JPH0548165A - Manufacture of superconducting wiring - Google Patents

Manufacture of superconducting wiring

Info

Publication number
JPH0548165A
JPH0548165A JP3226606A JP22660691A JPH0548165A JP H0548165 A JPH0548165 A JP H0548165A JP 3226606 A JP3226606 A JP 3226606A JP 22660691 A JP22660691 A JP 22660691A JP H0548165 A JPH0548165 A JP H0548165A
Authority
JP
Japan
Prior art keywords
superconducting
thin film
substrate
wiring
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3226606A
Other languages
Japanese (ja)
Inventor
Takeshi Sakamoto
健 坂本
Michitomo Iiyama
道朝 飯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3226606A priority Critical patent/JPH0548165A/en
Publication of JPH0548165A publication Critical patent/JPH0548165A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To easily manufacture a superconducting wiring having high performance. CONSTITUTION:A part 20 to be formed with a superconducting wiring of an MgO substrate 3 heated to 600-650 deg.C is irradiated with a CO2 laser beam 15, a temperature of the part is set to 700-750 deg.C, and a Y1Ba2Cu3O7-x oxide superconducting thin film is formed by a sputtering method. A Y1Ba2Cu3O7-x oxide superconducting thin film of c-axis orientation is grown on a part having high substrate temperature to become a superconducting wiring, and a Y1Ba2Cu3 O7-x oxide superconducting thin film of an a-axis orientation is grown on the other part to become an interwiring insularing layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導配線の作製方法
に関する。より詳細には、超電導集積回路等に使用され
る超電導配線を酸化物超電導体により作製する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing superconducting wiring. More specifically, the present invention relates to a method for producing a superconducting wiring used in a superconducting integrated circuit or the like with an oxide superconductor.

【0002】[0002]

【従来の技術】酸化物超電導体の応用の研究の進行によ
り、各種超電導電子装置、超電導素子の実現性が高まっ
てきた。超電導現象を利用した素子は、従来の半導体素
子に比較して高速であり、消費電力も小さく、飛躍的に
素子の高性能化を図ることができると考えられている。
2. Description of the Related Art With the progress of researches on the application of oxide superconductors, the feasibility of various superconducting devices and superconducting elements has increased. It is considered that an element utilizing the superconducting phenomenon is faster than a conventional semiconductor element, consumes less power, and can dramatically improve the performance of the element.

【0003】一方、素子だけでなく、素子間の配線を超
電導化することも装置の高性能化に寄与する。即ち、素
子間の配線に超電導体を使用することにより、信号の伝
搬速度を向上させることができ、また、消費電力を低減
させることが可能になる。さらに、配線部分で熱が発生
しないので、特に超電導素子と組み合わせた場合には、
超電導素子を安定に動作させることが容易になる。
On the other hand, making not only the elements but also the wiring between the elements superconducting also contributes to the high performance of the device. That is, by using a superconductor for the wiring between the elements, the signal propagation speed can be improved and the power consumption can be reduced. Furthermore, since heat is not generated in the wiring part, especially when combined with a superconducting element,
It becomes easy to operate the superconducting element stably.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、酸化物
超電導体を使用した超電導配線を作製する方法として
は、酸化物超電導薄膜をフォトリソグラフィー技術を使
用して加工する方法等が提案されている。しかしなが
ら、酸化物超電導体は比較的反応性が高い物質であるの
で、フォトリソグラフィーによる加工工程で使用される
レジスト、現像剤、剥離剤、エッチング液、エッチング
ガス等と反応して劣化することがある。従って、従来の
方法では特性の優れた超電導配線を酸化物超電導体を使
用して作製することが困難であった。
However, as a method of producing a superconducting wiring using an oxide superconductor, a method of processing an oxide superconducting thin film using a photolithography technique has been proposed. However, since the oxide superconductor is a material having a relatively high reactivity, it may be deteriorated by reacting with a resist, a developer, a stripping agent, an etching solution, an etching gas, etc. used in a processing step by photolithography. .. Therefore, it has been difficult to manufacture a superconducting wire having excellent characteristics by using the conventional method using the oxide superconductor.

【0005】そこで、本発明の目的は、上記従来技術の
問題点を解決し、酸化物超電導体による特性の優れた超
電導配線の作製方法を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a superconducting wiring having excellent characteristics by an oxide superconductor.

【0006】[0006]

【課題を解決するための手段】本発明に従うと、基板上
に酸化物超電導体で構成された超電導配線を作製する方
法において、前記基板の配線間絶縁層が形成される部分
の温度を前記酸化物超電導体のa軸配向の薄膜を形成す
るのに適した温度にし、且つ前記基板の超電導配線が形
成される部分の温度を前記酸化物超電導体のc軸配向の
薄膜を形成するのに適した温度にして、前記基板上に酸
化物超電導体の薄膜を成膜することを特徴とする超電導
配線の作製方法が提供される。
According to the present invention, in a method for producing a superconducting wiring composed of an oxide superconductor on a substrate, the temperature of a portion of the substrate where an inter-wiring insulating layer is formed is changed to the oxidation. Suitable for forming the a-axis oriented thin film of the superconductor, and the temperature of the portion of the substrate where the superconducting wiring is formed is suitable for forming the c-axis oriented thin film of the oxide superconductor. There is provided a method for producing a superconducting wiring, which comprises forming a thin film of an oxide superconductor on the substrate at different temperatures.

【0007】[0007]

【作用】本発明の方法は、基板上に酸化物超電導体によ
る超電導配線を作製する場合に、基板に温度分布を与え
て酸化物超電導薄膜を成膜し、a軸配向の酸化物超電導
薄膜で構成された配線間絶縁層とc軸配向の酸化物超電
導薄膜で構成された超電導配線とを同時に形成する。成
膜時の基板温度により酸化物超電導薄膜を構成する酸化
物超電導体結晶は、特定の配向性を有する。具体的に
は、Y1Ba2Cu37-X酸化物超電導薄膜は、基板温度600
〜 650℃で成膜された場合にa軸配向の酸化物超電導体
結晶で構成された薄膜になり、基板温度700 〜 750℃で
成膜された場合にc軸配向の酸化物超電導体結晶で構成
された薄膜になる。従って、それぞれの配向性の酸化物
超電導薄膜に合った温度分布を基板に与えて成膜を行う
と、基板の各部には、異なる配向性の酸化物超電導薄膜
が成長する。
According to the method of the present invention, when a superconducting wiring made of an oxide superconductor is formed on a substrate, a temperature distribution is given to the substrate to form an oxide superconducting thin film, and the a-axis oriented oxide superconducting thin film is used. The formed inter-wiring insulating layer and the superconducting wiring formed of the c-axis oriented oxide superconducting thin film are simultaneously formed. The oxide superconducting crystal forming the oxide superconducting thin film has a specific orientation depending on the substrate temperature during film formation. Specifically, the Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film has a substrate temperature of 600
~ When formed at 650 ℃, it becomes a thin film composed of a-axis oriented oxide superconductor crystals, and when formed at a substrate temperature of 700 ~ 750 ℃, c-axis oriented oxide superconductor crystals. It becomes a composed thin film. Therefore, when the temperature distribution suitable for the respective oriented oxide superconducting thin films is applied to the substrate to form a film, different oriented oxide superconducting thin films grow on each part of the substrate.

【0008】本発明の方法で作製される超電導配線は、
c軸配向の酸化物超電導薄膜を超電導配線に、a軸配向
の酸化物超電導薄膜を配線間絶縁層に使用している。酸
化物超電導体は、超電導特性に結晶異方性があり、特に
結晶のc軸に垂直な方向の臨界電流密度が大きい。従っ
て、本発明の方法で作製される超電導配線は、酸化物超
電導体結晶のc軸に垂直な方向にのみ超電導電流が流
れ、他の方向では超電導性を失う大きさの電流を流して
使用する。この大きさの電流に対しては、a軸配向の酸
化物超電導薄膜は、絶縁体となる。
The superconducting wiring produced by the method of the present invention is
The c-axis oriented oxide superconducting thin film is used for the superconducting wiring, and the a-axis oriented oxide superconducting thin film is used for the inter-wiring insulating layer. The oxide superconductor has a crystal anisotropy in superconducting properties, and particularly has a large critical current density in a direction perpendicular to the c-axis of the crystal. Therefore, the superconducting wiring produced by the method of the present invention is used by allowing a superconducting current to flow only in a direction perpendicular to the c-axis of the oxide superconductor crystal, and flowing a current of a magnitude that causes loss of superconductivity in the other directions. .. For current of this magnitude, the a-axis oriented oxide superconducting thin film becomes an insulator.

【0009】本発明の方法では、上記基板の温度分布は
成膜終了時まで維持する必要はない。薄膜が5nm程度の
厚さに成長すると、基板温度が一定でもその上に成長す
る薄膜は下層の結晶構造を反映して成長するからであ
る。従って、本発明の方法では、成膜開始時から薄膜が
5nm程度の厚さに成長するまで、上記基板の温度分布を
与え続ければ、その後基板温度を一定にしても、その時
点でa軸配向の酸化物超電導薄膜が成長している部分上
にはa軸配向の酸化物超電導薄膜が、c軸配向の酸化物
超電導薄膜が成長している部分上にはc軸配向の酸化物
超電導薄膜が成長する。従って、必ずしも成膜終了時ま
で前記基板の温度分布を維持する必要がない。
In the method of the present invention, it is not necessary to maintain the temperature distribution of the substrate until the end of film formation. This is because when the thin film grows to a thickness of about 5 nm, the thin film grown on it grows reflecting the crystal structure of the lower layer even if the substrate temperature is constant. Therefore, according to the method of the present invention, if the temperature distribution of the substrate is continuously given from the start of film formation until the thin film grows to a thickness of about 5 nm, even if the substrate temperature is kept constant after that, the a-axis orientation is obtained at that time. A-axis oriented oxide superconducting thin film is formed on the portion where the oxide superconducting thin film is grown, and a c-axis oriented oxide superconducting thin film is formed on the portion where the c-axis oriented oxide superconducting thin film is grown. grow up. Therefore, it is not always necessary to maintain the temperature distribution of the substrate until the end of film formation.

【0010】また、本発明の方法で、a軸配向の酸化物
超電導薄膜で構成された配線間絶縁層とc軸配向の酸化
物超電導薄膜で構成された超電導配線とを同時に形成す
ると、膜厚が増加するにつれてc軸配向の酸化物超電導
薄膜で構成された超電導配線の幅が狭くなる。従って、
基板の超電導配線を形成する部分は、超電導配線の幅よ
りも広い幅でc軸配向の酸化物超電導薄膜が成長する温
度にすることが好ましい。
Further, according to the method of the present invention, when an inter-wiring insulating layer made of an a-axis oriented oxide superconducting thin film and a superconducting wiring made of a c-axis oriented oxide superconducting thin film are simultaneously formed, the film thickness is increased. The width of the superconducting wiring composed of the c-axis oriented oxide superconducting thin film becomes narrower as the value of C increases. Therefore,
The portion of the substrate where the superconducting wiring is formed is preferably at a temperature wider than the width of the superconducting wiring so that the c-axis oriented oxide superconducting thin film grows.

【0011】本発明の方法では、光ビームを使用して基
板に上記の温度分布を与えることが好ましい。即ち、基
板全体をa軸配向の酸化物超電導薄膜が成長する温度に
加熱し、超電導配線を形成する部分に光ビームを照射
し、c軸配向の酸化物超電導薄膜が成長する温度に加熱
することが好ましい。上述のとおり、本発明の方法で
は、基板に温度分布を与えるのは成膜の初期の段階だけ
でもよいので、光ビームを基板に照射して、基板を局所
的に加熱する方法が使用可能である。特に、光ビームで
加熱することが好ましいのは、光ビームを細く絞って走
査することにより、微細な超電導配線も容易に形成でき
るからである。光ビームには、上記の温度分布を基板に
与えることが可能であるならば任意のものが使用可能で
あるが、例えばCO2 レーザは波長が赤外領域であり、
有利である。CO2 レーザを使用する場合、ビーム径
は、10μmφ以下で、その出力は1〜10Wが好ましく、
走査速度は0.2 〜2m/分が好ましい。ビーム速度を速
くすると、温度分布がシャープに形成され、超電導配線
を構成するc軸配向の酸化物超電導薄膜の特性を向上さ
せることができる。
In the method of the present invention, it is preferable to use a light beam to give the above temperature distribution to the substrate. That is, the whole substrate is heated to a temperature at which an a-axis oriented oxide superconducting thin film grows, a part of the superconducting wiring is irradiated with a light beam, and the c-axis oriented oxide superconducting thin film grows to a temperature at which it grows. Is preferred. As described above, in the method of the present invention, it is only necessary to give the temperature distribution to the substrate at the initial stage of film formation. Therefore, a method of locally irradiating the substrate with a light beam can be used. is there. In particular, heating with a light beam is preferable because fine superconducting wiring can be easily formed by narrowing the light beam for scanning. Any light beam can be used as long as it can give the above temperature distribution to the substrate. For example, a CO 2 laser has a wavelength in the infrared region,
It is advantageous. When using a CO 2 laser, the beam diameter is 10 μmφ or less, and its output is preferably 1 to 10 W,
The scanning speed is preferably 0.2 to 2 m / min. When the beam velocity is increased, the temperature distribution is sharply formed, and the characteristics of the c-axis oriented oxide superconducting thin film that constitutes the superconducting wiring can be improved.

【0012】本発明は、任意の酸化物超電導体に適用で
きるが、Y1Ba2Cu37-X系酸化物超電導体は安定的に高
品質の結晶性のよい薄膜が得られるので好ましい。ま
た、Bi2Sr2Ca2Cu3x 系酸化物超電導体は、特にその超
電導臨界温度Tc が高いので好ましい。
The present invention can be applied to any oxide superconductor, but the Y 1 Ba 2 Cu 3 O 7 -X oxide superconductor is preferable because it can stably obtain a high quality thin film with good crystallinity. .. Further, the Bi 2 Sr 2 Ca 2 Cu 3 O x oxide superconductor is particularly preferable because its superconducting critical temperature Tc is high.

【0013】以下、本発明を実施例によりさらに詳しく
説明するが、以下の開示は本発明の単なる実施例に過ぎ
ず、本発明の技術的範囲をなんら制限するものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the following disclosure is merely examples of the present invention and does not limit the technical scope of the present invention.

【0014】[0014]

【実施例】本発明の方法により、超電導配線を作製し
た。図1に、本発明の方法により超電導配線を作製する
装置の一例の概念図を示す。図1の装置は、薄膜を成膜
中の基板にレーザを照射することが可能なスパッタリン
グ装置であり、チャンバ1内の底部および上部にそれぞ
れ対向して配置されている、ターゲット2を搭載するタ
ーゲットホルダ4および基板3を搭載する基板ホルダ5
を具備する。ターゲットホルダ4には高周波電源6が接
続され、基板ホルダ5にはヒータ7が備えられている。
さらに、チャンバ1には、外部から雰囲気ガスを導入す
るガス導入孔8と、排気ポンプ(不図示)に接続されて
いる排気孔9と、光入射窓10とが備えられている。チャ
ンバ1の外部には、CO2 レーザ11と、ミラー12と、レ
ンズ13と、ミラー制御装置14とが備えられ、基板ホルダ
5上に固定された基板3の任意の位置にレーザビーム15
が照射可能に構成されている。
EXAMPLE Superconducting wiring was produced by the method of the present invention. FIG. 1 shows a conceptual diagram of an example of an apparatus for producing superconducting wiring by the method of the present invention. The apparatus shown in FIG. 1 is a sputtering apparatus capable of irradiating a substrate on which a thin film is being formed with a laser, and a target equipped with a target 2 that is arranged to face the bottom and the top of a chamber 1 respectively. Substrate holder 5 on which holder 4 and substrate 3 are mounted
It is equipped with. A high frequency power supply 6 is connected to the target holder 4, and a heater 7 is provided on the substrate holder 5.
Further, the chamber 1 is provided with a gas introduction hole 8 for introducing atmospheric gas from the outside, an exhaust hole 9 connected to an exhaust pump (not shown), and a light incident window 10. A CO 2 laser 11, a mirror 12, a lens 13, and a mirror control device 14 are provided outside the chamber 1, and a laser beam 15 is placed at an arbitrary position on the substrate 3 fixed on the substrate holder 5.
Is configured to be capable of irradiation.

【0015】図2をともに参照して、図1の装置を使用
して本発明の方法で超電導配線を作製する工程を説明す
る。図2は、図1の基板3の近傍を拡大した概念図であ
る。まず、チャンバ1のターゲットホルダ4および基板
ホルダ5にそれぞれターゲット2および基板3を取り付
ける。本実施例では、ターゲット2には、Y:Ba:Cuの
原子比が1:2:3である酸化物を使用し、基板3には
MgO(100)基板を使用した。
Referring to FIG. 2 together, a process of producing superconducting wiring by the method of the present invention using the apparatus of FIG. 1 will be described. FIG. 2 is a conceptual diagram in which the vicinity of the substrate 3 of FIG. 1 is enlarged. First, the target 2 and the substrate 3 are attached to the target holder 4 and the substrate holder 5 of the chamber 1, respectively. In this embodiment, the target 2 is an oxide having an atomic ratio of Y: Ba: Cu of 1: 2: 3, and the substrate 3 is
A MgO (100) substrate was used.

【0016】次にチャンバ1内を高真空に排気して、ガ
ス導入孔8からAr:O2 を体積比で9:1で導入し、内
部の圧力を10Paにした。ヒータ7によりMgO基板3を60
0 〜650℃に加熱し、MgO基板3の超電導配線を形成す
る部分20にCO2 レーザビーム5を走査しながら照射し
てその部分の温度を700 〜 750℃にする。CO2 レーザ
ビーム5の出力は10Wで、10μmφであり、2m/分の
速度で走査した。
Next, the chamber 1 was evacuated to a high vacuum, Ar: O 2 was introduced from the gas introduction hole 8 at a volume ratio of 9: 1, and the internal pressure was adjusted to 10 Pa. The MgO substrate 3 is set to 60 by the heater 7.
It is heated to 0 to 650 ° C., and the portion 20 of the MgO substrate 3 where the superconducting wiring is to be formed is irradiated with the CO 2 laser beam 5 while scanning to bring the temperature of that portion to 700 to 750 ° C. The output of the CO 2 laser beam 5 was 10 W and was 10 μmφ, and scanning was performed at a speed of 2 m / min.

【0017】MgO基板3に上記の温度分布を与えたら、
高周波電源6に通電し、MgO基板3上にY1Ba2Cu37-X
酸化物超電導薄膜の成膜を始める。MgO基板3の基板温
度が低い(600 〜 650℃)な部分には、a軸配向のY1B
a2Cu37-X酸化物超電導薄膜の配線間絶縁層が成長し、
CO2 レーザビームにより基板温度がより高く(700〜
750℃)されている超電導配線を形成する部分20には、
c軸配向のY1Ba2Cu37-X酸化物超電導薄膜が成長す
る。MgO基板3上に薄膜が5nm程度に成長すると、それ
以後成長する薄膜はエピタキシャル成長する。即ち、こ
れ以降はMgO基板3の温度が一様でも、超電導配線を形
成する部分20には、c軸配向のY1Ba2Cu37-X酸化物超
電導薄膜が成長し、他の部分にはa軸配向のY1Ba2Cu3
7-X酸化物超電導薄膜が成長する。従って、薄膜が5n
m程度に成長した時点でCO2 レーザビームの照射を止
めてもよい。その後、薄膜を200 nm程度まで成長させる
と超電導配線が完成する。
When the above-mentioned temperature distribution is given to the MgO substrate 3,
The high frequency power supply 6 is energized, and Y 1 Ba 2 Cu 3 O 7-X is formed on the MgO substrate 3.
The film formation of the oxide superconducting thin film is started. In the part of the MgO substrate 3 where the substrate temperature is low (600 to 650 ° C.), Y 1 B with a-axis orientation is formed.
a 2 Cu 3 O 7-X oxide superconducting thin film of inter-wiring insulating layer has grown,
Substrate temperature higher by CO 2 laser beam (700
750 ℃) in the part 20 that forms the superconducting wiring,
A c-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film grows. When the thin film grows to a thickness of about 5 nm on the MgO substrate 3, the thin film that grows thereafter grows epitaxially. That is, after that, even if the temperature of the MgO substrate 3 is uniform, the c-axis oriented Y 1 Ba 2 Cu 3 O 7-X oxide superconducting thin film grows in the part 20 where the superconducting wiring is formed, and the other part. Is a 1- axis oriented Y 1 Ba 2 Cu 3
An O 7-X oxide superconducting thin film grows. Therefore, the thin film is 5n
Irradiation of the CO 2 laser beam may be stopped at the time when the growth has reached about m. After that, when the thin film is grown to about 200 nm, the superconducting wiring is completed.

【0018】上記本発明の方法で作製した超電導配線
は、超電導配線部分が配線間絶縁層の影響で劣化するこ
となく、また、微細な部分も正確に加工されていた。超
電導配線部分の超電導特性を以下に示す。 臨界温度Tc 85K 臨界電流密度Jc 1.5 ×105 A/cm2
In the superconducting wiring manufactured by the method of the present invention, the superconducting wiring portion was not deteriorated by the influence of the inter-wiring insulating layer, and the fine portion was processed accurately. The superconducting characteristics of the superconducting wiring part are shown below. Critical temperature Tc 85K Critical current density Jc 1.5 × 10 5 A / cm 2

【0019】[0019]

【発明の効果】以上説明したように、本発明に従えば、
酸化物超電導体を使用した超電導配線を作製する方法が
提供される。本発明を超電導電子機器の作製に応用する
ことにより、従来得られなかった高性能な電子装置が作
製可能である。
As described above, according to the present invention,
A method for making a superconducting wire using an oxide superconductor is provided. By applying the present invention to the production of superconducting electronic equipment, it is possible to produce a high-performance electronic device which has never been obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する装置の一例の概略図で
ある。
1 is a schematic view of an example of an apparatus for carrying out the method of the present invention.

【図2】本発明の方法を実施している場合の概念図であ
る。
FIG. 2 is a conceptual diagram when the method of the present invention is implemented.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 ターゲット 3 基板 4 ターゲットホルダ 5 基板ホルダ 11 CO2 レーザ装置1 Chamber 2 Target 3 Substrate 4 Target Holder 5 Substrate Holder 11 CO 2 Laser Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に酸化物超電導体で構成された超
電導配線を作製する方法において、前記基板の配線間絶
縁層が形成される部分の温度を前記酸化物超電導体のa
軸配向の薄膜を形成するのに適した温度にし、且つ前記
基板の超電導配線が形成される部分の温度を前記酸化物
超電導体のc軸配向の薄膜を形成するのに適した温度に
して、前記基板上に酸化物超電導体の薄膜を成膜するこ
とを特徴とする超電導配線の作製方法。
1. A method for producing a superconducting wiring composed of an oxide superconductor on a substrate, wherein the temperature of a portion of the substrate where an inter-wiring insulating layer is formed is set to a.
A temperature suitable for forming an axially oriented thin film, and a temperature suitable for forming a c-axis oriented thin film of the oxide superconductor, the temperature of a portion of the substrate where the superconducting wiring is formed, A method for producing a superconducting wiring, comprising forming a thin film of an oxide superconductor on the substrate.
JP3226606A 1991-08-12 1991-08-12 Manufacture of superconducting wiring Withdrawn JPH0548165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3226606A JPH0548165A (en) 1991-08-12 1991-08-12 Manufacture of superconducting wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3226606A JPH0548165A (en) 1991-08-12 1991-08-12 Manufacture of superconducting wiring

Publications (1)

Publication Number Publication Date
JPH0548165A true JPH0548165A (en) 1993-02-26

Family

ID=16847836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226606A Withdrawn JPH0548165A (en) 1991-08-12 1991-08-12 Manufacture of superconducting wiring

Country Status (1)

Country Link
JP (1) JPH0548165A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251006A (en) * 2009-04-13 2010-11-04 Sumitomo Electric Ind Ltd Superconductive wire, and method for manufacturing superconductive wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251006A (en) * 2009-04-13 2010-11-04 Sumitomo Electric Ind Ltd Superconductive wire, and method for manufacturing superconductive wire

Similar Documents

Publication Publication Date Title
Wellstood et al. Thin‐film multilayer interconnect technology for YBa2Cu3O7− x
JPH0217685A (en) Manufacture of metal oxide superconducting material layer using laser vaporization
EP0698931B1 (en) Method and apparatus for manufacturing superconducting components via laser ablation followed by laser material processing
JPH06500669A (en) Grain boundary bonding in high-temperature superconductor films
JPH1131852A (en) Superconducting device
US5750474A (en) Method for manufacturing a superconductor-insulator-superconductor Josephson tunnel junction
JPH104222A (en) Oxide superconducting element and manufacture thereof
JP2000150974A (en) High-temperature superconducting josephson junction and manufacture thereof
JPH05251771A (en) Artificial grain boundary type josephson junction element and manufacture thereof
EP0382609B1 (en) Method of manufacturing Josephson Junctions
US6074768A (en) Process for forming the oxide superconductor thin film and laminate of the oxide superconductor thin films
JPH06350153A (en) Manufacture of superconducting device
JPH0548165A (en) Manufacture of superconducting wiring
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
KR100372889B1 (en) Ramp edge josephson junction devices and methods for fabricating the same
JPH0548164A (en) Manufacture of superconducting wiring
KR20040105244A (en) Process for producing oxide superconductive thin-film
JPH01224297A (en) Production of metal oxide superconductor material layer
JP2001244511A (en) Method of manufacturing josephson device having ramp edge structure and film-forming device
JP2703403B2 (en) Superconducting wiring fabrication method
JPS63265475A (en) Manufacture of superconducting electronic circuit
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
JP3570418B2 (en) Superconducting device
JPH0563247A (en) Superconducting joint structure and production thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112