the extruder (A)
2D) = water cooling, C2 (3~9D) = 80℃, C3 (10~15D) =
95℃, C4 (16~19D) = 110℃, coating equipment part (20~
24D) = 180℃, screw rotation speed 25rpm, extruder
(C) is C1 (0~2D) = water cooling, C2 (3~9D) = 150℃,
Extrusion was performed under the conditions of C 3 (10 to 16D) = 170℃, C 4 (17 to 22D) = 175℃, adapter = 180℃, screw rotation speed 45 rpm, and the inner layer was a phenolic resin with a diameter of 40 mm and a wall thickness of 2.5 mm. A composite tube with an outer diameter of 41.5 mm and a wall thickness of 4 mm was obtained, the outer layer of which was made of polyvinyl chloride resin with a diameter of 41.5 mm and a wall thickness of 1.5 mm. Manufacturing example 2 A water cooling jacket is provided at a length of 2D from the bottom of the hopper, followed by 3~10D, 11~16D, 17~20D and
Caliber 40mm with thermal control device in each part of 21~24D
With an extruder having L/D=24 cylinders,
Supply section 3D, compression section 15D and screw bottom diameter 35mm, following measuring section with length 3D, diameter 35mm, length
Using a screw with a 3D smooth part, melamine-phenol resin (Matsushita Electric Works Co., Ltd.) was used as the molding material.
The pipe was extruded using a product manufactured by ME-A (trade name: ME-A). The temperature of each part of the cylinder is C 1 (0 to 2D) = water cooling,
C 2 (3~10D) = 60℃, C 3 (11~16D) = 85℃, C 4
(17~20D) = 120℃, C 5 (21~24D) = 130℃, screw rotation speed 25rpm, outer diameter 40mm wall thickness 2.5mm
extruded the pipe. Continuing this pipe as it is, it has a diameter of 30 with a screw with a compression ratio of 3.0.
It was introduced into a crosshead die glued to an extruder with mmL/D=22, and the temperature settings were C 1 = 180°C, C 2 =
Polypropylene resin (manufactured by Mitsui Toatsu Chemical Co., Ltd., trade name: Mitsui Noprene BEB-US) under the conditions of 210℃, C 3 = 220℃, die = 220℃, and screw rotation speed 62 rpm.
is coated with a wall thickness of 1.5mm, and the inner layer has an outer diameter of 40mm and an inner thickness of 2.5mm.
melamine-phenolic resin, outer layer has an outer diameter of 41.5
A composite tube made of polypropylene resin with an outer diameter of 41.5 mm and a wall thickness of 4 mm was obtained. Comparative Example 1 Using the 40 mm extruder and screw used in Example 2, extrusion molding was performed using phenol resin (manufactured by Sumitomo Bakelite Co., Ltd., trade name PM795J) as a molding material. The temperature of each part of the cylinder is C 1
= water cooling, C 2 = 60°C, C 3 = 80°C, C 4 = 110°C, C 5 =
Molding was carried out at a temperature of 120°C and a screw rotation speed of 25 rpm to obtain a phenol pipe with an outer diameter of 40 mm and a wall thickness of 2.5 mm. Table 2 shows the performance measurement results of the tubes obtained in each Example and Comparative Example. These results show that the synthetic resin composite pipe of the present invention has excellent heat resistance, flame resistance, and impact resistance.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、従来の押出成形法によ
り押出成形されたフエノール樹脂管の管軸方向お
よび管軸に直角な方向における夫々の断面の充填
された繊維の形状に関する電子顕微鏡写真であ
り、第3図および第4図は本発明の合成樹脂複合
管の内層を形成するフエノール樹脂管の夫々の繊
維の形状に関する電子顕微鏡写真である。また第
5図、第6図及び第7図は、本発明に用いられる
スクリユーの1例を示す側面図である。第8図は
本発明に於いて熱硬化性樹脂管へ熱可塑性樹脂管
を被覆するのに好ましい装置の1例を示す平面図
であり、第9図は他の1例を示す平面図である。 1……供給部、2……圧縮部、3……計量部、
4……平滑部、5……ホツパー、6……シリンダ
ー、7……ヒーター、8……スクリユー、9……
熱可塑性樹脂用押出機、10……熱可塑性樹脂供
給部、11……熱硬化性樹脂管、12……熱可塑
性樹脂層、13……複合管、14……クロスヘツ
ドダイ。
Figures 1 and 2 are electron micrographs showing the shape of the filled fibers in the cross section of a phenolic resin tube extruded by a conventional extrusion method, in the tube axis direction and in the direction perpendicular to the tube axis, respectively. , 3 and 4 are electron micrographs showing the shape of each fiber of the phenolic resin tube forming the inner layer of the synthetic resin composite tube of the present invention. Moreover, FIGS. 5, 6, and 7 are side views showing one example of the screw used in the present invention. FIG. 8 is a plan view showing one example of an apparatus preferable for coating a thermoplastic resin pipe on a thermosetting resin pipe in the present invention, and FIG. 9 is a plan view showing another example. . 1... Supply section, 2... Compression section, 3... Measuring section,
4...Smooth part, 5...Hopper, 6...Cylinder, 7...Heater, 8...Screw, 9...
Extruder for thermoplastic resin, 10...Thermoplastic resin supply section, 11...Thermosetting resin tube, 12...Thermoplastic resin layer, 13...Composite tube, 14...Crosshead die.

Claims (1)

【特許請求の範囲】[Claims] 1 供給部、圧縮部、計量部及び平滑部を有する
スクリユー、及び、一定の内径を有するシリンダ
ーを備えた押出機を用い、該スクリユー平滑部と
該シリンダー内壁との間隙において賦形され、か
つ、樹脂及びまたは充填物が不規則な方向に配向
し管軸に対し直角方向の圧縮強度と管軸方向の圧
縮強度の比が0.4〜1.5、破壊応力が300〜700Kg/
cm2である熱硬化性樹脂管の表面に熱可塑性樹脂を
被覆してなる合成樹脂複合管。
1 Using an extruder equipped with a screw having a feeding section, a compression section, a measuring section, and a smooth section, and a cylinder having a constant inner diameter, shaping is carried out in the gap between the screw smooth section and the inner wall of the cylinder, and The resin and/or filler is oriented in irregular directions, the ratio of the compressive strength in the direction perpendicular to the tube axis to the compressive strength in the tube axis direction is 0.4 to 1.5, and the breaking stress is 300 to 700 kg/
A synthetic resin composite tube made by coating the surface of a thermosetting resin tube with a thermoplastic resin.
JP59005526A 1984-01-18 1984-01-18 Synthetic resin composite pipe Granted JPS60149448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59005526A JPS60149448A (en) 1984-01-18 1984-01-18 Synthetic resin composite pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59005526A JPS60149448A (en) 1984-01-18 1984-01-18 Synthetic resin composite pipe

Publications (2)

Publication Number Publication Date
JPS60149448A JPS60149448A (en) 1985-08-06
JPH0548169B2 true JPH0548169B2 (en) 1993-07-20

Family

ID=11613631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59005526A Granted JPS60149448A (en) 1984-01-18 1984-01-18 Synthetic resin composite pipe

Country Status (1)

Country Link
JP (1) JPS60149448A (en)

Also Published As

Publication number Publication date
JPS60149448A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
US6783716B2 (en) Nozzle insert for long fiber compounding
EP0123917B1 (en) Method and apparatus for extruding thermosetting resins
US5204039A (en) Extrusion method and extruder used for obtaining phenolic resin pipe
JPH0548169B2 (en)
JPH0510211B2 (en)
JPH0611514B2 (en) Extrusion molding method of thermosetting resin
JPS60110420A (en) Manufacture of synthetic-resin composite pipe and apparatus thereof
JPS6116828A (en) Screw type extruding apparatus for thermosetting resin
JPH0565335B2 (en)
JPH0582285B2 (en)
JPS6141521A (en) Method of extruding thermosetting resin
JPS6095290A (en) Thermosetting resin pipe
JPH0451709B2 (en)
JPH0615195B2 (en) Extrusion molding method for phenolic resin
JPS6176357A (en) Synthetic-resin composite pipe
JPS60101023A (en) Method and device for extrusion of thermosetting resin
JPS6144623A (en) Screw type extrusion molding apparatus of thermosetting resin
JPH0582286B2 (en)
JPH07304086A (en) Method and device for continuously molding hollow rod-shape body of phenolic resin
JPS60101024A (en) Method and device for extruding article formed of thermosetting resin
JPS6144621A (en) Method for extrusion molding of thermosetting resin
JPS6155150A (en) Thermosetting resin molding material
JPS6155151A (en) Thermosetting resin molding material
JPS6155153A (en) Thermosetting resin molding material
JPS6140175B2 (en)