JPH0547995B2 - - Google Patents

Info

Publication number
JPH0547995B2
JPH0547995B2 JP60043160A JP4316085A JPH0547995B2 JP H0547995 B2 JPH0547995 B2 JP H0547995B2 JP 60043160 A JP60043160 A JP 60043160A JP 4316085 A JP4316085 A JP 4316085A JP H0547995 B2 JPH0547995 B2 JP H0547995B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
cadmium sulfide
film
electrode
photovoltaic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043160A
Other languages
Japanese (ja)
Other versions
JPS61202478A (en
Inventor
Shinji Minami
Giichi Tanabe
Keishiro Tsuda
Yoshitomo Yonehara
Shoichi Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60043160A priority Critical patent/JPS61202478A/en
Publication of JPS61202478A publication Critical patent/JPS61202478A/en
Publication of JPH0547995B2 publication Critical patent/JPH0547995B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光起電力素子の製造方法に関し、さら
に詳しくは、光電エネルギー変換効率および安定
性に優れた、フタロシアニンを分散質とする光起
電力素子の製造方法に関する。 (従来の技術) 従来、光起電力素子としては、結晶性シリコ
ン、アモルフアスシリコン、GaAs,InP/CdS,
CdS/Cu2S等の無機化合物を用いた素子が知ら
れている。しかしながら、これらの素子は光電エ
ネルギー変換効率が5〜23%と比較的高くても原
料が高価であつたり、製作技術が複雑であつたり
するため、素子も高価にならざるを得なかつた。 そこで安価な材料を用い、しかも大面積化が容
易な光起電力素子を得るために、有機化合物が見
直されつつある。特にフタロシアニン化合物は、
極めて安定な有機化合物であり、また半導性を有
する等の点から、光起電力素子材料として注目さ
れ、多くの報告がなされている。 例えばフタロシアニンの微粒子を高分子化合物
中に分散せしめた光活性層薄膜が光起電力素子と
して有効に使用できることが知られている(米国
特許第4175981号)。この場合、障壁金属としては
アルミニウムを使用し、フタロシアニンとしては
X−型無金属フタロシアニンを用い、そのバイン
ダー用高分子としては暗絶縁性のよいもの、特に
ポリスチレン、ポリアクリロニトリル、ポリ酢酸
ビニル、ポリカーボネート、スチレン−アクリロ
ニトリル共重合体およびポリビニルカルバゾール
が適しているとされている。これらの高分子中
に、X−型無金属フタロシアニンを分散させた薄
膜を用いて形成された光起電力素子は1〜
17μW/cm2の単色入射光に対して、1.4〜4%の光
電エネルギー変換効率を示している。また光電エ
ネルギー変換効率は用いる高分子により劇的には
変化しないと明記されている。ちなみに17μW/
cm2の単色入射光における光電エネルギー変換効率
は2.0〜2.9%である。 また、このようなアルミニウムを障壁金属とし
たフタロシアニン分散型光起電力素子は6μW/
cm2という微弱光照射下では良好な光電エネルギー
変換効率を示すが、光強度の増加に伴い、その光
電エネルギー変換効率は低下し、100mW/cm2
いう強光照射下では0.02%に減少することが報告
されている(R.O.Loutfy、J.H.Sharp、J.Chem.
Phys.71(3)、P1211(1979))。 なお、これらの光電エネルギー変換効率の値
は、アルミニウム電極を透過した光量(アルミニ
ウム電極の光透過率は10〜50%)に対する値であ
り、従つて照射光基準の光電エネルギー変換効率
(ηと略記することもある)の値は、上記の値の
1/10〜1/2となり、光照射下で取り出しうる電力
値は非常に低いものとなる。 さらにアルミニウムを障壁金属とし、X−型無
金属フタロシアニンの樹脂分散膜を光活性層とし
た光起電力素子は、非常に不安定であることが報
告されている(R.O.Loutfy、J.H.Sharp、C.K.
Hsiao、R.Ho、J.Appl.Phys.52(8)、P5218
(1981))。 一方、障壁金属としてインジウムを用いると、
135mW/cm2の光強度でAMOの疑似太陽光を照射
した場合、開放電圧0.45V、短絡電流密度
0.2mA/cm2およびη約0.03%が得られるが、11日
後にその効率は初期値の57%に低下することが報
告されている(Solar Cells,,P331(1982))。 さらにX−型無金属フタロシアニン樹脂分散型
の新規光起電力素子として、n−型半導体を窓材
料として用いるX−型無金属フタロシアニン樹脂
分散型光電変換素子が提案されており(R.O.
Routfy,Y.H.Shing,D.K.Murti,Solar Cells,
5,P331(1982))、硫化カドミウム−X−型無金
属フタロシアニン/ポリエステル分散膜−金とい
うヘテロ接合素子も報告されている。この素子を
用い、開放電圧0.62V、短絡電流密度0.13mA/
cm2およびη0.027%(AMO、87mW/cm2の照射光)
が得られるが、その素子の長期安定性については
全く言及されておらず、わずかに酸化亜鉛をn−
型半導体として用いた素子の長期安定性が優れて
いると報告されているのみである。 以上に述べたように、従来のフタロシアニンを
分散質として利用する光起電力素子は、いずれも
それほど優れた光電エネルギー変換効率が得られ
るものではなかった。 本発明者らは、先に電気的に特異な性質を有す
る高分子化合物、すなわちポリビニリデン系化合
物にX−型無金属フタロシアニンを分散させた膜
を光活性層として用いた光起電力素子が改善され
た光電エネルギー変換効率を有することを見出し
た(特願昭59−59258号)。 さらに本発明者らは、同様の素子において、障
壁電極として鉛または硫化カドミウムを用いるこ
とにより、従来に比して優れた安定性を示すこと
を見出した(特願昭59−123154号)。 (発明が解決しようとする問題点) しかしながら、これらの素子においても後述の
比較例1に示すように、光電エネルギー変換効率
は素子作成後、100日程度は初期値またはそれ以
上の値を示すが、その後は徐々に経時劣化をし、
光起電力素子として使用するには安定性が未だ充
分でないことがわかつた。 本発明の目的は、前記従来技術の欠点である素
子の経時劣化をなくし、安定性のさらに優れた、
フタロシアニンを分散質とする光起電力素子を提
供することにある。 (問題点を解決するための手段) 本発明者らは、上記目的を達成するために、鋭
意研究を行つた結果、障壁電極として、電気化学
的に形成し、かつ加熱処理を施した硫化カドミウ
ム層を用いることにより前記フタロシアニン樹脂
分散型光起電力素子の安定性が格段に高められる
ことを見出し、本発明に到達した。 本発明の製造方法は、フタロシアニンを分散状
態で含有するポリビニリデン系化合物から成るフ
イルムを光活性層とし、これを電気化学的に形成
し、かつ加熱処理した硫化カドミウムの障壁電極
とオーミツク電極とで挟持することを特徴とす
る。 本発明の製造方法によれば、従来の光起電力素
子に比べて容易かつ安価に、さらに安定性が格段
に高められた光起電力素子を提供することができ
る。 本発明の製造方法は、フタロシアニンを分散状
態で含有するポリビニリデン系化合物から成るフ
イルムを光活性層として用いる。 本発明に用いられるフタロシアニンとしては、
種々の既知の金属または無金属フタロシアニンが
挙げられるが、特にX−型無金属フタロシアニン
が好ましい。 ここでX−型無金属フタロシアニンとは、ブラ
ツグ角度において、7.5、9.1、16.7、17.3および
22.3度に強いX線回折図形を有するもので、その
強度比は第4図に示すように必ずしも、米国特許
第3357989号明細書に記載のものと一致するもの
でなくてもよい。第4図中、Aは米国特許第
3357989号明細書から引用したX−型無金属フタ
ロシアニンのX線回折図、B,CおよびDは各種
製法によるX−型無金属フタロシアニンのX線回
折図(いずれも銅Kα)を示す。 また無金属フタロシアニンは市販顔料、その硫
酸処理品または昇華精製品を用いることもできる
が、例えば、ジリチウムフタロシアニンを経由し
た精製法またはJ.Am.Chem.Soc.,103,P4629
(1981)に記載されているフタロシアニンの種々
の錯体を経由した精製法、さらにこれらの方法と
硫酸処理または昇華精製とを併用した方法等によ
り精製を行つて得られる高純度フタロシアニンを
用いることが好ましい。 ここで高純度フタロシアニンとは、好ましくは
純度95%以上、さらに好ましくは97.5%以上のも
のをいう。 X−型無金属フタロシアニンは、上記のごとき
精製法で得られるα−型無金属フタロシアニンに
ボールミル等の機械的エネルギーを加える等の方
法により容易に製造できる。 本発明に用いられるポリビニリデン系化合物と
しては、例えばビニリデンフルオライド、ビニリ
デンクロライド、ビニリデンシアナイド等の重合
体またはこれらと他の共重合成分との共重合体が
挙げられる。これらの(共)重合体はいかなる重
合法により製造されたものでもよく、通常成形材
料として市販されているものをそのまま、または
これらを再沈殿法により精製して使用することが
できる。またポリビニリデンシアナイドまたはそ
の共重合体は、H.Gilbert等のj.Am.Chem.Soc.,
76,P1074(1954),同78,P1669(1956)に記載さ
れている方法等により容易に製造できる。 これらの(共)重合体の重合度は特に制限され
ず、フタロシアニン分散質のバインダーとして機
能すればよく、一般に1000〜5000程度の重合度の
ものが好ましい。これらの(共)重合体を例示す
ると、ポリビニリデンフルオライドとしては、例
えばKF−ポリマー(商品名、呉羽化学工業(株)
製)、Foraflon(商品名、Produits Chimiques社
製)等が、ポリビニリデンクロライドとしては、
例えばサラン(旭化成(株)製、ビニリデンクロライ
ド−ビニルクロライド共重合体の商品名)、ビニ
リデンクロライド−アクリロニトリル共重合体
(Polysciences,Inc製)等が挙げられる。 前記無金属フタロシアニンとポリビニリデン系
化合物との混合割合は、形成される膜厚とも関係
するが、1:4〜4:1の重量割合が好ましい。
フタロシアニン含有量があまり多すぎると形成さ
れる膜の強度が低下し、膜に亀裂が生じ易く、ま
たあまり少なすぎると光電エネルギー変換効率が
悪くなり、実用的でなくなる。特に好ましい重量
割合は2:3〜3:2である。 本発明の製造方法で用いられる溶媒は、ポリビ
ニリデン系化合物を溶解または膨潤しうるもの
で、かつフタロシアニンの結晶形を維持しうるも
のであればよい。ポリビニリデンフルオライドま
たはポリビニリデンシアナイドについては、例え
ばジメチルホルムアミド、ジメチルアセトアミ
ド、テトラメチルウレア等の非プロトン性極性溶
媒が好ましい。またポリビニリデンクロライドに
ついては、例えばシクロヘキサノン、イソホロン
等のカルボニル化合物、N−メチルピロリドン、
テトラメチルウレア等の非プロトン性極性溶媒が
好ましい。またエピクロルヒドリン、ジクロルメ
タン等のハロゲン化物または一般の有機溶媒を希
釈剤として併用することもできる。 本発明において、ポリビニリデン系化合物は光
活性層内でフタロシアニンと何らかの相互作用を
持ち、光電エネルギー変換効率を向上させるもの
であるが、この効率を低下させない範囲内で他の
高分子化合物を添加含有させてもよい。例えばポ
リ酢酸ビニル、ポリアクリロニトリル、ポリエス
テル樹脂、フエノール樹脂、エポキシ樹脂等を、
ポリビニリデン系化合物に対して、好ましくは50
重量%以下の割合で添加することができる。 さらに本発明の製造方法で用いられる光活性層
には、例えば、クマリン6、ローダミン6G、ペ
リレン−9等の色素増感剤、例えばクロラニル、
テトラシアノキノジメタン、トリニトロフルオレ
ノン、ヨウ素等の電子受容性化合物等を添加する
こともできる。 本発明の製造方法で得られる光起電力素子は、
前記光活性層を、障壁電極とオーミック電極とで
挟持して成る構造を有するが、障壁電極として、
電気化学的に形成し、かつ加熱処理を施した硫化
カドミウム障壁電極を用いる限り、その製造工程
には何ら制限はない。 本発明の製造方法では、障壁電極として硫化カ
ドミウム層が用いられる。硫化カドミウム層は、
カドミウム塩と硫黄を溶媒に溶解させた溶液中か
ら電気化学的手法により作用電極上に形成され
る。作用電極としては白金、金等の金属を用いて
もよいが、硫化カドミウム層を窓材料を兼ねて使
用することが好ましいので、作用電極としては透
明導電性膜を用いることが好ましい。このような
透明導電性膜としては、NESA,ITO等の名称で
市販されているものを用いることができる。 上記硫化カドミウム電極の電気化学的形成法と
しては、Baranskiらの方法(J.Electrochem.
Soc.128,963,(1981),J.Appl.Phys.,54,6390
(1983))を用いることができるが、これらの方法
は、硫化カドミウム膜に亀裂が入りやすく、また
電流の流れるピンホールを形成しやすいので、作
用電極に正、負交互に電圧を印加しながら硫化カ
ドミウムを形成させる方法が好ましく用いられ
る。この場合、作用電極に負を印加した際に硫化
カドミウムが形成され、正を印加した時溶出する
ので、負を印加した時に通ずる電気量の絶対値は
正を印加した時のそれより大きくなければならな
い。 硫化カドミウム層を電気化学的に形成させる際
の溶液中の電解質としては、カドミウム塩と硫黄
が使用される。カドミウム塩としてはカドミウム
の鉱酸塩、有機酸塩等、例えば塩化カドミウム、
臭化カドミウム、過塩素酸カドミウム、酢酸カド
ミウム等が好ましく用いられる。該電解質の溶媒
として、該電解質を溶解するものであればよく、
アルコール類、例えばエタノール、エチレングリ
コール、ジエチレングリコール、またはこれらと
水の混合溶液など、非プロトン性極性溶媒、例え
ばジメチルスルフオキシドなどを用いることがで
きる。 硫化カドミウム層の電気化学的形成(電着)は
室温で行つてもよいが、カドミウム塩および硫黄
の溶解度が低く、液抵抗が大きくなるので、加温
下で行なうことが好ましい。 上述のように形成された硫化カドミウム層は次
いで加熱処理され、本発明の硫化カドミウム電極
が形成される。加熱温度は、基板の種類にもよる
が、200〜600℃の範囲が好適である。処理時間に
特に制限はないが、特に0.1〜5時間の範囲が好
ましい。加熱処理の雰囲気も特に制限はないが、
窒素、水素、空気、酸素雰囲気等が使用でき、ま
た真空中で処理してもさしつかえない。 理由は未だ明らかでないが、このような電気化
学的手法により形成し、加熱処理を行つた硫化カ
ドミウム層を障壁電極として用いて構成したフタ
ロシアニン樹脂分散型光起電力素子の安定性は飛
躍的に向上する。 本発明におけるオーミツク電極としては、仕事
関数の大きい金属またはその金属酸化物、例えば
金、銀、白金、銅、酸化スズ、酸化インジウム等
が好ましく用いられる。また導電性ペースト、例
えば銀ペースト、カーボンペースト等を用いるこ
ともできる。 本発明の製造方法で光起電力素子を得るには、
例えばまず前記フタロシアニン1重量部に対し
て、ポリビニリデン系化合物0.25〜4重量部およ
び前記溶媒1〜300重量部を混合し、さらに所望
により、前記の高分子化合物、色素増感剤、電子
受容性化合物等を添加混合する。次いで得られた
混合物を、例えばボールミル、超音波分散、
Spex社製のMixer Mill,ペイントシエーカー、
ジエツトミル等の分散手段により均一に分散した
後、この分散液を前記の硫化カドミウム電極上に
塗布する。上記分散は必要に応じて加熱下にまた
は冷却下に行なうことができる。分散時間は全体
の量、液の粘度、分散温度、分散手段等により変
化するので一概には言えないが、一般に10分間な
いし5時間の範囲が好ましい。電極への塗布方法
としては、スピンコーテイング法、アプリケータ
ー法、ワイヤーバー法、ドクターブレード法、ス
クリーン印刷法等の種々の方法を用いることがで
きる。電極への塗布は、乾燥時の膜厚が好ましく
は0.05〜50μm、特に好ましくは0.1〜10μmとなる
ように塗布する。 次いでこれを乾燥した後、オーミツク電極を真
空蒸着、スパツタリング等の手法により形成す
る。 本発明の製造方法で得られる光起電力素子の構
造の一例を、そのエネルギー変換効率測定系とと
もに、第1図に示す。 この系は、フタロシアニン粒子1を含有するポ
リビニリデン系化合物2からなる光活性層と、こ
れを挟持する硫化カドミウム障壁電極3を有する
透明導電膜(ITO)4および導電膜電極(オーミ
ツク電極)6と、透明導電膜(ITO)4の外側に
密着して設けられたガラス基板5と、各電極3,
6に設けられたリード端子(銀ペースト)7およ
び7′と、該端子7,7′と負荷抵抗9を連結する
リード線8,8′と、該負荷抵抗9をバイパスす
る回路に設けられたエレクトロメータ(電圧計)
10から構成されている。図の中央上部の矢印で
示す方向に光を照射するとき、素子により光エネ
ルギーが電気エネルギーに変換され、その電圧変
化が電圧計10より測定される。 光起電力素子の光電エネルギー変換効率(照射
光基準)nは、光照射量と負荷抵抗両端の電圧変
化を測定し、その際負荷抵抗を便宜選ぶことによ
り見出される、開放電圧(Voc),短絡電流密度
(Jsc)および曲線因子を用いて次式により算出さ
れる。 η=Voc×Jsc×FF/Pi×100(%) (FFは曲線因子、Piは単位面積当たりの照射光
エネルギーである) (発明の効果) 本発明の光起電力素子の製造方法によれば、フ
タロシアニンを分散質、およびポリビニリデン系
化合物をバインダーとして用い、しかも障壁電極
として電気化学的に形成され、かつ下熱処理され
た硫化カドミウム層を用いることにより、従来の
製造方法に比して、光起電力素子の安定性を格段
に向上させることができる。また本発明の製造方
法によれば、安価に大面積のものを容易に製造す
ることができ、また光センサーとして用いること
ができるなど、工業的実用価値の極めて高い光起
電力素子を得ることができる。 (実施例) 以下、本発明を実施例により説明するが、これ
により本発明の範囲が限定されるものではない。 実施例 1 対電極として30mm角の白金板、作用電極として
30mm角のITOガラスを入れた300mフラスコに
0.05Mの塩化カドミウムおよび0.1Mの硫黄を溶
解したジメチルスルフオキシド300mを入れた。
また、参照電極として0.05M塩化カドミウム/ジ
メチルスルフオキシド溶液に浸漬したカドミウム
線を上記電解液中に入れ、素焼板を隔てて作用電
極の前に位置させた。この系を、アルゴンを吹き
込みながら、110℃に加熱した。 次いでフアンクシヨンジエネレータとポテンシ
オガルバノスタツトを用いて作用電極に−3mA
の電流を18秒間、+0.5mAの電流を2秒間与え、
12回繰返すことにより、硫化カドミウム薄膜を
ITOガラス上に形成した。この硫化カドミウム膜
を熱ジメチルスルフオキシドおよびアセトンで洗
浄し、乾燥した後400℃に加熱した電気炉中で1
時間加熱処理を行つた。 X−型無金属フタロシアニンは、高純度a−型
無金属フタロシアニンをボールミルで粉砕して調
整した。 この高純度X−型無金属フタロシアニン30mg、
ポリビニリデンフルオライド20mgおよびテトラメ
チルウレア1.2mlを混合し、−15℃で20分間分散を
行い、スラリーを形成させた。得られたスリラー
をスピンナーヘツド上で固定した上記硫化カドミ
ウム薄膜上に滴下し、スピンナーを800rpmで5
秒間回転させて膜を形成させた。この膜を100℃
で24時間真空乾燥し、溶媒を完全に除去して薄膜
素子を作成した。次いでこの素子膜の上面に金を
真空蒸着してオーミツク電極を形成させて光起電
力素子を得た。この素子を暗所、大気中で保存
し、白色照射下(75.8mW/cm2)での、この素子
の光電エネルギー変換効率(η)を約30日ごとに
180日間に亘つて測定した。こうして得たηの経
時変化を第2図にEX1として示す。 第2図において、ηの初期値は0.070%,180日
後は0.069%であり、ηの経時変化(EX1)がほ
とんど水平で変化していないことから、加熱処理
を行つた硫化カドミウム膜を用いた素子が、長期
に亘つて安定で、ほとんど劣化しないことが分か
る。 これに対して、後記する比較例1で得られた素
子(加熱処理を行つていない硫化カドミウム膜を
用いた素子)の光電エネルギー変換効率ηは経時
変化(CEX1)により、大きく低下しており、
長期に亘る安定性に劣ることがわかる。 実施例 2 実施例1と同様の電気化学的手法でITOガラス
上に形成させた硫化カドミウム薄膜を2枚作成し
た。そのうち1枚を200℃で他の1枚を300℃で1
時間加熱処理を行つた。この2枚の硫化カドミウ
ム膜を用いて、実施例1と同様にして光起電力素
子を得た。 各々の素子を暗所、大気中で保存し、白色光照
射下(75.8mW/cm2)のエネルギー変換効率
(η)を30日ごとに150日間に亘つて測定した。 200℃で加熱処理を行つた硫化カドミウム膜を
用いた素子のηは初期値0.057%、150日後0.059
%であり、300℃で加熱処理を行つた硫化カドミ
ウム膜を用いた素子のηは初期値0.063%,150日
後0.066%と、いずれの場合もηはほとんど変化
しなかつた。 比較例 1 実施例1において、加熱処理をしなかつた硫化
カドミウムを用いた以外は実施例1と同様に光起
電力素子を形成し、エネルギー変換効率の測定を
行つた。180日、暗所、大気中に保存した場合の
ηの経時変化を第2図にCEX1として示す。 第2図において、ηの初期値は0.069%,34日
後は0.084%,180日後は0.054%であり、ηの経
時変化(CEX1)が大きく変化しており、特に
34日後以降の低下が著しいことから、加熱処理を
行つていない硫化カドミウム膜を用いた素子が、
長期に亘る安定性に劣り、劣化し易いことがわか
る。 実施例 3 A.S.Baranski等の報告(J.Electrochem.Soc.,
128(5),P963(1981))に従つて透明導電性膜
(ITO)上に硫化カドミウム膜を厚さ約0.3μmと
なるように電着した。この硫化カドミウム膜を
400℃で1時間加熱処理した。次いでX−型無金
属フタロシアニン30mg、ポリビニリデンフルオラ
イド20mg、テトラメチルウレア0.9mlおよびエピ
クロルヒドリン0.3mlを混合し、−15℃で30分間分
散を行い、スラリーを形成させた。得られたスラ
リーをスピンナーヘツド上に固定した前記硫化カ
ドミウム膜上に滴下し、スピンナーを600rpmで
5秒間回転させて膜を形成させた。この膜を100
℃で24時間真空乾燥し、溶媒を完全に除去して薄
膜素子を作成した。次いでこの素子膜の上面に金
を真空蒸着してオーミツク電極を形成させて光起
電力素子を得た。この光起電力素子に強度
75.8mW/cm2の白色光を照射し、短絡光電流の連
続的経時変化を測定した。この経時変化を第3図
にEX3として示す。 第3図において、短絡光電流の経時変化(EX
3)がほとんど水平で変化していないことから、
加熱処理を行つた硫化カドミウム膜を用いた素子
が、極めて安定で、ほとんど劣化しないことがわ
かる。 これに対して、後記する比較例3で得られた素
子(加熱処理を行つていない硫化カドミウム膜を
用いた素子)では、その短絡光電流の経時変化
(CEX2)が変化して低下が大きいことから、安
定性に劣ることがわかる。 比較例 2 実施例3と同様に電気化学的に硫化カドミウム
膜を0.3μmの厚さにITO上に形成した。 この硫化カドミウム膜をそのまま用い、他は実
施例3と同様にして光起電力素子を得た。この素
子に強度75.8mW/cm2の白色光を照射し、短絡光
電流の経時変化を測定した。 この経時変化を第3図にCEX2として示す。 第3図において、短絡光電流の経時変化
(CEX2)が変化して低下が大きいことから、加
熱処理を行つていない硫化カドミウム膜を用いた
素子が、安定性に劣ることがわかる。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a photovoltaic device, and more specifically, to a method for manufacturing a photovoltaic device, and more specifically, a photovoltaic device using phthalocyanine as a dispersoid, which has excellent photoelectric energy conversion efficiency and stability. The present invention relates to a method for manufacturing an element. (Prior art) Conventionally, photovoltaic elements include crystalline silicon, amorphous silicon, GaAs, InP/CdS,
Elements using inorganic compounds such as CdS/Cu 2 S are known. However, even though these elements have a relatively high photoelectric energy conversion efficiency of 5 to 23%, the raw materials are expensive and the manufacturing technology is complicated, so the elements have to be expensive. Therefore, organic compounds are being reconsidered in order to obtain photovoltaic elements that use inexpensive materials and can easily be made large in area. In particular, phthalocyanine compounds
Because it is an extremely stable organic compound and has semiconductivity, it has attracted attention as a material for photovoltaic devices, and many reports have been made. For example, it is known that a photoactive layer thin film in which fine particles of phthalocyanine are dispersed in a polymer compound can be effectively used as a photovoltaic device (US Pat. No. 4,175,981). In this case, aluminum is used as the barrier metal, X-type metal-free phthalocyanine is used as the phthalocyanine, and the binder polymer is a material with good dark insulation, especially polystyrene, polyacrylonitrile, polyvinyl acetate, polycarbonate, Styrene-acrylonitrile copolymers and polyvinylcarbazole are said to be suitable. Photovoltaic elements formed using thin films in which X-type metal-free phthalocyanine is dispersed in these polymers are
It shows a photoelectric energy conversion efficiency of 1.4 to 4% for monochromatic incident light of 17 μW/cm 2 . It is also specified that the photoelectric energy conversion efficiency does not change dramatically depending on the polymer used. By the way, 17μW/
The photoelectric energy conversion efficiency in monochromatic incident light of cm2 is 2.0-2.9%. In addition, a phthalocyanine-dispersed photovoltaic device using aluminum as a barrier metal has a power output of 6μW/
It shows good photoelectric energy conversion efficiency under weak light irradiation of cm 2 , but as the light intensity increases, the photoelectric energy conversion efficiency decreases to 0.02% under strong light irradiation of 100 mW/cm 2 . have been reported (ROLoutfy, JHSharp, J.Chem.
Phys. 71 (3), P1211 (1979)). These photoelectric energy conversion efficiency values are based on the amount of light transmitted through the aluminum electrode (the light transmittance of the aluminum electrode is 10 to 50%), and therefore the photoelectric energy conversion efficiency (abbreviated as η) based on irradiated light ) is 1/10 to 1/2 of the above value, and the amount of power that can be extracted under light irradiation is extremely low. Furthermore, it has been reported that a photovoltaic device with aluminum as a barrier metal and a resin-dispersed film of X-type metal-free phthalocyanine as a photoactive layer is extremely unstable (ROLoutfy, JHSharp, CK
Hsiao, R.Ho, J.Appl.Phys. 52 (8), P5218
(1981)). On the other hand, when indium is used as the barrier metal,
When irradiated with AMO simulated sunlight at a light intensity of 135mW/ cm2 , the open circuit voltage is 0.45V, and the short circuit current density is
Although 0.2 mA/cm 2 and η about 0.03% are obtained, it is reported that the efficiency decreases to 57% of the initial value after 11 days (Solar Cells, 5 , P331 (1982)). Furthermore, an X-type metal-free phthalocyanine resin-dispersed photovoltaic device using an n-type semiconductor as a window material has been proposed as a new X-type metal-free phthalocyanine resin-dispersed photovoltaic device (RO
Routfy,YHShing,DKMurti,Solar Cells,
5, p. 331 (1982)), and a heterojunction device of cadmium sulfide-X-type metal-free phthalocyanine/polyester dispersion film-gold has also been reported. Using this element, open voltage 0.62V, short circuit current density 0.13mA/
cm 2 and η0.027% (AMO, 87mW/cm 2 irradiation light)
However, there is no mention of the long-term stability of the device, and there is no mention of the long-term stability of the device.
It has only been reported that the long-term stability of devices used as type semiconductors is excellent. As described above, none of the conventional photovoltaic devices using phthalocyanine as a dispersoid has been able to obtain very good photoelectric energy conversion efficiency. The present inventors have previously discovered that a photovoltaic device using a film in which X-type metal-free phthalocyanine is dispersed in a polymer compound with unique electrical properties, that is, a polyvinylidene compound, as a photoactive layer has been improved. It was discovered that the photoelectric energy conversion efficiency was as follows (Japanese Patent Application No. 59-59258). Furthermore, the present inventors have discovered that a similar device exhibits superior stability compared to conventional devices by using lead or cadmium sulfide as a barrier electrode (Japanese Patent Application No. 123154/1982). (Problems to be Solved by the Invention) However, as shown in Comparative Example 1 below, even in these devices, the photoelectric energy conversion efficiency remains at the initial value or higher for about 100 days after device fabrication. , after that, it gradually deteriorates over time,
It was found that the stability was still insufficient for use as a photovoltaic device. The object of the present invention is to eliminate the deterioration of the device over time, which is a drawback of the prior art, and to provide a device with even better stability.
An object of the present invention is to provide a photovoltaic device using phthalocyanine as a dispersoid. (Means for Solving the Problems) In order to achieve the above object, the present inventors conducted intensive research and found that cadmium sulfide, which was formed electrochemically and subjected to heat treatment, was used as a barrier electrode. The inventors have discovered that the stability of the phthalocyanine resin-dispersed photovoltaic device can be significantly improved by using a layer, and have arrived at the present invention. In the manufacturing method of the present invention, a film made of a polyvinylidene compound containing phthalocyanine in a dispersed state is used as a photoactive layer, and this is formed electrochemically, and a heat-treated cadmium sulfide barrier electrode and an ohmic electrode are used. It is characterized by being held in place. According to the manufacturing method of the present invention, it is possible to provide a photovoltaic element that is easier and cheaper than conventional photovoltaic elements, and has significantly improved stability. In the production method of the present invention, a film made of a polyvinylidene compound containing phthalocyanine in a dispersed state is used as a photoactive layer. As the phthalocyanine used in the present invention,
Various known metal or metal-free phthalocyanines may be mentioned, with X-type metal-free phthalocyanine being particularly preferred. Here, the X-type metal-free phthalocyanine means 7.5, 9.1, 16.7, 17.3 and
It has a strong X-ray diffraction pattern at 22.3 degrees, and its intensity ratio does not necessarily match that described in US Pat. No. 3,357,989, as shown in FIG. In Figure 4, A is the US patent number.
X-ray diffraction diagrams of X-type metal-free phthalocyanine cited from No. 3357989, B, C and D show X-ray diffraction diagrams of X-type metal-free phthalocyanine produced by various production methods (all copper Kα). Furthermore, commercially available pigments, their sulfuric acid-treated products, or sublimation-purified products can be used as metal-free phthalocyanine, but, for example, purification via dilithium phthalocyanine or J.Am.Chem.Soc., 103 , P4629
(1981), it is preferable to use high-purity phthalocyanine obtained by purification using various complexes of phthalocyanine, or by a method combining these methods with sulfuric acid treatment or sublimation purification. . Here, high purity phthalocyanine preferably has a purity of 95% or more, more preferably 97.5% or more. X-type metal-free phthalocyanine can be easily produced by applying mechanical energy such as a ball mill to α-type metal-free phthalocyanine obtained by the above purification method. Examples of the polyvinylidene compound used in the present invention include polymers such as vinylidene fluoride, vinylidene chloride, vinylidene cyanide, and copolymers of these and other copolymer components. These (co)polymers may be produced by any polymerization method, and those commercially available as molding materials can be used as they are, or they can be purified by a reprecipitation method and used. Polyvinylidene cyanide or its copolymer is also available from H.Gilbert et al., J.Am.Chem.Soc.
76, P1074 (1954), 78 , P1669 (1956), etc. The degree of polymerization of these (co)polymers is not particularly limited, as long as they function as a binder for the phthalocyanine dispersoid, and those having a degree of polymerization of about 1000 to 5000 are generally preferred. Examples of these (co)polymers include polyvinylidene fluoride such as KF-Polymer (trade name, Kureha Chemical Industry Co., Ltd.).
Polyvinylidene chloride includes Foraflon (trade name, manufactured by Produits Chimiques),
Examples include Saran (trade name of vinylidene chloride-vinyl chloride copolymer, manufactured by Asahi Kasei Corporation), vinylidene chloride-acrylonitrile copolymer (manufactured by Polysciences, Inc.), and the like. The mixing ratio of the metal-free phthalocyanine and the polyvinylidene compound is related to the thickness of the formed film, but a weight ratio of 1:4 to 4:1 is preferable.
If the phthalocyanine content is too high, the strength of the formed film will decrease and cracks will easily occur in the film, and if it is too low, the photoelectric energy conversion efficiency will deteriorate, making it impractical. A particularly preferred weight ratio is 2:3 to 3:2. The solvent used in the production method of the present invention may be any solvent as long as it can dissolve or swell the polyvinylidene compound and maintain the crystalline form of the phthalocyanine. For polyvinylidene fluoride or polyvinylidene cyanide, aprotic polar solvents such as dimethylformamide, dimethylacetamide, tetramethylurea, etc. are preferred. Regarding polyvinylidene chloride, for example, carbonyl compounds such as cyclohexanone and isophorone, N-methylpyrrolidone,
Aprotic polar solvents such as tetramethylurea are preferred. Further, halides such as epichlorohydrin and dichloromethane or general organic solvents can also be used together as diluents. In the present invention, the polyvinylidene compound has some interaction with phthalocyanine in the photoactive layer and improves the photoelectric energy conversion efficiency, but other polymeric compounds may be added within a range that does not reduce this efficiency. You may let them. For example, polyvinyl acetate, polyacrylonitrile, polyester resin, phenolic resin, epoxy resin, etc.
For polyvinylidene compounds, preferably 50
It can be added in a proportion of % by weight or less. Further, in the photoactive layer used in the production method of the present invention, dye sensitizers such as coumarin 6, rhodamine 6G, perylene-9, etc., chloranil,
Electron-accepting compounds such as tetracyanoquinodimethane, trinitrofluorenone, and iodine can also be added. The photovoltaic device obtained by the manufacturing method of the present invention is
It has a structure in which the photoactive layer is sandwiched between a barrier electrode and an ohmic electrode, and as a barrier electrode,
As long as a cadmium sulfide barrier electrode formed electrochemically and subjected to heat treatment is used, there are no restrictions on the manufacturing process. In the manufacturing method of the present invention, a cadmium sulfide layer is used as a barrier electrode. The cadmium sulfide layer is
It is formed on the working electrode by electrochemical techniques from a solution of cadmium salt and sulfur dissolved in a solvent. Although metals such as platinum and gold may be used as the working electrode, it is preferable to use the cadmium sulfide layer also as a window material, so it is preferable to use a transparent conductive film as the working electrode. As such a transparent conductive film, those commercially available under names such as NESA and ITO can be used. The method of electrochemically forming the above-mentioned cadmium sulfide electrode is the method of Baranski et al. (J.Electrochem.
Soc. 128 , 963, (1981), J.Appl.Phys., 54 , 6390
(1983)), but these methods tend to cause cracks in the cadmium sulfide film and form pinholes through which current flows. A method of forming cadmium sulfide is preferably used. In this case, cadmium sulfide is formed when a negative voltage is applied to the working electrode and eluted when a positive voltage is applied, so the absolute value of the amount of electricity that passes when a negative voltage is applied must be larger than that when a positive voltage is applied. It won't happen. Cadmium salt and sulfur are used as electrolytes in the solution when electrochemically forming the cadmium sulfide layer. Cadmium salts include cadmium mineral acid salts, organic acid salts, etc., such as cadmium chloride,
Cadmium bromide, cadmium perchlorate, cadmium acetate, etc. are preferably used. The solvent for the electrolyte may be any solvent that dissolves the electrolyte,
Alcohols such as ethanol, ethylene glycol, diethylene glycol, or mixed solutions of these and water, aprotic polar solvents such as dimethyl sulfoxide, etc. can be used. The electrochemical formation (electrodeposition) of the cadmium sulfide layer may be carried out at room temperature, but it is preferably carried out under heating, since the solubility of cadmium salts and sulfur is low and the liquid resistance increases. The cadmium sulfide layer formed as described above is then heat treated to form the cadmium sulfide electrode of the present invention. The heating temperature is preferably in the range of 200 to 600°C, although it depends on the type of substrate. Although there is no particular restriction on the treatment time, a range of 0.1 to 5 hours is particularly preferred. There are no particular restrictions on the atmosphere for heat treatment, but
Nitrogen, hydrogen, air, oxygen atmosphere, etc. can be used, and processing can also be carried out in vacuum. Although the reason is still unclear, the stability of the phthalocyanine resin-dispersed photovoltaic device, which is formed using such an electrochemical method and heat-treated using a cadmium sulfide layer as a barrier electrode, has been dramatically improved. do. As the ohmic electrode in the present invention, metals having a large work function or metal oxides thereof such as gold, silver, platinum, copper, tin oxide, indium oxide, etc. are preferably used. Further, conductive pastes such as silver paste, carbon paste, etc. can also be used. To obtain a photovoltaic device using the manufacturing method of the present invention,
For example, first, 0.25 to 4 parts by weight of a polyvinylidene compound and 1 to 300 parts by weight of the above solvent are mixed with 1 part by weight of the phthalocyanine, and if desired, the above polymer compound, dye sensitizer, and electron acceptor are added. Compounds, etc. are added and mixed. The resulting mixture is then subjected to, for example, ball milling, ultrasonic dispersion,
Spex Mixer Mill, paint shaker,
After uniformly dispersing using a dispersing means such as a jet mill, this dispersion is applied onto the cadmium sulfide electrode. The above dispersion can be carried out under heating or cooling as required. The dispersion time varies depending on the total amount, the viscosity of the liquid, the dispersion temperature, the dispersion means, etc., so it cannot be stated unconditionally, but it is generally preferably in the range of 10 minutes to 5 hours. Various methods can be used for coating the electrodes, such as spin coating, applicator method, wire bar method, doctor blade method, and screen printing method. The electrode is coated so that the film thickness when dried is preferably 0.05 to 50 μm, particularly preferably 0.1 to 10 μm. Next, after drying this, an ohmic electrode is formed by a method such as vacuum deposition or sputtering. An example of the structure of a photovoltaic device obtained by the manufacturing method of the present invention is shown in FIG. 1 together with its energy conversion efficiency measurement system. This system consists of a photoactive layer made of a polyvinylidene compound 2 containing phthalocyanine particles 1, a transparent conductive film (ITO) 4 having a cadmium sulfide barrier electrode 3 sandwiching the photoactive layer, and a conductive film electrode (ohmic electrode) 6. , a glass substrate 5 provided in close contact with the outside of a transparent conductive film (ITO) 4, and each electrode 3,
Lead terminals (silver paste) 7 and 7' provided in the terminal 6, lead wires 8 and 8' connecting the terminals 7 and 7' and the load resistor 9, and lead wires 8 and 8' provided in the circuit bypassing the load resistor 9. Electrometer (voltmeter)
It consists of 10. When light is irradiated in the direction indicated by the arrow in the upper center of the figure, the element converts the light energy into electrical energy, and the voltage change is measured by the voltmeter 10. The photoelectric energy conversion efficiency (based on irradiated light) n of a photovoltaic element is determined by measuring the amount of light irradiation and the voltage change across the load resistor, and selecting the load resistor accordingly. It is calculated by the following formula using the current density (Jsc) and fill factor. η = Voc × Jsc × FF / Pi × 100 (%) (FF is fill factor, Pi is irradiated light energy per unit area) (Effects of the invention) According to the method for manufacturing a photovoltaic element of the present invention By using phthalocyanine as a dispersoid, a polyvinylidene compound as a binder, and an electrochemically formed cadmium sulfide layer as a barrier electrode, which has been heat-treated, the optical The stability of the electromotive force element can be significantly improved. Furthermore, according to the manufacturing method of the present invention, it is possible to easily manufacture a photovoltaic device with a large area at a low cost, and it can also be used as a photo sensor, making it possible to obtain a photovoltaic device with extremely high industrial practical value. can. (Examples) The present invention will be described below with reference to Examples, but the scope of the present invention is not limited thereby. Example 1 30 mm square platinum plate as counter electrode, working electrode
In a 300m flask containing 30mm square ITO glass.
300 m of dimethyl sulfoxide in which 0.05 M cadmium chloride and 0.1 M sulfur were dissolved was added.
Further, as a reference electrode, a cadmium wire immersed in a 0.05M cadmium chloride/dimethyl sulfoxide solution was placed in the electrolyte and placed in front of the working electrode with a clay plate in between. The system was heated to 110° C. while bubbling with argon. Then -3mA is applied to the working electrode using a function generator and a potentiogalvanostat.
Apply a current of +0.5mA for 2 seconds, and apply a current of +0.5mA for 2 seconds.
By repeating 12 times, a cadmium sulfide thin film is formed.
Formed on ITO glass. This cadmium sulfide film was washed with hot dimethyl sulfoxide and acetone, dried, and then placed in an electric furnace heated to 400°C.
Heat treatment was performed for a period of time. The X-type metal-free phthalocyanine was prepared by grinding high-purity a-type metal-free phthalocyanine using a ball mill. 30 mg of this high purity X-type metal-free phthalocyanine,
20 mg of polyvinylidene fluoride and 1.2 ml of tetramethylurea were mixed and dispersed at -15°C for 20 minutes to form a slurry. The obtained thriller was dropped onto the above cadmium sulfide thin film fixed on the spinner head, and the spinner was rotated at 800 rpm for 5 minutes.
A film was formed by spinning for seconds. This film was heated to 100℃.
The thin film device was then vacuum dried for 24 hours to completely remove the solvent. Next, gold was vacuum-deposited on the upper surface of this device film to form an ohmic electrode to obtain a photovoltaic device. This device was stored in the dark in the air, and the photoelectric energy conversion efficiency (η) of this device under white irradiation (75.8 mW/cm 2 ) was measured approximately every 30 days.
Measurements were made over 180 days. The temporal change in η obtained in this way is shown as EX1 in FIG. 2. In Figure 2, the initial value of η is 0.070%, and after 180 days it is 0.069%, and the change in η over time (EX1) is almost horizontal and does not change. It can be seen that the element is stable over a long period of time and hardly deteriorates. On the other hand, the photoelectric energy conversion efficiency η of the device obtained in Comparative Example 1 (described later) (device using a cadmium sulfide film that was not subjected to heat treatment) decreased significantly due to aging (CEX1). ,
It can be seen that the long-term stability is poor. Example 2 Two cadmium sulfide thin films were formed on ITO glass using the same electrochemical method as in Example 1. One of them was heated to 200℃ and the other one was heated to 300℃.
Heat treatment was performed for a period of time. A photovoltaic device was obtained in the same manner as in Example 1 using these two cadmium sulfide films. Each device was stored in the dark in the air, and the energy conversion efficiency (η) under white light irradiation (75.8 mW/cm 2 ) was measured every 30 days for 150 days. The initial value of η of a device using a cadmium sulfide film heat-treated at 200°C is 0.057% and 0.059 after 150 days.
%, and the η of the element using the cadmium sulfide film heat-treated at 300°C was 0.063% at the initial value and 0.066% after 150 days, with almost no change in η in either case. Comparative Example 1 A photovoltaic device was formed in the same manner as in Example 1 except that cadmium sulfide that was not subjected to heat treatment was used, and the energy conversion efficiency was measured. Figure 2 shows the change in η over time when the sample was stored in the dark in the atmosphere for 180 days as CEX1. In Figure 2, the initial value of η is 0.069%, 0.084% after 34 days, and 0.054% after 180 days, and the change in η over time (CEX1) changes greatly, especially
The decrease was significant after 34 days, indicating that elements using cadmium sulfide films that were not heat-treated
It can be seen that it has poor long-term stability and is prone to deterioration. Example 3 Report by AS Baranski et al. (J.Electrochem.Soc.,
128 (5), P963 (1981)), a cadmium sulfide film was electrodeposited to a thickness of about 0.3 μm on a transparent conductive film (ITO). This cadmium sulfide film
Heat treatment was performed at 400°C for 1 hour. Next, 30 mg of X-type metal-free phthalocyanine, 20 mg of polyvinylidene fluoride, 0.9 ml of tetramethylurea and 0.3 ml of epichlorohydrin were mixed and dispersed at -15°C for 30 minutes to form a slurry. The resulting slurry was dropped onto the cadmium sulfide film fixed on the spinner head, and the spinner was rotated at 600 rpm for 5 seconds to form a film. 100% of this film
The thin film element was prepared by vacuum drying at ℃ for 24 hours to completely remove the solvent. Next, gold was vacuum-deposited on the upper surface of this device film to form an ohmic electrode to obtain a photovoltaic device. This photovoltaic element has strength
White light of 75.8 mW/cm 2 was irradiated, and the continuous change in short-circuit photocurrent over time was measured. This change over time is shown in FIG. 3 as EX3. In Figure 3, the change over time of the short-circuit photocurrent (EX
Since 3) is almost horizontal and does not change,
It can be seen that the device using the heat-treated cadmium sulfide film is extremely stable and hardly deteriorates. On the other hand, in the device obtained in Comparative Example 3 (described later) (device using a cadmium sulfide film that has not been heat-treated), the short-circuit photocurrent changes over time (CEX2) and decreases significantly. This shows that the stability is inferior. Comparative Example 2 As in Example 3, a cadmium sulfide film was electrochemically formed to a thickness of 0.3 μm on ITO. A photovoltaic device was obtained using this cadmium sulfide film as it was, and in the same manner as in Example 3 except for the above. This device was irradiated with white light with an intensity of 75.8 mW/cm 2 and the change in short-circuit photocurrent over time was measured. This change over time is shown in Figure 3 as CEX2. In FIG. 3, it can be seen that the element using a cadmium sulfide film that has not been subjected to heat treatment has inferior stability because the change over time (CEX2) of the short-circuit photocurrent changes and the decrease is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の光起電力素子の構造の一例
とその光電エネルギー変換効率測定系を示す断面
略図、第2図は、実施例1および比較例1で得ら
れた光起電力素子の大気中保存下における光電エ
ネルギー変換効率(白色光照射下で測定)の経時
変化を示す図、第3図は、実施例3および比較例
2で得られた光起電力素子の白色光照射下におけ
る短絡光電流の経時変化を示す図、第4図は、X
−型無金属フタロシアニンのX線回折図(銅Kα)
である。 1……フタロシアニン粒子、2……ポリビニリ
デン系化合物、3……硫化カドミウム膜、4……
透明導電膜(ITO)、5……ガラス基板、6……
導電膜電極(金)、7,7′……銀ペースト、8,
8′……リード線、9……負荷抵抗、10……エ
レクトロメータ。
FIG. 1 is a schematic cross-sectional view showing an example of the structure of the photovoltaic device of the present invention and its photoelectric energy conversion efficiency measurement system, and FIG. 2 is a schematic cross-sectional view of the photovoltaic device obtained in Example 1 and Comparative Example 1. Figure 3 shows the change over time in the photoelectric energy conversion efficiency (measured under white light irradiation) when stored in the atmosphere. Figure 4, a diagram showing the change in short-circuit photocurrent over time, is
-X-ray diffraction diagram of metal-free phthalocyanine (copper Kα)
It is. 1... Phthalocyanine particles, 2... Polyvinylidene compound, 3... Cadmium sulfide film, 4...
Transparent conductive film (ITO), 5...Glass substrate, 6...
Conductive film electrode (gold), 7, 7'...silver paste, 8,
8'... Lead wire, 9... Load resistance, 10... Electrometer.

Claims (1)

【特許請求の範囲】 1 フタロシアニンを分散状態で含有するポリビ
ニリデン系化合物から成るフイルムを光活性層と
し、これを電気科学的に形成し、かつ加熱処理を
施した硫化カドミウム障壁電極とオーミツク電極
とで挟持することを特徴とする光起電力素子の製
造方法。 2 フタロシアニンがX型無金属フタロシアニン
であることを特徴とする特許請求の範囲第1項記
載の光起電力素子の製造方法。 3 硫化カドミウム電極が、200〜600℃の温度で
加熱処理された膜状物であることを特徴とする特
許請求の範囲第1項または第2項記載の光起電力
素子の製造方法。
[Scope of Claims] 1. A cadmium sulfide barrier electrode and an ohmic electrode formed electrochemically using a film made of a polyvinylidene compound containing phthalocyanine in a dispersed state as a photoactive layer and subjected to heat treatment. A method for manufacturing a photovoltaic device, which comprises sandwiching the device between the two. 2. The method for producing a photovoltaic device according to claim 1, wherein the phthalocyanine is an X-type metal-free phthalocyanine. 3. The method for manufacturing a photovoltaic device according to claim 1 or 2, wherein the cadmium sulfide electrode is a film-like material that has been heat-treated at a temperature of 200 to 600°C.
JP60043160A 1985-03-05 1985-03-05 Photovoltaic element Granted JPS61202478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043160A JPS61202478A (en) 1985-03-05 1985-03-05 Photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043160A JPS61202478A (en) 1985-03-05 1985-03-05 Photovoltaic element

Publications (2)

Publication Number Publication Date
JPS61202478A JPS61202478A (en) 1986-09-08
JPH0547995B2 true JPH0547995B2 (en) 1993-07-20

Family

ID=12656113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043160A Granted JPS61202478A (en) 1985-03-05 1985-03-05 Photovoltaic element

Country Status (1)

Country Link
JP (1) JPS61202478A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265421A (en) * 2008-12-23 2011-11-30 索尔维公司 Process for producing a component layer for organic light emitting diodes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310989A (en) * 1976-06-08 1978-01-31 Monosolar Inc Method of producing electrochemically semiconductor photovoltaic cell and photovoltaic generator
JPS5458670A (en) * 1977-10-18 1979-05-11 Mitsubishi Heavy Ind Ltd Cross rolling mill with mandrel exchanger
JPS559497A (en) * 1978-07-03 1980-01-23 Xerox Corp Photovoltaic element
JPS5857758A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Photovoltaic element
JPS59175566A (en) * 1983-03-24 1984-10-04 Rikagaku Kenkyusho Semiconductor electrode covered by film of high molecular compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5310989A (en) * 1976-06-08 1978-01-31 Monosolar Inc Method of producing electrochemically semiconductor photovoltaic cell and photovoltaic generator
JPS5458670A (en) * 1977-10-18 1979-05-11 Mitsubishi Heavy Ind Ltd Cross rolling mill with mandrel exchanger
JPS559497A (en) * 1978-07-03 1980-01-23 Xerox Corp Photovoltaic element
JPS5857758A (en) * 1981-10-01 1983-04-06 Agency Of Ind Science & Technol Photovoltaic element
JPS59175566A (en) * 1983-03-24 1984-10-04 Rikagaku Kenkyusho Semiconductor electrode covered by film of high molecular compound

Also Published As

Publication number Publication date
JPS61202478A (en) 1986-09-08

Similar Documents

Publication Publication Date Title
Benesperi et al. The researcher's guide to solid-state dye-sensitized solar cells
Alhamed et al. Studying of natural dyes properties as photo-sensitizer for dye sensitized solar cells (DSSC)
JP4583025B2 (en) Nanoarray electrode manufacturing method and photoelectric conversion element using the same
Ileperuma et al. Dye-sensitised photoelectrochemical solar cells with polyacrylonitrile based solid polymer electrolytes
US4127738A (en) Photovoltaic device containing an organic layer
EP3565015A1 (en) Solar cell, light-absorbing layer, and method for forming light-absorbing layer
US4585581A (en) Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
US4488943A (en) Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends
JP2000106223A (en) Photoelectric conversion element
Jasim et al. Curcumin dye-sensitized solar cell
CN109065727A (en) A kind of preparation method of perovskite solar battery
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
Licht et al. Fullerene photoelectrochemical solar cells
Ganesan et al. The use of 2, 6-bis (N-pyrazolyl) pyridine as an efficient dopant in conjugation with poly (ethylene oxide) for nanocrystalline dye-sensitized solar cells
JPH0547995B2 (en)
JP2002141115A (en) Photoelectric conversion device, its manufacturing method, and solar battery system
JP2003243053A (en) Manufacturing method for photoelectric transducing device
JPH0691273B2 (en) Photovoltaic device manufacturing method
JPS60149177A (en) Manufacture of photoelectric conversion element
CN1485928A (en) Complete solid state nanocrystalline solar battery and its preparing method
JPH0652800B2 (en) Photovoltaic element
Meyer Solid state nanocrystalline titanium oxide photovoltaic cells
US20060011232A1 (en) Photoelectric transducer
JP2947593B2 (en) Stacked organic solar cells
JPS60201672A (en) Photovoltaic element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term