JPH0547947B2 - - Google Patents

Info

Publication number
JPH0547947B2
JPH0547947B2 JP59041889A JP4188984A JPH0547947B2 JP H0547947 B2 JPH0547947 B2 JP H0547947B2 JP 59041889 A JP59041889 A JP 59041889A JP 4188984 A JP4188984 A JP 4188984A JP H0547947 B2 JPH0547947 B2 JP H0547947B2
Authority
JP
Japan
Prior art keywords
battery
iodine
positive electrode
manufactured
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59041889A
Other languages
Japanese (ja)
Other versions
JPS60189167A (en
Inventor
Hiroshi Sugawa
Sadao Kobayashi
Sadaaki Yamamoto
Ryuichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59041889A priority Critical patent/JPS60189167A/en
Publication of JPS60189167A publication Critical patent/JPS60189167A/en
Publication of JPH0547947B2 publication Critical patent/JPH0547947B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明はヨウ素と錯体付加物を形成する能力の
あるポリマーとヨウ素との付加体および/または
ヨウ素と錯体付加物を形成する能力のあるポリマ
ーにヨウ素を分散せしめた組成物を正極合剤の主
成分として用いると共に該正極合剤に炭素類を分
散せしめた蓄電池に関するものである。
Detailed Description of the Invention The present invention provides a composition comprising an adduct between a polymer capable of forming a complex adduct with iodine and iodine, and/or a composition in which iodine is dispersed in a polymer capable of forming a complex adduct with iodine. This invention relates to a storage battery in which carbon is used as the main component of a positive electrode mixture and carbon is dispersed in the positive electrode mixture.

ヨウ素は陰イオンになり易い物質であり、正極
活物質として適当なものの一つである。このヨウ
素は各種有機化合物と電荷移動錯体を作ることが
知られている。かかるヨウ素の電荷移動錯体はヨ
ウ素(アクセプター)と各種電子供与性化合物
(有機ドナー成分)とよりなり、電子供与性化合
物としてはフエノチアジン、カルバゾール等のヘ
テロ環;ピレン、ペリレン等の多環芳香族化合
物;ポリ−2−ビニルピリジン、ポリエチレン、
ポリプロピレン、ポリスチレン、ポリアミド、ポ
リウレタン、ポリビニルアルコール、ポリアクリ
ルアミド、ポリエーテル、ポリアセチレン、ポリ
パラフエニレン、ポリピロール、ポリアニリン等
の有機ポリマーがある。しかしながら、それにも
かかわらず、ヨウ素を正極活物質として用いた蓄
電池の実用化例はほとんど見られない。この理由
としては、これらヨウ素電荷移動錯体を正極合剤
の主成分として用いた蓄電池の電池性能特性が必
ずしも満足するものではなかつたことがあげられ
る。
Iodine is a substance that easily becomes an anion and is one of the materials suitable as a positive electrode active material. This iodine is known to form charge transfer complexes with various organic compounds. Such an iodine charge transfer complex consists of iodine (acceptor) and various electron-donating compounds (organic donor components), and electron-donating compounds include heterocycles such as phenothiazine and carbazole; polycyclic aromatic compounds such as pyrene and perylene. ; poly-2-vinylpyridine, polyethylene,
Examples include organic polymers such as polypropylene, polystyrene, polyamide, polyurethane, polyvinyl alcohol, polyacrylamide, polyether, polyacetylene, polyparaphenylene, polypyrrole, and polyaniline. However, despite this, there are almost no practical examples of storage batteries using iodine as a positive electrode active material. The reason for this is that the battery performance characteristics of storage batteries using these iodine charge transfer complexes as the main component of the positive electrode mixture were not necessarily satisfactory.

本発明者らはヨウ素を活物質とする蓄電池につ
いて鋭意検討した結果、ヨウ素と錯体付加物を形
成する能力のあるポリマーとヨウ素よりなる正極
合剤に炭素類を分散させることにより電池の出力
及び充放電特性の優れた蓄電池(二次電池)がで
きることを見いだし本発明を完成した。
As a result of intensive studies on storage batteries that use iodine as an active material, the present inventors found that by dispersing carbon in a positive electrode mixture consisting of iodine and a polymer capable of forming a complex adduct with iodine, the output of the battery can be improved. The present invention was completed by discovering that a storage battery (secondary battery) with excellent discharge characteristics can be produced.

すなわち、本発明は、ヨウ素とヨウ素と錯体付
加物を形成する能力のあるポリマーとの錯体付加
物および/または該ポリマーにヨウ素を分散せし
めた組成物を正極合剤の主成分として用いると共
に、該正極合剤に炭素類を分散せしめたことを特
徴とする蓄電池を提供するものである。
That is, the present invention uses a complex adduct of iodine and a polymer capable of forming a complex adduct and/or a composition in which iodine is dispersed in the polymer as the main component of a positive electrode mixture. The present invention provides a storage battery characterized in that carbon is dispersed in a positive electrode mixture.

本発明において、ヨウ素と錯体付加物形成能の
あるポリマーとは前記したもの以外に、ポリアク
リロニトリル、バレツクス樹脂、ポリビニルアル
コール、ポリ酢酸ビニル、ポリメチルメタアクリ
レート、ナイロン−6、ナイロン−6,6、ポリ
ウレタン、ポリテトラメチレンエーテル、ポリビ
ニルピロリドン、ポリ−4−ビニルピリジン、ポ
リ−2−ビニルピリジン、ポリN−ビニルカルバ
ゾール等が特に好ましいが、もちろんこれに限定
されるものではない。
In the present invention, polymers capable of forming complex adducts with iodine include polyacrylonitrile, barrex resin, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate, nylon-6, nylon-6,6, Particularly preferred are polyurethane, polytetramethylene ether, polyvinylpyrrolidone, poly-4-vinylpyridine, poly-2-vinylpyridine, poly-N-vinylcarbazole, etc., but the present invention is not limited thereto.

また、これらは二種以上をブレンドして用いて
もよいしこれらの共重合体を用いてもよいことは
もちろんである。
Moreover, it goes without saying that two or more of these may be used as a blend or a copolymer thereof may be used.

次に本発明に述べる電池の一般的作製法につい
て説明する。まず所定量の前記ヨウ素と錯体付加
物形成能のあるポリマーに炭素類を分散状に含有
せしめる。この炭素類添加方法としてはポリマー
を溶媒に溶かし、このものに炭素類を添加混合
し、しかる後に溶媒を除去する方法、あるいはポ
リマーに直接炭素類を混練分散せしめる方法等が
ある。こうして得られたポリマー炭素複合体にヨ
ウ素を添加する。ヨウ素添加方法としては()
上記のごときポリマー炭素複合体にヨウ素蒸気を
接触させる方法、()ポリマー炭素複合体をヨ
ウ素を含む溶液に浸す方法、()あるいはポリ
マー炭素複合体にヨウ素を練り込む方法等があ
る。なお、ポリマー炭素複合体をあらかじめ作る
代りに所定量のポリマーに炭素類、ヨウ素を同時
に加えて分散状に溶融下混練し、一工程で正極合
剤を作くる方法も採用される。この場合、混練す
るため添加される物質の添加順序もしくは混合順
序は特に制限はない。
Next, a general method for manufacturing the battery described in the present invention will be explained. First, carbon is dispersed in a polymer capable of forming a complex adduct with a predetermined amount of iodine. Methods for adding carbon include a method in which the polymer is dissolved in a solvent, carbon is added and mixed therein, and the solvent is then removed, or a method in which carbon is kneaded and dispersed directly into the polymer. Iodine is added to the polymer carbon composite thus obtained. As for the iodine addition method ()
There are methods such as bringing iodine vapor into contact with the polymer-carbon composite as described above, () immersing the polymer-carbon composite in a solution containing iodine, (2) or kneading iodine into the polymer-carbon composite. Note that instead of preparing the polymer-carbon composite in advance, a method may also be adopted in which carbon and iodine are simultaneously added to a predetermined amount of polymer, and the mixture is melted and kneaded in a dispersed state to prepare the positive electrode mixture in one step. In this case, there are no particular restrictions on the order of addition or mixing of the substances added for kneading.

すなわち、要するに、実質的にポリマーとヨウ
素との錯体付加物および/またはヨウ素の分散組
成物に炭素類が分散せしめられた複合体(正極合
剤)を作ることができればよく、その作製方法は
特に限定されるものではない。もちろんこの作製
方法は正極合剤からすみやかに電気を取りだすた
め正極合剤に集電体を入れるようにする方法も含
まれる。
That is, in short, it is only necessary to make a composite (positive electrode mixture) in which carbon is dispersed in a complex adduct of a polymer and iodine and/or a dispersion composition of iodine. It is not limited. Of course, this manufacturing method also includes a method in which a current collector is placed in the positive electrode mixture in order to quickly extract electricity from the positive electrode mixture.

本発明において正極合剤に添加される炭素類と
してはカーボンブラツク、アセチレンブラツク、
グラフアイト、ケツチエンブラツク(AKZO社
商標)などがあるが粉状、リン片状、短繊維状の
如き分散し易い形状のものが好適に使用される。
炭素類の使用量はもちろん炭素類の種類によつて
異なるが添加すべきポリマーに対して通常は0.5
〜60%(重量%、以下同じ)であり、ケツチエン
ブラツクでは0.5%〜50%であり、グラフアイト
の粉砕品では0.5〜40%である。この値未満では
添加の効果が少くヨウ素含有量の低いところでは
導電率が急激に低下し、また上記の値を越えて使
用しても効果はそれ以上向上しないうえ、成形性
が悪化する。なお、たとえばケツチエンブラツク
では5〜40%がより好ましく10〜30%が特に好ま
しい。
In the present invention, the carbons added to the positive electrode mixture include carbon black, acetylene black,
Examples include graphite and Ketsuen Black (trademark of AKZO), but those in easily dispersible forms such as powder, flakes, and short fibers are preferably used.
The amount of carbon used varies depending on the type of carbon, but it is usually 0.5% of the amount of polymer to be added.
~60% (weight %, same hereinafter), 0.5% to 50% for Ketsuen Black, and 0.5 to 40% for crushed graphite. If it is less than this value, the effect of addition will be small, and the conductivity will drop sharply at low iodine content, and if it is used above the above value, the effect will not improve any further and the moldability will deteriorate. For example, in the case of butcher black, 5 to 40% is more preferable, and 10 to 30% is particularly preferable.

以上の如くして作製した正極合剤を主成分とし
たものを正極とし、またリチウム、アルミニウ
ム、マグネシウム、亜鉛、カドミウム等の金属を
負極として両者を接触させることにより電池が形
成される。なお、湿式の二次電池の場合は、液体
の電解質を介して両活物質を接触させればよい。
もちろん放電によつて生成する電解質のほかに塩
化アンモニウム、塩化ナトリウム、塩化亜鉛、臭
化ナトリウム、臭化カリ、ヨウ化リチウム、ヨウ
化亜鉛等の電解質溶液を補助電解質として使用し
てもよい。さらに自己放電を防ぐため多孔性セパ
レータを両活物質の間にはさみ込むことも好まし
い。
A battery is formed by using a cathode containing the cathode mixture prepared as described above as a main component and a metal such as lithium, aluminum, magnesium, zinc, or cadmium as a negative electrode and bringing them into contact with each other. In addition, in the case of a wet type secondary battery, both active materials may be brought into contact via a liquid electrolyte.
Of course, in addition to the electrolyte produced by discharge, electrolyte solutions such as ammonium chloride, sodium chloride, zinc chloride, sodium bromide, potassium bromide, lithium iodide, and zinc iodide may be used as auxiliary electrolytes. Furthermore, it is also preferable to sandwich a porous separator between both active materials in order to prevent self-discharge.

本発明の蓄電池を形成するには、上記のごとく
して得られたポリマー、炭素、ヨウ素の複合体と
集電体を一体化して形成した電極を正極とし、上
記電池の形成の項で述べた如き金属を負極とし、
さらに負極のそれぞれの金属に対応した金属ヨウ
化物(例えば負極金属が亜鉛)を電解質としてこ
れを組み上げればよい。もちろん必要に応じて補
助電解質を金属ヨウ化物の代りに用いてもよい
し、金属ヨウ化物に補助電解質を加えて用いても
よい。かかる電解質は通常は水に溶解して使用す
るが、場合によつて、例えばリチウムやナトリウ
ムを負極とするような場合は、これをプロピレン
カーボネートやγ−ブチルラクトンのごとき反応
性の少さい溶媒を使用するのが望ましい。また、
これらの溶媒に溶解した金属ヨウ化物は支持体た
るガラス短繊維マツトの如き液体保持量の大きい
多孔性の材料に含浸して使用するのが好ましい。
かかる電解質を含浸せしめた多孔性材料はそのま
ま前記した正極と負極の間にはさみ込んで蓄電池
を組み立てることができるという利点がある。
To form the storage battery of the present invention, an electrode formed by integrating the composite of polymer, carbon, and iodine obtained as described above and a current collector is used as a positive electrode, and the electrode described in the section of forming the battery above is used. The negative electrode is a metal such as
Furthermore, the metal iodide corresponding to each metal of the negative electrode (for example, the negative electrode metal is zinc) may be used as an electrolyte to assemble these. Of course, if necessary, an auxiliary electrolyte may be used instead of the metal iodide, or an auxiliary electrolyte may be added to the metal iodide. Such an electrolyte is normally used dissolved in water, but in some cases, for example when lithium or sodium is used as a negative electrode, it may be dissolved in a less reactive solvent such as propylene carbonate or γ-butyllactone. It is preferable to use Also,
The metal iodide dissolved in these solvents is preferably used by impregnating it into a porous material capable of holding a large amount of liquid, such as short glass fiber mat.
The porous material impregnated with such an electrolyte has the advantage that it can be inserted as it is between the above-mentioned positive electrode and negative electrode to assemble a storage battery.

以上のごとくして形成した蓄電池を放電するこ
とにより、負極では金属イオンが、正極ではヨウ
素イオンがそれぞれ生成し、これが結合して電解
質(放電生成物)たる金属ヨウ化物となるのであ
る。しかして充電時においては該金属ヨウ化物は
金属とヨウ素に分解され、金属は負極に析出し、
一方ヨウ素は再びポリマーを主成分とする正極に
とりこまれて充電状態になるのである。
By discharging the storage battery formed as described above, metal ions are generated at the negative electrode and iodine ions are generated at the positive electrode, and these combine to form metal iodide, which is the electrolyte (discharge product). However, during charging, the metal iodide is decomposed into metal and iodine, and the metal is deposited on the negative electrode.
On the other hand, the iodine is taken up again by the positive electrode, which is mainly made of polymer, and becomes charged.

すなわち、本発明の蓄電池において、充電に際
して直流電圧を印加し、正極側にヨウ素を析出さ
せ、負極側に金属を析出させるようにすると、正
極側で析出したヨウ素は正極主成分のポリマーと
容易に付加体を形成とりこまれる。しかして充電
終了後、直流電圧をきつて両極端子を負荷を介し
て接続することにより放電がおこり該負荷に電力
が得られるのである。
That is, in the storage battery of the present invention, when a DC voltage is applied during charging, iodine is deposited on the positive electrode side and metal is deposited on the negative electrode side, and the iodine deposited on the positive electrode side easily mixes with the polymer that is the main component of the positive electrode. It forms an adduct and is incorporated. After charging is completed, the DC voltage is increased and the two terminals are connected through the load, thereby causing discharge and providing power to the load.

従来、ヨウ素とある種のポリマーの錯体はそれ
ぞれの単体よりはるかに優れた電気伝導性をもつ
物質になることが知られており、例えばポリ−2
−ビニルピリジン、ヨウ素錯体は心臓ペースメー
カー用の一次電池の正極合剤として用いられてい
る。しかしながらこれらの錯体は放電するに従
い、ヨウ素を失なつて導電率が急激に減少し、こ
れを使用した電池の内部抵抗が顕著に増大する欠
点を有している。特にこの錯体を二次電池の正極
合剤に用いた場合は放電により正極合剤中のヨウ
素が極めて少なくなるので放電終了後、この電池
を充電しようとしても電極の導電性は上記のごと
く失なわれているので充電は不可能になる訳であ
る。本発明による正極合剤への炭素類添加は本錯
体二次電池にとつて必須なものである。これによ
つて放電によりむしろ正極合剤の導電率が上がる
ことさえある。
It has been known that complexes of iodine and certain polymers have much better electrical conductivity than either of them alone; for example, poly-2
-Vinylpyridine and iodine complexes are used as a positive electrode mixture for primary batteries for cardiac pacemakers. However, these complexes have the disadvantage that as they are discharged, they lose iodine and their electrical conductivity rapidly decreases, resulting in a marked increase in the internal resistance of a battery using them. In particular, when this complex is used in the positive electrode mixture of a secondary battery, the amount of iodine in the positive electrode mixture becomes extremely low due to discharge, so even if you try to charge the battery after discharge, the conductivity of the electrode will not be lost as described above. This makes charging impossible. Addition of carbon to the positive electrode mixture according to the present invention is essential for the present complex secondary battery. This may even increase the conductivity of the positive electrode mixture due to discharge.

本発明はかかる観点からなされたもので、ヨウ
素と特定のポリマーの錯体付加物および/または
該ポリマーにヨウ素を分散せしめた組成物を正極
合剤の主成分とし、これに炭素類を分散せしめる
ことにより非常に導電性のすぐれた正極合剤とな
すことができるとともに、しかも放電が進行して
も該正極側の内部電気抵抗がほとんど増大せず大
電流が得られるという顕著な作用効果を奏するこ
とができるのである。
The present invention has been made from this point of view, and includes a complex adduct of iodine and a specific polymer and/or a composition in which iodine is dispersed in the polymer as the main component of a positive electrode mixture, and carbons are dispersed therein. It is possible to obtain a cathode mixture with very good conductivity, and also to have the remarkable effect that even when discharge progresses, the internal electrical resistance on the cathode side hardly increases and a large current can be obtained. This is possible.

上記のごとく本発明による正極合剤への炭素類
添加は本錯体二次電池にとつて必須なものであり
これによつて放電によりむしろ正極合剤の導電率
が上がることさえあるのである。
As mentioned above, the addition of carbon to the positive electrode mixture according to the present invention is essential for the present complex secondary battery, and this may even increase the electrical conductivity of the positive electrode mixture due to discharge.

以下実施例によつて本発明の好ましい実施の態
様をさらに具体的に説明するがこれらはあくまで
例示であり、特許法第70条に規定する本発明の技
術的範囲がこれらによつて制限的に解釈されるも
のと解してはならない。
Preferred embodiments of the present invention will be explained in more detail with reference to Examples below, but these are merely illustrative, and the technical scope of the present invention as defined in Article 70 of the Patent Law is not limited by these. shall not be construed as being construed.

実施例 1 組み立てた電池の構成を第1図に示す。Example 1 The configuration of the assembled battery is shown in Figure 1.

ポリアクリロニトリル(平均分子量152000)
300mgを含むDMFに60mgのケツチエン・ブラツク
KB−EC(AKZO社商標)を加えよく分散させた。
このものを直径4.5cmの円盤状炭素繊維(呉羽化
学工業(株)製E−715)に塗布し、DMFを自然蒸発
法により取り除く。さらにヨウ素アセトン溶液に
浸すことによりヨウ素380mgを付加させ、正極1
0として用いた。負極20としては0.3mm厚亜鉛
板(三井金属鉱業(株)製)を用いた。電解液は
NH4Clの1モル/水溶液でこれを2枚のガラ
ス繊維口紙30に2ml含浸させ、その間にセパレ
ータ40として旭硝子(株)製のセレミオンCMV膜
をはさみ込んだ。このものを両極の間に入れ電池
とした。なお、第1図において、50,50′は
支持体、60はパツキン、70はリード線であ
る。実験は窒素気流下25℃で行ない、放電時の初
期短絡電流(Isc)を測定した所、80mA/cm2
あつた。またこの時の開放電圧は1.36Vであつ
た。この電池を2mA定電流の条件下、終止電圧
0.9Vまで放電し、その後終止電圧1.5Vまで充電
する充放電テストをくり返えした。600サイクル
後でもエネルギー効率、電流効率はほとんど変化
せず行なわれた。また初期容量に対して600サイ
クル後の電気容量は87%であつた。このことはこ
の電池が二次電池として実質的に実用レベルにあ
ることを示している。比較の為、ケツチエン・ブ
ラツクKB−ECの添加していない正極合剤を用い
て上記と全く同じ手順で電池を作り、同じ条件下
で評価した。この電池の放電時の初期短絡電流
(Isc)を測定した所、8mA/cm2であつた。また
この時の開放電圧は1.34Vであつた。更に充放電
テストを行なつた所、放電後、充電したが電圧上
昇が激しく、充電できなかつた。
Polyacrylonitrile (average molecular weight 152000)
60mg of Ketuchen Black in DMF containing 300mg
KB-EC (trademark of AKZO) was added and well dispersed.
This material is applied to a disc-shaped carbon fiber (E-715 manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm, and DMF is removed by natural evaporation. Furthermore, 380 mg of iodine was added to the positive electrode 1 by immersing it in an iodine acetone solution.
It was used as 0. As the negative electrode 20, a 0.3 mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.) was used. The electrolyte is
Two glass fiber caps 30 were impregnated with 2 ml of a 1 mol/aqueous solution of NH 4 Cl, and a Selemion CMV membrane manufactured by Asahi Glass Co., Ltd. was sandwiched between them as a separator 40. This material was placed between the two electrodes to form a battery. In FIG. 1, 50 and 50' are supports, 60 is a packing, and 70 is a lead wire. The experiment was conducted at 25° C. under a nitrogen stream, and the initial short circuit current (Isc) during discharge was measured to be 80 mA/cm 2 . Also, the open circuit voltage at this time was 1.36V. The final voltage of this battery under 2mA constant current condition is
A charge/discharge test was repeated in which the battery was discharged to 0.9V and then charged to a final voltage of 1.5V. Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electric capacity after 600 cycles was 87% of the initial capacity. This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made in exactly the same manner as above using a positive electrode mixture without the addition of Kettchen Black KB-EC, and evaluated under the same conditions. The initial short circuit current (Isc) during discharge of this battery was measured and found to be 8 mA/cm 2 . Moreover, the open circuit voltage at this time was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 2 バレツクス樹脂(米国ソハイオ社商標、三井東
圧化学(株)販売、アクリロニトリル、メチルアクリ
レート、ブタジエン共重合、グラフト重合体)
300mgを含むギ酸溶液に60mgのケツチエン・ブラ
ツクKB−EC(AKZO社商標)を加えよく分散さ
せた。このものを、直径4.5cmの円盤状炭素繊維
(呉羽化学工業(株)製E−715)に塗布し、ギ酸を自
然蒸発法により取り除く。これをヨウ素アセトン
溶液に浸すことによりヨウ素380mgを付加させ、
正極として用いた。負極は0.3mm厚亜鉛板(三井
金属鉱業(株)製)を用いた。電解液はNH4Clの1
モル/水溶液でこれを2枚のガラス繊維口紙に
2ml含浸させ、その間にセパレータとして旭硝子
(株)製のセレミオンCMV膜をはさみ込んだ。この
ものを両極の間に入れ電池とした。電池の構成は
実施例1と同様であり、第1図に示す。実験は窒
素気流下25℃で行ない、放電時の初期短絡電流
(Isc)を測定した所、70mA/cm2であつた。また
この時の開放電圧は1.35Vであつた。この電池を
2mA定電流の条件下、終止電圧0.9Vまで放電し、
その後終止電圧1.5Vまで充電する充放電テスト
をくり返した。600サイクル後でもエネルギー効
率、電流効率はほとんど変化せず行なわれた。ま
た初期容量に対して600サイクル後の電気容量は
85%であつた。このことはこの電池が二次電池と
して実質的に実用レベルにあることを示してい
る。比較の為、ケツチエン・ブラツクKB−ECの
添加していない正極合剤を用いて上記と全く同じ
手順で電池を作り、同じ条件下で評価した。この
電池の放電時の初期短絡電流(Isc)を測定した
所、7mA/cm2であつた。またこの時の開放電圧
は1.34Vであつた。更に充放電テストを行なつた
所、放電後、充電したが電圧上昇が激しく、充電
できなかつた。
Example 2 Valex resin (trademark of Sohio, USA, sold by Mitsui Toatsu Chemical Co., Ltd., acrylonitrile, methyl acrylate, butadiene copolymer, graft polymer)
60 mg of Ketchen Black KB-EC (trademark of AKZO) was added to a formic acid solution containing 300 mg and well dispersed. This material is applied to a disk-shaped carbon fiber (E-715 manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm, and formic acid is removed by natural evaporation. By soaking this in an iodine acetone solution, 380 mg of iodine was added.
It was used as a positive electrode. A 0.3 mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.) was used as the negative electrode. The electrolyte is 1 of NH 4 Cl
Impregnate two sheets of glass fiber paper with 2 ml of this mol/aqueous solution, and use Asahi Glass as a separator between them.
A Selemion CMV membrane manufactured by Co., Ltd. was sandwiched. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1, and is shown in FIG. The experiment was conducted at 25° C. under a nitrogen stream, and the initial short circuit current (Isc) during discharge was measured to be 70 mA/cm 2 . Moreover, the open circuit voltage at this time was 1.35V. this battery
Discharge to final voltage 0.9V under 2mA constant current condition,
After that, we repeated charging and discharging tests to charge the battery to a final voltage of 1.5V. Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Also, the electric capacity after 600 cycles is
It was 85%. This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made in exactly the same manner as above using a positive electrode mixture without the addition of Ketsuchen Black KB-EC, and evaluated under the same conditions. The initial short circuit current (Isc) during discharge of this battery was measured and found to be 7 mA/cm 2 . Moreover, the open circuit voltage at this time was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 3 ポリビニルアルコール(クラレ(株)製)270mgと
ポリメラミン樹脂サイメル303(三井東圧化学(株)商
標)30mgを水に溶かし、この水溶液に60mgのケツ
チエン・ブラツクKB−EC(AKZO社商標)を加
えよく分散させた。このものを直径4.5cmの円盤
状炭素繊維(呉羽化学工業(株)製E−715)に塗布
し、水を自然蒸発法で除去し、150℃で40分間熱
処理した。これをヨウ素アセトン溶液に浸すこと
によりヨウ素360mgを付加させ、正極として用い
た。負極は0.3mm厚亜鉛板(三井金属鉱業(株)製)
を用いた。電解液はNH4Clの1モル/水溶液
でこれを2枚のガラス繊維口紙に2ml含浸させ、
その間にセパレータとして旭硝子(株)製のセレミオ
ンCMV膜をはさみ込んだ。このものを両極の間
に入れ電池とした。電池の構成は実施例1と同様
であり、第1図に示す。実験は窒素気流下25℃で
行ない、放電時の初期短絡電流(Isc)を測定し
た所、300mA/cm2であつた。またこの時の開放
電圧は1.36Vであつた。この電池を2mA定電流の
条件下、終止電圧0.9Vまで放電し、その後終止
電圧1.5Vまで充電する充放電テストをくり返え
した。600サイクル後でもエネルギー効率、電流
効率はほとんど率化せず行なわれた。また初期容
量に対して600サイクル後の電気容量は90%であ
つた。このことはこの電池が二次電池として実質
的に実用レベルにあることを示している。比較の
為、ケツチエン・ブラツクKB−ECの添加してい
ない正極合剤を用いて上記と全く同じ手順で電池
を作り、同じ条件下で、評価した。この電池の放
電時の初期短絡電流(Isc)を測定した所、
16mA/cm2であつた。またこの時の開放電圧は
1.34Vであつた。更に充放電テストを行なつた
所、放電後、充電したが電圧上昇が激しく、充電
できなかつた。
Example 3 270 mg of polyvinyl alcohol (manufactured by Kuraray Co., Ltd.) and 30 mg of polymelamine resin Cymel 303 (trademark of Mitsui Toatsu Chemical Co., Ltd.) were dissolved in water, and 60 mg of Ketsutien Black KB-EC (trademark of AKZO Co., Ltd.) was dissolved in this aqueous solution. ) and dispersed well. This material was applied to a disk-shaped carbon fiber (E-715, manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm, water was removed by natural evaporation, and heat treatment was performed at 150° C. for 40 minutes. By immersing this in an iodine acetone solution, 360 mg of iodine was added and used as a positive electrode. The negative electrode is a 0.3mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.)
was used. The electrolyte was a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this was impregnated into two glass fiber openings.
A Selemion CMV membrane manufactured by Asahi Glass Co., Ltd. was sandwiched between them as a separator. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1, and is shown in FIG. The experiment was conducted at 25° C. under a nitrogen stream, and the initial short circuit current (Isc) during discharge was measured to be 300 mA/cm 2 . Also, the open circuit voltage at this time was 1.36V. This battery was discharged to a final voltage of 0.9V under a constant current condition of 2mA, and then charged to a final voltage of 1.5V.Charging and discharging tests were repeated. Even after 600 cycles, the energy efficiency and current efficiency were almost unchanged. Moreover, the electrical capacity after 600 cycles was 90% of the initial capacity. This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made in exactly the same manner as above using a positive electrode mixture without the addition of Ketsuchen Black KB-EC, and evaluated under the same conditions. When we measured the initial short circuit current (Isc) during discharge of this battery, we found that
It was 16mA/ cm2 . Also, the open circuit voltage at this time is
It was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 4 ポリメチルメタクリレート(平均分子量
152000)300mgを含む酢酸エチル溶液に60mgのケ
ツチエン・ブラツクKB−EC(AKZO社商標)を
加えよく分散させた。このものを直径4.5cmの円
盤状炭素繊維(呉羽化学工業(株)製E−715)に塗
布し酢酸エチルを自然蒸発法により取り除く。こ
れをヨウ素アセトン溶液に浸すことによりヨウ素
220mgを付加させ正極として用いた。負極は0.3mm
厚亜鉛板(三井金属鉱業(株)製)を用いた。電解液
はNH4Clの1モル/水溶液でこれを2枚のガ
ラス繊維口紙に2ml含浸さた、その間にセパレー
タとして旭硝子(株)製のセレミオンCMV膜をはさ
み込んだ。このものを両極の間に入れ電池とし
た。電池の構成は実施例1と同様であり、第1図
に示す。実験は窒素気流下25℃で行ない、放電時
の初期短絡電流(Isc)を測定した所、68mA/
cm2であつた。またこの時の開放電圧は1.36Vであ
つた。この電池を2mA定電流の条件下、終止電
圧0.9Vまで放電し、その後終止電圧1.5Vまで充
電する充放電テストをくり返えした。600サイク
ル後でもエネルギー効率、電流効率はほとんど変
化せず行なわれた。また初期容量に対して600サ
イクル後の電気容量は82%であつた。このことは
この電池が二次電池として実質的に実用レベルに
あることを示している。比較の為、ケツチエン・
ブラツクKB−ECの添加していない正極合剤を用
いて上記と全く同じ手順で電池を作り、同じ条件
下で、評価した。この電池の放電時の初期短絡電
流(Isc)を測定した所、7mA/cm2であつた。ま
たこの時の開放電圧は1.34Vであつた。更に充放
電テストを行なつた所、放電後、充電したが電圧
上昇が激しく、充電できなかつた。
Example 4 Polymethyl methacrylate (average molecular weight
152,000) was added to an ethyl acetate solution containing 300 mg of Ketchen Black KB-EC (trademark of AKZO) and well dispersed. This material was applied to a disk-shaped carbon fiber (E-715, manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm, and ethyl acetate was removed by natural evaporation. By soaking this in an iodine acetone solution, iodine is extracted.
220 mg was added and used as a positive electrode. Negative electrode is 0.3mm
A thick zinc plate (manufactured by Mitsui Kinzoku Mining Co., Ltd.) was used. The electrolytic solution was a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this was impregnated into two sheets of glass fiber paper, and a Selemion CMV membrane manufactured by Asahi Glass Co., Ltd. was sandwiched between them as a separator. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1, and is shown in FIG. The experiment was conducted at 25℃ under a nitrogen stream, and the initial short circuit current (Isc) during discharge was measured to be 68mA/
It was warm in cm2 . Also, the open circuit voltage at this time was 1.36V. This battery was discharged to a final voltage of 0.9V under a constant current condition of 2mA, and then charged to a final voltage of 1.5V.Charging and discharging tests were repeated. Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electrical capacity after 600 cycles was 82% of the initial capacity. This shows that this battery is practically at a practical level as a secondary battery. For comparison, Ketuchen
A battery was made in exactly the same manner as above using a positive electrode mixture to which Black KB-EC was not added, and evaluated under the same conditions. The initial short circuit current (Isc) during discharge of this battery was measured and found to be 7 mA/cm 2 . Moreover, the open circuit voltage at this time was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 5 ナイロン−6(東レ(株)製)300mgを含むギ酸溶液
に60mgのケツチエン・ブラツクKB−EC(AKZO
社商標)を加えよく分散させた。このものを直径
4.5cmの円盤状炭素繊維(呉羽化学工業(株)製E−
715)に塗布し、ギ酸を自然蒸発法により取り除
く。これをヨウ素アセトン溶液に浸すことにより
ヨウ素360mgを付加させ、正極として用いた。負
極は0.3mm厚亜鉛板(三井金属鉱業(株)製)を用い
た。電解液はNH4Clの1モル/水溶液でこれ
を2枚のガラス繊維口紙に2ml含浸させ、その間
にセパレーターとして旭硝子(株)製のセレミオン
CMV膜をはさみ込んだ。このものを両極の間に
入れ電池とした。電池の構成は実施例1と同様で
あり第1図に示す。実験は窒素気流下25℃で行な
い。放電時の初期短絡電流(Isc)を測定した所、
71mA/cm2であつた。またこの時の開放電圧は
1.36Vであつた。この電池を2mA定電流の条件
下、終止電圧0.9Vまで放電し、その後終止電圧
1.5Vまで充電する充放電テストをくり返えした。
600サイクル後でもエネルギー効率、電流効率は
ほとんど変化せず行なわれた。また初期容量に対
して、600サイクル後の電気容量は85%であつた。
このことはこの電池が二次電池として実質的に実
用レベルにあることを示している。比較の為、ケ
ツチエン・ブラツクKB−ECの添加していない正
極合剤を用いて上記と全く同じ手順で電池を作
り、同じ条件下で、評価した。この電池の放電時
の初期短絡電流(Isc)を測定した所、10mA/
cm2であつた。またこの時の開放電圧は1.34Vであ
つた。更に充放電テストを行なつた所、放電後、
充電したが電圧上昇が激しく、充電できなかつ
た。
Example 5 A formic acid solution containing 300 mg of nylon-6 (manufactured by Toray Industries, Inc.) was mixed with 60 mg of KETSUCHEN BLACK KB-EC (AKZO).
company trademark) and dispersed well. Diameter of this thing
4.5cm disc-shaped carbon fiber (E- manufactured by Kureha Chemical Industry Co., Ltd.)
715) and remove the formic acid by natural evaporation. By immersing this in an iodine acetone solution, 360 mg of iodine was added and used as a positive electrode. A 0.3 mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.) was used as the negative electrode. The electrolyte is a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this is impregnated onto two sheets of glass fiber paper, and between them, Selemion (manufactured by Asahi Glass Co., Ltd.) is used as a separator.
A CMV membrane was sandwiched. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1 and is shown in FIG. Experiments were conducted at 25°C under nitrogen flow. When we measured the initial short circuit current (Isc) during discharge,
It was 71mA/ cm2 . Also, the open circuit voltage at this time is
It was 1.36V. Discharge this battery under 2mA constant current condition to a final voltage of 0.9V, then
I repeated charging and discharging tests to charge the battery to 1.5V.
Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electric capacity after 600 cycles was 85% of the initial capacity.
This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made in exactly the same manner as above using a positive electrode mixture without the addition of Ketsuchen Black KB-EC, and evaluated under the same conditions. When we measured the initial short circuit current (Isc) during discharge of this battery, it was found to be 10mA/
It was warm in cm2 . Moreover, the open circuit voltage at this time was 1.34V. After further charging and discharging tests, after discharging,
I tried charging it, but the voltage rose so much that I couldn't charge it.

実施例 6 2,4−トリレンジイソシアネートと2,6−
トリレンジイソシアネートの混合物(三井日曹ウ
レタン(株)製TDI−80/20)1.0gに200mgのケツチ
エン・ブラツクKB−ECを含むトリプロピレング
リコール0.9gをよく混合し、ポリウレタン樹脂
組成物を合成した。このポリウレタン樹脂組成物
300mgをフエノールにとかし溶液とした。このも
のを直径4.5cmの円盤状炭素繊維(呉羽化学工業
(株)製E−715)に塗布しフエノールを蒸発法によ
り取り除く。これをヨウ素アセトン溶液に浸すこ
とによりヨウ素120mgを付加させ、正極として用
いた。負極は0.3mm厚亜鉛板(三井金属鉱業(株)製)
を用いた。電解液はNH4Clの1モル/水溶液
でこれを2枚のガラス繊維口紙に2ml含浸させ、
その間にセパレータとして旭硝子(株)製のセレミオ
ンCMV膜をはさみ込んだ。このものを両極の間
に入れ電池とした。電池の構成は実施例1と同様
であり、第1図に示す。実験は窒素気流下25℃で
行ない、放電時の初期短絡電流(Isc)を測定し
た所、42mA/cm2であつた。またこの時の開放電
圧は1.36Vであつた。この電池を2mA定電流の条
件下、終止電圧0.9Vまで放電し、その後終止電
圧1.5Vまで充電する充放電テストをくり返えし
た。600サイクル後でもエネルギー効率、電流効
率はほとんど変化せず行なわれた。また初期容量
に対して600サイクル後の電気容量は87%であつ
た。このことはこの電池が二次電池として実質的
に実用レベルにあることを示している。比較の
為、ケツチエン・ブラツクKB−ECの添加してい
ない正極合剤を用いて上記と全く同じ手順で電池
を作り、同じ条件下で、評価した。この電池の放
電時の初期短絡電流(Isc)を測定した所、
6mA/cm2であつた。またこの時の開放電圧は
1.34Vであつた。更に充放電テストを行なつた
所、放電後、充電したが電圧上昇が激しく、充電
できなかつた。
Example 6 2,4-tolylene diisocyanate and 2,6-
A polyurethane resin composition was synthesized by thoroughly mixing 1.0 g of a mixture of tolylene diisocyanate (TDI-80/20 manufactured by Mitsui Nisso Urethane Co., Ltd.) with 0.9 g of tripropylene glycol containing 200 mg of Ketsutien Black KB-EC. . This polyurethane resin composition
300mg was dissolved in phenol to make a solution. This material is made of disc-shaped carbon fiber with a diameter of 4.5 cm (Kureha Chemical Industry Co., Ltd.)
Co., Ltd. E-715) and remove the phenol by evaporation. By immersing this in an iodine acetone solution, 120 mg of iodine was added and used as a positive electrode. The negative electrode is a 0.3mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.)
was used. The electrolyte was a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this was impregnated into two glass fiber openings.
A Selemion CMV membrane manufactured by Asahi Glass Co., Ltd. was sandwiched between them as a separator. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1, and is shown in FIG. The experiment was conducted at 25° C. under a nitrogen stream, and the initial short circuit current (Isc) during discharge was measured to be 42 mA/cm 2 . Also, the open circuit voltage at this time was 1.36V. This battery was discharged to a final voltage of 0.9V under a constant current condition of 2mA, and then charged to a final voltage of 1.5V.Charging and discharging tests were repeated. Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electric capacity after 600 cycles was 87% of the initial capacity. This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made in exactly the same manner as above using a positive electrode mixture without the addition of Ketsuchen Black KB-EC, and evaluated under the same conditions. When we measured the initial short circuit current (Isc) during discharge of this battery, we found that
It was 6mA/ cm2 . Also, the open circuit voltage at this time is
It was 1.34V. Further, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 7 ポリテトラメチレンエーテル(0.1%ベンゼン
溶液中での還元粘度1.12;大津ら(T.Otsu,
etol),マクロモレクラーレ・ヘミー
(Makromol,Chem).,71 150(1964))300mg
をエチルセルソルブアセテートに溶かし、この溶
液に60mgのケツチエン・ブラツクKB−ECを加え
よく分散させた。このものを直径4.5cmの円盤状
炭素繊維(呉羽化学工業(株)製E−715)に塗布し、
エチルセルソルブアセテートを蒸発法により取り
除く。このものをヨウ素アセトン溶液に浸すこと
によりヨウ素320mg付加させ、正極として用いた。
負極は0.3mm厚亜鉛板(三井金属鉱業(株)製)を用
いた。電解液はNH4Clの1モル/水溶液でこ
れを2枚のガラス繊維口紙に2ml含浸させ、その
間にセパレータとして旭硝子(株)製のセレミオン
CMV膜をはさみ込んだ。このものを両極の間に
入れ電池とした。電池の構成は実施例1と同様で
あり第1図に示す。実験は窒素気流下25℃で行な
い、放電時の初期短絡電理(Isc)を測定した所、
92mA/cm2であつた。またこの時の開放電圧は
1.36Vであつた。この電池を2mA定電流の条件
下、終止電圧0.9Vまで放電し、その後終止電圧
1.5Vまで充電する充放電テストをくり返えした。
600サイクル後でもエネルギー効率、電流効率は
ほとんど変化せず行なわれた。また初期容量に対
して600サイクル後の電気容量は88%であつた。
このことはこの電池が二次電池として実質的に実
用レベルにあることを示している。比較の為、ケ
ツチエン・ブラツクKB−ECの添加していない正
極合剤を用いて上記と全く同じ手順で電池を作
り、同じ条件下、評価した。この電池の放電時の
初期短絡電流(Isc)を測定した所、10mA/cm2
であつた。またこの時の開放電圧は1.34Vであつ
た。更に充放電テストを行なつた所、放電後、充
電したが電圧上昇が激しく、充電できなかつた。
Example 7 Polytetramethylene ether (reduced viscosity 1.12 in 0.1% benzene solution; T. Otsu et al.
etol), Macromol, Chem. , 71 150 (1964)) 300mg
was dissolved in ethyl cellosolve acetate, and 60 mg of Ketchen Black KB-EC was added to this solution and well dispersed. This material was applied to a disc-shaped carbon fiber (E-715 manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm.
Ethyl cell solve acetate is removed by evaporation method. This material was immersed in an iodine acetone solution to add 320 mg of iodine and used as a positive electrode.
A 0.3 mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.) was used as the negative electrode. The electrolyte is a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this is impregnated onto two sheets of glass fiber paper, and between them, Selemion (manufactured by Asahi Glass Co., Ltd.) is used as a separator.
A CMV membrane was sandwiched. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1 and is shown in FIG. The experiment was conducted at 25℃ under a nitrogen stream, and the initial short circuit electric field (Isc) during discharge was measured.
It was 92mA/ cm2 . Also, the open circuit voltage at this time is
It was 1.36V. Discharge this battery under 2mA constant current condition to a final voltage of 0.9V, then
I repeated charging and discharging tests to charge the battery to 1.5V.
Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electric capacity after 600 cycles was 88% of the initial capacity.
This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made in exactly the same manner as above using a positive electrode mixture without the addition of Ketchen Black KB-EC, and evaluated under the same conditions. When I measured the initial short circuit current (Isc) during discharge of this battery, it was 10mA/cm 2
It was hot. Moreover, the open circuit voltage at this time was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 8 ポリビニルピロリドン(平均分子量163000)
300mgを含むテトラハイドロフラン溶液に60mgの
ケツチエン・ブラツクKB−EC(AKZO社商標)
を加えよく分散させた。このものを直径4.5cmの
円盤状炭素繊維(呉羽化学工業(株)製E−715)に
塗布し、テトラハイドロフランを自然蒸発法によ
り取り除く。これをヨウ素アセトン溶液に浸すこ
とによりヨウ素420mgを付加させ、正極として用
いた。負極は0.3mm厚亜鉛板(三井金属鉱業(株)製)
を用いた。電解液はNH4Clの1モル/水溶液
でこれを2枚のガラス繊維口紙に2ml含浸させ、
その間にセパレータとして旭硝子(株)製のセレミオ
ンCMV膜をはさみ込んだ。このものを両極の間
に入れ電池とした。電池の構成は実施例1と同様
であり第1図に示す。実験は窒素気流下25℃で行
ない、放電時の初期短絡電流(Isc)を測定した
所、92mA/cm2であつた。またこの時の開放電圧
は1.36Vであつた。この電池を2mA定電流の条件
下、終止電圧0.9Vまで放電し、その後終止電圧
1.5Vまで充電する充放電テストをくり返えした。
600サイクル後でもエネルギー効率、電流効率は
ほとんど変化せず行なわれた。また初期容量に対
して600サイクル後の電気容量は86%であつた。
このことはこの電池が二次電池として実質的に実
用レベルにあることを示している。比較の為、ケ
ツチエン・ブラツクKB−ECの添加していない正
極合剤を用いて上記と全く同じ手順で電池を作く
り、同じ条件下、評価した。この電池の放電時の
初期短絡電流(Isc)を測定した所、9mA/cm2
あつた。またこの時の開放電圧は1.34Vであつ
た。更に充放電テストを行なつた所、放電後、充
電したが電圧上昇が激しく、充電できなかつた。
Example 8 Polyvinylpyrrolidone (average molecular weight 163000)
60 mg of Ketuchen Black KB-EC (trademark of AKZO) in a solution of 300 mg of tetrahydrofuran
was added and dispersed well. This material is applied to a disk-shaped carbon fiber (E-715, manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm, and tetrahydrofuran is removed by natural evaporation. By immersing this in an iodine acetone solution, 420 mg of iodine was added and used as a positive electrode. The negative electrode is a 0.3mm thick zinc plate (manufactured by Mitsui Mining & Mining Co., Ltd.)
was used. The electrolyte was a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this was impregnated into two glass fiber openings.
A Selemion CMV membrane manufactured by Asahi Glass Co., Ltd. was sandwiched between them as a separator. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1 and is shown in FIG. The experiment was conducted at 25° C. under a nitrogen stream, and the initial short circuit current (Isc) during discharge was measured to be 92 mA/cm 2 . Also, the open circuit voltage at this time was 1.36V. Discharge this battery under 2mA constant current condition to a final voltage of 0.9V, then
I repeated charging and discharging tests to charge the battery to 1.5V.
Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electric capacity after 600 cycles was 86% of the initial capacity.
This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was fabricated using a positive electrode mix without the addition of Ketschien Black KB-EC in exactly the same manner as above and evaluated under the same conditions. The initial short circuit current (Isc) during discharge of this battery was measured and found to be 9 mA/cm 2 . Moreover, the open circuit voltage at this time was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so sharply that we were unable to charge it.

実施例 9 ポリ−2−ビニルピリジン(平均分子量80000)
300mgを含むテトラハイドロフラン溶液に60mgの
ケツチエン・ブラツクKB−EC(AKZO社商標)
を加えよく分散させた。このものを直径4.5cmの
円盤状炭素繊維(呉羽化学工業(株)製E−715)に
塗布しテトラハイドロフランを自然蒸発法により
取り除く。このものをヨウ素アセトン溶液に浸す
ことによりヨウ素430mgを付加させ、正極として
用いた。負極は0.3mm厚亜鉛板(三井金属鉱業(株)
製)を用いた。電解液はNH4Clの1モル/水
溶液でこれを2枚のガラス繊維口紙に2ml含浸さ
せ、その間にセパレータとして旭硝子(株)製のセレ
ミオンCMV膜をはさみ込んだ。このものを両極
の間に入れ電池とした。電池の構成は実施例1と
同様であり第1図に示す。実験は窒素気流下25℃
で行ない、放電時の初期短絡電流(Isc)を測定
した所、95mA/cm2であつた。またこの時の開放
電圧は1.36Vであつた。この電池を2mA定電流の
条件下、終止電圧0.9Vまで放電し、その後終止
電圧1.5Vまで充電する充放電テストをくり返え
した。600サイクル後でもエネルギー効率、電流
効率はほとんど変化せず行なわれた。また初期容
量に対して600サイクル後の電気容量は88%であ
つた。このことはこの電池が二次電池として実質
的に実用レベルにあることを示している。比較の
為、ケツチエン・ブラツクKB−ECの添加してい
ない正極合剤を用いて上記と全く同じ手順で電池
を作くり、同じ条件下、評価した。この電池の放
電時の初期短絡電流(Isc)を測定した所、
10mA/cm2であつた。またこの時の開放電圧は
1.34Vであつた。更に充放電テストを行なつた
所、放電後、充電したが電圧上昇が激しく充電で
きなかつた。
Example 9 Poly-2-vinylpyridine (average molecular weight 80000)
60 mg of Ketuchen Black KB-EC (trademark of AKZO) in a solution of 300 mg of tetrahydrofuran
was added and dispersed well. This material was applied to a disk-shaped carbon fiber (E-715, manufactured by Kureha Chemical Industry Co., Ltd.) with a diameter of 4.5 cm, and tetrahydrofuran was removed by natural evaporation. This material was immersed in an iodine acetone solution to add 430 mg of iodine and used as a positive electrode. The negative electrode is a 0.3mm thick zinc plate (Mitsui Metal Mining Co., Ltd.)
(manufactured by) was used. The electrolytic solution was a 1 mol/aqueous solution of NH 4 Cl, and 2 ml of this was impregnated onto two glass fiber caps, and a Selemion CMV membrane manufactured by Asahi Glass Co., Ltd. was sandwiched between them as a separator. This material was placed between the two electrodes to form a battery. The structure of the battery is the same as in Example 1 and is shown in FIG. Experiments were conducted at 25℃ under nitrogen flow.
When the initial short circuit current (Isc) during discharge was measured, it was 95 mA/cm 2 . Also, the open circuit voltage at this time was 1.36V. A charge/discharge test was repeated in which this battery was discharged to a final voltage of 0.9V under a constant current of 2mA, and then charged to a final voltage of 1.5V. Even after 600 cycles, the energy efficiency and current efficiency remained almost unchanged. Moreover, the electric capacity after 600 cycles was 88% of the initial capacity. This shows that this battery is practically at a practical level as a secondary battery. For comparison, a battery was made using the same procedure as above using a positive electrode mixture without the addition of Ketchen Black KB-EC, and evaluated under the same conditions. When we measured the initial short circuit current (Isc) during discharge of this battery, we found that
It was 10mA/ cm2 . Also, the open circuit voltage at this time is
It was 1.34V. Furthermore, when we conducted a charge/discharge test, we found that after discharging, we charged the battery, but the voltage rose so strongly that we were unable to charge it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の蓄電池の構成の1例を示す正
面図である。
FIG. 1 is a front view showing one example of the configuration of the storage battery of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 ヨウ素とヨウ素と錯体付加物を形成する能力
のあるポリマーとの錯体付加物および/または該
ポリマーにヨウ素を分散せしめた組成物を正極合
剤の主成分として用いると共に、該正極合剤に炭
素類を分散せしめ、これを液体の電解質を介して
金属の負極と接触せしめたことを特徴とする繰り
返し充放電可能な蓄電池。
1. A complex adduct of iodine and a polymer capable of forming a complex adduct and/or a composition in which iodine is dispersed in the polymer is used as the main component of the positive electrode mixture, and carbon is added to the positive electrode mixture. 1. A storage battery that can be repeatedly charged and discharged, characterized by dispersing a metal and bringing it into contact with a metal negative electrode via a liquid electrolyte.
JP59041889A 1984-03-07 1984-03-07 Iodine storage battery Granted JPS60189167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59041889A JPS60189167A (en) 1984-03-07 1984-03-07 Iodine storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59041889A JPS60189167A (en) 1984-03-07 1984-03-07 Iodine storage battery

Publications (2)

Publication Number Publication Date
JPS60189167A JPS60189167A (en) 1985-09-26
JPH0547947B2 true JPH0547947B2 (en) 1993-07-20

Family

ID=12620845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59041889A Granted JPS60189167A (en) 1984-03-07 1984-03-07 Iodine storage battery

Country Status (1)

Country Link
JP (1) JPS60189167A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4998392B2 (en) * 2008-07-09 2012-08-15 株式会社豊田中央研究所 Non-aqueous electrolyte battery
JP5691781B2 (en) * 2011-03-03 2015-04-01 株式会社豊田中央研究所 Non-aqueous electrolyte halogen battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383030A (en) * 1976-12-28 1978-07-22 Japan Storage Battery Co Ltd Solid electrolyte battery
JPS5468933A (en) * 1977-11-10 1979-06-02 Matsushita Electric Ind Co Ltd Lithiummiodine complex body battery
JPS5642961A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Solid electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383030A (en) * 1976-12-28 1978-07-22 Japan Storage Battery Co Ltd Solid electrolyte battery
JPS5468933A (en) * 1977-11-10 1979-06-02 Matsushita Electric Ind Co Ltd Lithiummiodine complex body battery
JPS5642961A (en) * 1979-09-18 1981-04-21 Matsushita Electric Ind Co Ltd Solid electrolyte battery

Also Published As

Publication number Publication date
JPS60189167A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
US6004698A (en) Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection
US3352720A (en) Polymeric depolarizers
US3532543A (en) Battery employing lithium - sulphur electrodes with non-aqueous electrolyte
US4589197A (en) Composite cathode for electrochemical cell
US4622611A (en) Double layer capacitors
Mastragostino et al. Supercapacitors based on composite polymer electrodes
Hashmi et al. Studies on all solid state electric double layer capacitors using proton and lithium ion conducting polymer electrolytes
Osaka et al. Performances of lithium/gel electrolyte/polypyrrole secondary batteries
US4730239A (en) Double layer capacitors with polymeric electrolyte
WO1997003474A1 (en) Zinc-bromine battery with non-flowing electrolyte
US4656105A (en) Iodine cell
CA1226894A (en) Battery having cathode of sheet loaded with graphite and carbon sheet anode
CN111971769A (en) Incorporation of lithium ion source materials into activated carbon electrodes for capacitor-assisted batteries
Passiniemi et al. Critical aspects of organic polymer batteries
JPH0547947B2 (en)
JPS6119074A (en) Iodine battery
JP2819201B2 (en) Lithium secondary battery
Hishinuma et al. Zinc—iodine secondary cell using 6-nylon or poly (ether) based electrode. Basic research for industrial use of the secondary cell
JPS61277156A (en) Zinc iodine secondary cell
JPH0732018B2 (en) Polymer battery
JPH051306B2 (en)
JPS6243081A (en) Zinc-iodine secondary battery
KR890002308B1 (en) Iodine battery
JPS60146459A (en) High output polyamide battery
JPS6243080A (en) Iodine battery