JPH0547938A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH0547938A
JPH0547938A JP20670191A JP20670191A JPH0547938A JP H0547938 A JPH0547938 A JP H0547938A JP 20670191 A JP20670191 A JP 20670191A JP 20670191 A JP20670191 A JP 20670191A JP H0547938 A JPH0547938 A JP H0547938A
Authority
JP
Japan
Prior art keywords
film
opening
insulating film
conductive film
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20670191A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takenaka
信之 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP20670191A priority Critical patent/JPH0547938A/en
Publication of JPH0547938A publication Critical patent/JPH0547938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To provide a wiring connection part of an integrated circuit capable of reducing the area of a connection part and manufacturing cost. CONSTITUTION:A first poly silicon film 26 is connected with an n<+> type diffusion layer 23, via a second poly silicon film 31 formed in the inside of an aperture 29 formed so as to penetrate the first poly silicon film 26. Thereby necessary area can be reduced. Since the aperture 29 and an aperture 28 which connects a second poly silicon film 30 with an n<+> type diffusion layer 24 can be formed by using the same photo mask, manufacturing process can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層配線構造を有する
集積回路の配線間接続部の新規な構造とその製造方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel structure of an interconnection connecting portion of an integrated circuit having a multilayer interconnection structure and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の多層配線を有する集積回路の配線
接続部の構成について種々の方法が知られているが、こ
こでは代表的な2例について図3,図4を参照して説明
する。
2. Description of the Related Art Various methods are known for the structure of a conventional wiring connecting portion of an integrated circuit having multi-layered wiring. Here, two typical examples will be described with reference to FIGS.

【0003】図3に示した従来構造の配線接続部は、P
型シリコン基板1上に形成されたフィールド酸化膜2で
分離されたn+型拡散層3および4と、その上に形成さ
れた第1のCVD酸化膜5と、n+型拡散層3上の第1
のCVD酸化膜5に形成された第1の開孔6と、第1の
CVD酸化膜5上および第1の開孔6中に形成された第
1のポリシリコン膜7と、第1のポリシリコン膜7およ
び第1のCVD酸化膜5上に形成された第2のCVD酸
化膜8と、n+型拡散層4上に形成された第1のCVD
酸化膜5と第2のCVD酸化膜8に堀りこまれた開孔9
と、第1のCVD酸化膜8上および第2の開孔9中に形
成された第2のポリシリコン膜10からなる。図3から
わかるように第1の開孔6を通してn+型拡散層3と第
1ポリシリコン膜7が、また第2の開孔9を通してn+
型拡散層4と第2ポリシリコン膜10が電気的に接続さ
れている。
The wiring connection portion of the conventional structure shown in FIG.
-Type silicon substrate 1 n + -type diffusion layer 3 and 4 separated by formed field oxide film 2 on a first CVD oxide film 5 formed thereon, the n + -type diffusion layer 3 of First
A first opening 6 formed in the CVD oxide film 5, a first polysilicon film 7 formed on and in the first CVD oxide film 5, and a first polysilicon film 7. A second CVD oxide film 8 formed on the silicon film 7 and the first CVD oxide film 5, and a first CVD film formed on the n + -type diffusion layer 4.
Openings 9 in the oxide film 5 and the second CVD oxide film 8
And a second polysilicon film 10 formed on the first CVD oxide film 8 and in the second opening 9. N + -type diffusion layer 3 and the first polysilicon film 7 through the first opening 6, as can be seen from FIG. 3, also through the second opening 9 n +
The type diffusion layer 4 and the second polysilicon film 10 are electrically connected.

【0004】次に、図4に示した従来構造の配線接続部
は、P型シリコン基板1上に形成されたフィールド酸化
膜2で分離されたn+型拡散層3および4と、その上に
形成された第1のCVD酸化膜5と、第1のCVD酸化
膜5上に形成された第1のポリシリコン膜7と、第1の
ポリシリコン膜7上および第1のCVD酸化膜5上に形
成された第2のCVD酸化膜8と、n+型拡散層3およ
び4上の第1のCVD酸化膜5および第2のCVD酸化
膜8に形成された開孔11および9、さらに第1のポリ
シリコン膜7上の第2のCVD酸化膜8に形成された開
口12と、第2のCVD酸化膜8上および開口9,1
1,12中に形成された第2ポリシリコン膜10および
13からなる。図4において、開孔9を通してn+型拡
散層4と第2のポリシリコン膜10が電気的に接続され
ている。また、第1のポリシリコン膜7は、開孔12,
第2のポリシリコン膜13および開孔11を通してn+
型拡散層3と電気的に接続されている。
Next, in the wiring connection portion of the conventional structure shown in FIG. 4, n + type diffusion layers 3 and 4 separated by a field oxide film 2 formed on a P type silicon substrate 1, and on the n + type diffusion layers 3 and 4 are formed. The formed first CVD oxide film 5, the first polysilicon film 7 formed on the first CVD oxide film 5, the first polysilicon film 7 and the first CVD oxide film 5. Of the second CVD oxide film 8 formed on the n + -type diffusion layers 3 and 4 and the openings 11 and 9 formed on the second CVD oxide film 8 and the second CVD oxide film 8 on the n + type diffusion layers 3 and 4, and The opening 12 formed in the second CVD oxide film 8 on the first polysilicon oxide film 7 and the second CVD oxide film 8 and the openings 9, 1
The second polysilicon films 10 and 13 are formed in the first and the second polysilicon films 12, respectively. In FIG. 4, the n + type diffusion layer 4 and the second polysilicon film 10 are electrically connected through the opening 9. The first polysilicon film 7 has openings 12,
N + through the second polysilicon film 13 and the opening 11
It is electrically connected to the mold diffusion layer 3.

【0005】[0005]

【発明が解決しようとする課題】図3に示した従来の配
線接続部の構成では、第1の開孔6と第2の開孔9を形
成するために、2枚のフォトマスクを必要とした。ま
た、図4に示した構成では、開孔9,11および12を
形成するために必要なフォトマスクは1枚であるが、第
1のポリシリコン膜7とn+型拡散層3の接続を第2ポ
リシリコン膜13を介して行なうので、接続部の面積が
大きくなる欠点があった。
In the structure of the conventional wiring connecting portion shown in FIG. 3, two photomasks are required to form the first opening 6 and the second opening 9. did. Further, in the structure shown in FIG. 4, the number of photomasks required to form the openings 9, 11 and 12 is one, but the connection between the first polysilicon film 7 and the n + -type diffusion layer 3 is made. Since it is performed through the second polysilicon film 13, there is a drawback that the area of the connection portion becomes large.

【0006】[0006]

【課題を解決するための手段】本発明は従来技術の持つ
上記課題を解決するためになされたものであり、まず、
半導体基板上に、第1の導電膜、第1の絶縁膜、第2の
導電膜および第2の絶縁膜が順次積層に形成され、次に
同第2の絶縁膜から第2の導電膜および第1の絶縁膜を
貫通して第1の導電膜まで至る開孔が形成され、さらに
同開孔内部には第3の導電膜が形成されている半導体装
置である。
The present invention has been made to solve the above problems of the prior art.
A first conductive film, a first insulating film, a second conductive film, and a second insulating film are sequentially stacked on a semiconductor substrate, and then the second insulating film and the second conductive film are formed. In the semiconductor device, an opening penetrating the first insulating film to reach the first conductive film is formed, and a third conductive film is formed inside the opening.

【0007】また、本発明は、半導体基板上に、第1の
導電膜、第1の絶縁膜、第2の導電膜および第2の絶縁
膜が順次積層に形成され、次に同第2の絶縁膜から第2
の同電膜および第1の絶縁膜を貫通して第1の導電膜ま
で至る第1の開孔と、第2の絶縁膜および第1の絶縁膜
を貫通して第1の導電膜に至る第2の開孔が形成され、
前記第1の開孔内部には第3の導電膜が形成されてお
り、さらに、前記第2の開孔内部および第2の絶縁膜上
にも第3の導電膜が形成されている半導体装置である。
Further, according to the present invention, a first conductive film, a first insulating film, a second conductive film and a second insulating film are sequentially laminated on a semiconductor substrate, and then the second conductive film is formed. From the insulating film to the second
A first opening penetrating the same conductive film and the first insulating film to reach the first conductive film, and penetrating the second insulating film and the first insulating film to reach the first conductive film. A second aperture is formed,
A third conductive film is formed inside the first opening, and a third conductive film is further formed inside the second opening and on the second insulating film. Is.

【0008】さらに、本発明は、半導体基板上に第1の
導点膜を形成する工程と、同第1の導電膜上に第1の絶
縁膜を形成する工程と、同第1の絶縁膜上に第2の導電
膜を形成する工程と、同第2の導電膜上および第1の絶
縁膜上に第2の絶縁膜を形成する工程と、第1のフォト
レジストをマスクにして第2の絶縁膜、第2の導電膜お
よび第1の絶縁膜をエッチングで除去し第1の開孔を形
成する工程と、さらに前記第1のフォトレジストをマス
クにして第2の絶縁膜および第1の絶縁膜をエッチング
で除去して第2の開孔を形成する工程と、同第1の開孔
内部第2の開孔内部および前記第2の絶縁膜上に第3の
導電膜を形成する工程と、前記第2の開孔上に形成され
た第2のフォトレジストをマスクにして、前記第3の導
電膜をエッチングにて除去する工程を有する半導体装置
の製造方法である。
Further, according to the present invention, the step of forming a first conducting film on a semiconductor substrate, the step of forming a first insulating film on the first conductive film, and the first insulating film. A step of forming a second conductive film thereon, a step of forming a second insulating film on the second conductive film and on the first insulating film, and a step of forming a second photoresist using the first photoresist as a mask. Removing the insulating film, the second conductive film and the first insulating film by etching to form a first opening, and further, using the first photoresist as a mask, the second insulating film and the first insulating film. And removing the insulating film by etching to form a second opening, and forming a third conductive film inside the first opening and inside the second opening and on the second insulating film. And a step of etching the third conductive film using the second photoresist formed on the second opening as a mask. It is a manufacturing method of a semiconductor device having a step of removing Te.

【0009】[0009]

【作用】本発明の半導体装置は上記した構成により、第
1の導電膜と第2の導電膜を第3の導電膜を介して電気
的に接続する場合、その接続部の面積を小さくすること
が可能となる。
According to the semiconductor device of the present invention, when the first conductive film and the second conductive film are electrically connected to each other through the third conductive film, the area of the connecting portion is reduced by the above-mentioned structure. Is possible.

【0010】また、本発明の半導体装置の製造方法によ
れば、第1の導電膜と第2の導電膜との接続および第1
の導電膜と第3の導電膜との接続に必要な開孔を1枚の
マスクで形成することが可能となる。
Further, according to the method of manufacturing a semiconductor device of the present invention, the connection between the first conductive film and the second conductive film and the first conductive film are connected.
It is possible to form the openings necessary for connecting the conductive film of No. 3 and the third conductive film with one mask.

【0011】さらに、本発明の半導体装置の製造方法に
よれば、マスク数を削減でき、また必要面積を縮少でき
うる配線接続部を製造することが可能となる。
Further, according to the method of manufacturing a semiconductor device of the present invention, it is possible to manufacture a wiring connecting portion which can reduce the number of masks and the required area.

【0012】[0012]

【実施例】本発明を2層ポリシリコン構造の集積回路に
応用した場合の一実施例である、図1に示す要部断面図
および図2の工程順断面図を参照しながら詳しく説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the sectional view of the principal part shown in FIG. 1 and the sectional view in the order of steps of FIG.

【0013】本発明の配線接続部は、図1においてP型
シリコン基板21上のフィールド酸化膜22で分離され
たn+型拡散層23および24と、膜厚約500nmの第
1CVD酸化膜25と、CVD酸化膜25上に形成され
た膜厚約300nmのリンを約1020cm-3程度ドープした
第1のポリシリコン膜26と、第1ポリシリコン膜26
および第1CVD酸化膜25上に形成された膜厚約50
0nmの第2CVD酸化膜27と、n+型拡散層24上の
第1CVD酸化膜25と第2CVD酸化膜27に形成さ
れた第2の開孔28と、n+型拡散層23上の第1CV
D酸化膜25、第1ポリシリコン膜26および第2CV
D酸化膜27に形成された第1の開孔29と、第2の開
孔28および第2CVD酸化膜27上に形成された膜厚
約400nmのリンを約1020cm-3程度ドーブした第2ポ
リシリコン膜30とで構成されている。
The wiring connection portion of the present invention comprises n + type diffusion layers 23 and 24 separated by a field oxide film 22 on a P type silicon substrate 21 in FIG. 1, and a first CVD oxide film 25 having a thickness of about 500 nm. , A first polysilicon film 26 formed on the CVD oxide film 25 and having a film thickness of about 300 nm doped with phosphorus at about 10 20 cm −3, and a first polysilicon film 26.
And a film thickness of about 50 formed on the first CVD oxide film 25.
0 nm second CVD oxide film 27, first CVD oxide film 25 on n + type diffusion layer 24, second opening 28 formed in second CVD oxide film 27, and first CV on n + type diffusion layer 23.
D oxide film 25, first polysilicon film 26 and second CV
The first opening 29 formed in the D oxide film 27 and the phosphorus having a film thickness of about 400 nm formed on the second opening 28 and the second CVD oxide film 27 are doped by about 10 20 cm -3 . 2 polysilicon film 30.

【0014】図1において、第1ポリシリコン膜26と
+型拡散層23は第1の開孔29内に形成された第2
のポリシリコン膜31を介して電気的に接続されてい
る。これを、従来構造の図4と比較すると、必要な開孔
数が2個から1個に減った分だけ、接続部に必要な面積
が低減できるのが明らかである。
In FIG. 1, the first polysilicon film 26 and the n + -type diffusion layer 23 are formed in the first opening 29 as the second polysilicon film 26.
Are electrically connected via the polysilicon film 31. Comparing this with FIG. 4 showing the conventional structure, it is clear that the area required for the connection portion can be reduced by the number of required holes reduced from two to one.

【0015】また図1では第2ポリシリコン膜30とn
+型拡散層24が第2の開孔28を通して電気的に接続
されている。図1と従来構造の図3を比較すると、図3
では開孔6と開孔9は別のフォトマスクで形成しなけれ
ばならないが、図1では開孔28と開孔29は同じフォ
トマスクで形成できるのでマスク数を1枚減らすことが
できる。
In FIG. 1, the second polysilicon film 30 and n
The + type diffusion layer 24 is electrically connected through the second opening 28. Comparing FIG. 1 with FIG. 3 showing the conventional structure, FIG.
However, the openings 6 and 9 must be formed by different photomasks, but in FIG. 1, the openings 28 and 29 can be formed by the same photomask, so that the number of masks can be reduced by one.

【0016】次に、本発明の配線接続部の製造方法を図
2を用いて詳しく説明する。まず、図2(a)に示すよ
うにP型シリコン基板21上に、周知の選択酸化法に
て、膜厚約500nmのフィールド酸化膜22を形成後、
イオン注入法にてヒ素イオンを加速エネルギ40KeV、
ドーズ量約5×1015cm-2の条件でシリコン基板1中に
注入する。次に、シリコン基板21に約900℃で熱ア
ニールを施して、注入した元素を活性化および拡散させ
てn+型拡散層23および24を形成する。
Next, the method for manufacturing the wiring connecting portion of the present invention will be described in detail with reference to FIG. First, as shown in FIG. 2A, after forming a field oxide film 22 having a film thickness of about 500 nm on a P-type silicon substrate 21 by a known selective oxidation method,
Arsenic ions are accelerated by an ion implantation method at an acceleration energy of 40 KeV,
It is implanted into the silicon substrate 1 under the condition that the dose amount is about 5 × 10 15 cm −2 . Next, the silicon substrate 21 is subjected to thermal annealing at about 900 ° C. to activate and diffuse the implanted element to form the n + type diffusion layers 23 and 24.

【0017】次に、図2(b)に示すように周知の常圧
CVD法で膜圧約500nmのシリコン酸化膜25を形成
後、膜圧約300nmのリン約1020cm-3ドープした第1
ポリシリコン膜26を周知のLPCVD法で形成する。
次に、第1ポリシリコン膜26を第1のフォトレジスト
32をマスクにして、ドライエッチングにて除去する。
Next, as shown in FIG. 2B, a silicon oxide film 25 having a film pressure of about 500 nm is formed by the well-known atmospheric pressure CVD method, and then a first film of phosphorus of about 10 20 cm -3 with a film pressure of about 300 nm is doped.
The polysilicon film 26 is formed by the well-known LPCVD method.
Next, the first polysilicon film 26 is removed by dry etching using the first photoresist 32 as a mask.

【0018】次に、第1のフォトレジスト32を周知の
技術で除去した後、図2(c)に示すように、周知の常
圧CVD法で膜圧約500nmのBPSG膜27(ボロン
濃度約3重量%、リン濃度約6重量%)を形成し、約9
00℃の熱処理を施してBPSG膜27を流動化させ、
表面を平坦化する。次に、フォトレジスト33をマスク
にして、ドライエッチング法にて、n+型拡散層24上
のシリコン酸化膜25およびBPSG膜27を除去して
第2の開孔28を形成すると同時に、n+型拡散層23
上のBPSG膜27、第1ポリシリコン膜26およびシ
リコン酸化膜25を除去して第1の開孔29を形成す
る。
Next, after removing the first photoresist 32 by a well-known technique, as shown in FIG. 2C, a well-known atmospheric pressure CVD method is used to form a BPSG film 27 (boron concentration of about 3 nm) having a film pressure of about 500 nm. Wt%, phosphorus concentration about 6 wt%), forming about 9
Heat treatment at 00 ° C. to fluidize the BPSG film 27,
Flatten the surface. Next, using the photoresist 33 as a mask, the silicon oxide film 25 and the BPSG film 27 on the n + type diffusion layer 24 are removed by the dry etching method to form the second opening 28, and at the same time, n + Type diffusion layer 23
The upper BPSG film 27, the first polysilicon film 26 and the silicon oxide film 25 are removed to form a first opening 29.

【0019】この時のドライエッチングとしては、ま
ず、CHF3とO2の混合ガスでBPSG膜27を約50
0nm程度エッチングして、開孔29部の第1ポリシリコ
ン膜26を露出させる。次に、塩素ガスと臭素ガスの混
合ガスで開孔29部の第1ポリシリコン膜26を完全に
除去する。さらに、再度CHF3とO2の混合ガスで酸化
シリコン膜25(と開孔28部のBPSG膜27の残
り)を除去して、両方の開孔28と29で下地のn+
拡散層23と24を露出させる。
For dry etching at this time, first, about 50 BPSG film 27 is mixed with a mixed gas of CHF 3 and O 2.
The first polysilicon film 26 in the opening 29 is exposed by etching to about 0 nm. Next, the first polysilicon film 26 in the openings 29 is completely removed by a mixed gas of chlorine gas and bromine gas. Further, the silicon oxide film 25 (and the rest of the BPSG film 27 in the openings 28) is removed again with a mixed gas of CHF 3 and O 2 , and the underlying n + type diffusion layer 23 is formed in both openings 28 and 29. And expose 24.

【0020】次に、第2フォトレジスト33を除去した
後、図2(d)に示すように、膜厚約400nmでリンを
約1020cm-3程度ドープした第2ポリシリコン膜30
(31)を周知のLPCVD法で形成する。続いて、第
3のフォトレジスト34を開孔28上に形成し、それを
マスクにして第2ポリシリコン膜30(31)をエッチ
ングにて除去することで、図1に示した配線接続部が完
成する。
Next, after removing the second photoresist 33, as shown in FIG. 2D, a second polysilicon film 30 having a film thickness of about 400 nm and doped with phosphorus of about 10 20 cm -3 is formed.
(31) is formed by the well-known LPCVD method. Subsequently, a third photoresist 34 is formed on the opening 28, and the second polysilicon film 30 (31) is removed by etching using the opening as a mask, whereby the wiring connection portion shown in FIG. Complete.

【0021】なお、本実施例では、2層ポリシリコン構
造について例示したが、他の配線材料、例えば、ポリサ
イド,タングステン,アルミ合金等の組合せに対しても
本発明が適用可能なのはもちろんである。また、2層以
上の配線層を有する構造にも本発明を当然適用すること
は可能である。
In the present embodiment, the two-layer polysilicon structure has been exemplified, but it goes without saying that the present invention can be applied to other wiring materials such as polycide, tungsten and aluminum alloy. The present invention can naturally be applied to a structure having two or more wiring layers.

【0022】[0022]

【発明の効果】以上の実施例から明らかなように、本発
明によれば、配線接続部の面積を縮少できるので集積回
路の集積度を高める効果を有する。また、開孔を形成す
るためのフォトマスクを1枚削減できるので、集積回路
の製造工程の短縮化、ひいては低コスト化に貢献するこ
とができる。
As is apparent from the above embodiments, according to the present invention, the area of the wiring connecting portion can be reduced, so that the integration degree of the integrated circuit can be increased. Further, since the number of photomasks for forming the openings can be reduced, it is possible to contribute to the shortening of the manufacturing process of the integrated circuit and the cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の配線接続部を示す要部断面
FIG. 1 is a cross-sectional view of a main portion showing a wiring connection portion according to an embodiment of the present invention.

【図2】同配線接続部の製造方法を説明するための工程
順断面図
2A to 2C are cross-sectional views in order of the processes, for explaining the method for manufacturing the same wiring connection portion.

【図3】従来例の配線接続部の要部断面図FIG. 3 is a cross-sectional view of a main part of a conventional wiring connection part.

【図4】従来例2の配線接続部の要部断面図FIG. 4 is a cross-sectional view of a main part of a wiring connection portion of Conventional Example 2.

【符号の説明】[Explanation of symbols]

21 P型シリコン基板 22 フィールド酸化膜 23,24 n+型拡散層 25 第1CVD酸化膜(シリコン酸化膜) 26 第1ポリシリコン膜 27 第2CVD酸化膜(BPSG膜) 28,29 開孔 30,31 第2ポリシリコン膜21 P-type silicon substrate 22 Field oxide film 23, 24 n + type diffusion layer 25 First CVD oxide film (silicon oxide film) 26 First polysilicon film 27 Second CVD oxide film (BPSG film) 28, 29 Opening holes 30, 31 Second polysilicon film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に、第1の導電膜、第1の絶
縁膜、第2の導電膜および第2の絶縁膜が順次積層に形
成され、前記第2の絶縁膜から第2の導電膜および第1
の絶縁膜を貫通して第1の導電膜まで至る開孔が形成さ
れ、さらに同開孔内部には第3の導電膜が形成されるこ
とを特徴とする半導体装置。
1. A first conductive film, a first insulating film, a second conductive film, and a second insulating film are sequentially laminated on a semiconductor substrate, and the second insulating film and the second insulating film are formed on the semiconductor substrate. Conductive film and first
An opening is formed through the insulating film to the first conductive film, and a third conductive film is formed inside the opening.
【請求項2】半導体基板上に、第1の導電膜、第1の絶
縁膜、第2の導電膜および第2の絶縁膜が順次積層に形
成され、前記第2の絶縁膜から第2の導電膜および第1
の絶縁膜を貫通して第1の導電膜まで至る第1の開孔
と、第2の絶縁膜および第1の絶縁膜を貫通して第1の
導電膜に至る第2の開孔が形成され、前記第1の開孔内
部には第3の導電膜が形成され、さらに、前記第2の開
孔内部および第2の絶縁膜上にも第3の導電膜が形成さ
れていることを特徴とする半導体装置。
2. A first conductive film, a first insulating film, a second conductive film, and a second insulating film are sequentially laminated on a semiconductor substrate, and the second insulating film and the second insulating film are formed on the semiconductor substrate. Conductive film and first
A first opening penetrating the second insulating film and reaching the first conductive film, and a second opening penetrating the second insulating film and the first insulating film to the first conductive film. A third conductive film is formed inside the first opening, and a third conductive film is formed inside the second opening and on the second insulating film. Characteristic semiconductor device.
【請求項3】半導体基板上に第1の導電膜を形成する工
程と、前記第1の導電膜上に第1の絶縁膜を形成する工
程と、前記第1の絶縁膜上に第2の導電膜を形成する工
程と、前記第2の導電膜上および第1の絶縁膜上に第2
の絶縁膜を形成する工程と、第1のフォトレジストをマ
スクにして第2の絶縁膜、第2の導電膜および第1の絶
縁膜をエッチングにて除去して第1の開孔を形成する工
程と、同工程と同時に前記第1のフォトレジストをマス
クにして第2の絶縁膜および第1の絶縁膜をエッチング
にて除去して第2の開孔を形成する工程と、同第1の開
孔内部、第2の開孔内部および前記第2の絶縁膜上に第
3の導電膜を形成する工程と、前記第2の開孔上に形成
された第2のフォトレジストをマスクにして、前記第3
の導電膜をエッチングにて除去する工程とからなること
を特徴とする半導体装置の製造方法。
3. A step of forming a first conductive film on a semiconductor substrate, a step of forming a first insulating film on the first conductive film, and a second step on the first insulating film. Forming a conductive film, and forming a second conductive film on the second conductive film and the first insulating film.
The step of forming the insulating film, and the second insulating film, the second conductive film, and the first insulating film are removed by etching using the first photoresist as a mask to form the first opening. And a step of forming the second opening by removing the second insulating film and the first insulating film by etching at the same time as the step, using the first photoresist as a mask. Forming a third conductive film inside the opening, inside the second opening and on the second insulating film; and using the second photoresist formed on the second opening as a mask , The third
And a step of removing the conductive film of 1. by a method of manufacturing a semiconductor device.
JP20670191A 1991-08-19 1991-08-19 Semiconductor device and its manufacture Pending JPH0547938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20670191A JPH0547938A (en) 1991-08-19 1991-08-19 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20670191A JPH0547938A (en) 1991-08-19 1991-08-19 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0547938A true JPH0547938A (en) 1993-02-26

Family

ID=16527688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20670191A Pending JPH0547938A (en) 1991-08-19 1991-08-19 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0547938A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283188A (en) * 2007-05-10 2008-11-20 Dongbu Hitek Co Ltd Semiconductor element and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283188A (en) * 2007-05-10 2008-11-20 Dongbu Hitek Co Ltd Semiconductor element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5223456A (en) High density local interconnect in an integrated circit using metal silicide
JP2519819B2 (en) Contact hole forming method
JP4375821B2 (en) Semiconductor device and manufacturing method thereof
US5053349A (en) Method for interconnecting semiconductor devices
US4948756A (en) Method of making interconnects between polysilicon layers
US6555465B2 (en) Multi-layer wiring structure of integrated circuit and manufacture of multi-layer wiring
US5698468A (en) Silicidation process with etch stop
JPH0547938A (en) Semiconductor device and its manufacture
JPH06333944A (en) Semiconductor device
US5290728A (en) Method for producing a semiconductor device
JPS58215055A (en) Semiconductor integrated circuit device
JPH10223897A (en) Semiconductor device and its manufacture
JP3104609B2 (en) Semiconductor device and manufacturing method thereof
JP3265593B2 (en) Method for manufacturing semiconductor device
US5254874A (en) High density local interconnect in a semiconductor circuit using metal silicide
JP3235091B2 (en) Method for manufacturing MIS type semiconductor device
JPS62203363A (en) Manufacture of semiconductor device
JP3021711B2 (en) Manufacturing method of semiconductor integrated circuit
JPH09171974A (en) Manufacture of semiconductor device
JPH05335306A (en) Semiconductor device
JPH0758058A (en) Wiring structure and manufacture therof
JPH0734441B2 (en) Method for manufacturing semiconductor device
JPS59134868A (en) Manufacture of semiconductor device
JPH04277622A (en) Manufacture of semiconductor device
JPH05283634A (en) Semiconductor device