JPH0547898U - Gas permeability test equipment for buffer material for geological disposal - Google Patents

Gas permeability test equipment for buffer material for geological disposal

Info

Publication number
JPH0547898U
JPH0547898U JP8786891U JP8786891U JPH0547898U JP H0547898 U JPH0547898 U JP H0547898U JP 8786891 U JP8786891 U JP 8786891U JP 8786891 U JP8786891 U JP 8786891U JP H0547898 U JPH0547898 U JP H0547898U
Authority
JP
Japan
Prior art keywords
buffer material
gas
fluid inlet
pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8786891U
Other languages
Japanese (ja)
Inventor
真弥 江口
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP8786891U priority Critical patent/JPH0547898U/en
Publication of JPH0547898U publication Critical patent/JPH0547898U/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 本考案は、地層処分用緩衝材のガス透気試験
装置に係るもので、試験用耐圧容器や緩衝材の容量や寸
法による測定誤差を少なくし、ガス透気性を正確に模擬
した試験を行なう。 【構成】 膨潤状態の被試験緩衝材が装填される耐圧容
器11と、流体入口12及び流体出口13と、流体入口
12及び流体出口13と被試験緩衝材との間に介在させ
られる多孔質層と、流体入口側または流体出口側に多孔
質層を囲んだ状態に配されるガス透過抑制用凹凸部15
とを具備する。ガス透過抑制用凹凸部15によって、耐
圧容器11の内面に沿った流路が長く抵抗の大きなもの
として、ガス透過を緩衝層に集中させる。
(57) [Summary] (Modified) [Purpose] The present invention relates to a gas permeation test device for a buffer material for geological disposal, which reduces measurement errors due to the capacity and size of the pressure container for testing and the buffer material. , Perform a test that accurately simulates gas permeability. A pressure-resistant container 11 in which a buffer material under test in a swollen state is loaded, a fluid inlet 12 and a fluid outlet 13, and a porous layer interposed between the fluid inlet 12 and fluid outlet 13 and the buffer material under test. And a gas permeation suppression concavo-convex portion 15 arranged so as to surround the porous layer on the fluid inlet side or the fluid outlet side.
And. The gas permeation suppression concavo-convex portion 15 concentrates gas permeation in the buffer layer, assuming that the flow path along the inner surface of the pressure-resistant container 11 is long and has high resistance.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、地層処分用緩衝材のガス透気試験装置に関するものである。 The present invention relates to a gas permeability test apparatus for a buffer material for geological disposal.

【0002】[0002]

【従来の技術】[Prior Art]

原子力プラント関連施設において発生する高レベル放射性廃棄物( 廃液等 )は 、例えばガラス固化処理することによって、取り扱い性を向上させることができ る。 The high-level radioactive waste (waste liquid, etc.) generated in facilities related to nuclear power plants can be improved in handleability by, for example, vitrification treatment.

【0003】 そして、ガラス固化物を容器に収納した状態の固化パッケージ( キャニスタ ) は、放射線汚染を防止するために、人工的に構築した放射性廃棄物貯蔵施設に、 放射線の放出が著しく減少するまで長期間保管貯蔵する計画の他、深地層内に収 納処分して生活圏から隔離する計画がなされている。A solidification package (canister) containing glass solidified material in a container is placed in an artificially constructed radioactive waste storage facility to prevent radiation contamination, until radiation emission is significantly reduced. In addition to long-term storage and storage, there are plans to store and store in deep geological formations to isolate them from living areas.

【0004】 この深地層処分を行なう計画では、自然の岩石が持つ性質を利用して、放射性 核種の移動拡散を抑制することができるが、深地層中の岩石の状態が完全に把握 できないことを踏まえて、放射性核種の漏出を人為的な工作物を用いて抑制する ことが実用的であると考えられている。また、該計画では、固化体としてホウケ イ酸ガラスを用いること、収納容器としてステンレス系合金を用いて固化パッケ ージ( キャニスタ )とすること、オーバーパック材として金属及びセラミックス 等を採用することが有力であるとされている。In this plan for deep geological disposal, it is possible to suppress the migration and diffusion of radionuclides by utilizing the properties of natural rocks, but it is not possible to completely understand the state of rocks in deep geological formations. Based on this, it is considered practical to control the leakage of radionuclides by using artificial structures. In the plan, borosilicate glass should be used as the solidified body, a solidified package (canister) should be made by using a stainless steel alloy as the container, and metal and ceramics should be used as the overpack material. It is said to be influential.

【0005】 図3は、放射性廃棄物の地層処分計画の構造例を示すものであり、岩盤( 母岩 )1を掘削して処分孔2を明けておいて、該処分孔2の底部にベントナイトから なる緩衝材を適量敷き、その上に炭素鋼等の適宜金属材からなるオーバーパック 3でキャニスタ4を密閉した状態で載置して、さらに、オーバーパック3の回り に緩衝材を均一に充填して緩衝層5を形成した後、蓋6でその上を覆うとともに 、該蓋6を岩盤1にアンカーボルト7で固定するものである。なお、図中符号8 はトンネルである。FIG. 3 shows an example of the structure of a geological disposal plan for radioactive waste, in which a rock (host rock) 1 is excavated to open a disposal hole 2 and bentonite is formed at the bottom of the disposal hole 2. Place a suitable amount of cushioning material consisting of, on which the canister 4 is placed with the overpack 3 made of an appropriate metal material such as carbon steel sealed, and further fill the cushioning material around the overpack 3 uniformly. After forming the buffer layer 5, the cover 6 is covered with the cover 6 and the cover 6 is fixed to the bedrock 1 with anchor bolts 7. In the figure, reference numeral 8 is a tunnel.

【0006】 このような処分構造であると、岩盤1の一部に地下水透過層が存在して、この 地下水透過層が処分孔2と交差あるいは近接することにより、処分孔2に地下水 が浸水する現象が生じた場合には、均一に充填されている緩衝層5の浸水部分が 膨潤して緩衝層5の内圧が高まることに基づき、水の侵入を妨げて密封性を確保 することができるものである。With such a disposal structure, a groundwater permeable layer exists in a part of the bedrock 1, and when this groundwater permeable layer intersects or approaches the disposal hole 2, groundwater enters the disposal hole 2. When a phenomenon occurs, the uniformly filled water-filled portion of the buffer layer 5 swells and the internal pressure of the buffer layer 5 increases, so that water can be prevented from entering and the hermeticity can be ensured. Is.

【0007】 一方、オーバーパック3が鉄系金属で形成されている場合には、水との接触に よる腐食時の化学反応によって、Fe23 や水素ガスが生成されることが考え られる。この場合における緩衝層5の挙動(ガス透気性)を予め把握しておくこ とは、重要な意味を持つことになる。On the other hand, when the overpack 3 is made of an iron-based metal, it is considered that Fe 2 O 3 and hydrogen gas are generated by a chemical reaction at the time of corrosion due to contact with water. In this case, it is important to understand the behavior (gas permeability) of the buffer layer 5 in advance.

【0008】 図4は、緩衝材のガス透気試験装置の例を示すものである。 耐圧容器11に、流体入口12と流体出口13とを配するとともに、流体入口 12及び流体出口13の近傍にフルター等の多孔質層14を介在させ、耐圧容器 11及び一対の多孔質層14で囲まれた空間に、前述の緩衝材5を装填し、水を 注入して緩衝材5を膨潤させた状態としてから、加圧状態の水素ガスを流体入口 12から緩衝層5に送り込んで流体出口13から排出させることにより、緩衝層 5の水素ガスの透気性が試験される。FIG. 4 shows an example of a gas permeability test apparatus for a cushioning material. A fluid inlet 12 and a fluid outlet 13 are arranged in the pressure-resistant container 11, and a porous layer 14 such as a filter is interposed in the vicinity of the fluid inlet 12 and the fluid outlet 13 to form the pressure-resistant container 11 and the pair of porous layers 14. The above-mentioned buffer material 5 is loaded into the enclosed space, and water is injected to make the buffer material 5 swell, and then hydrogen gas in a pressurized state is sent from the fluid inlet 12 to the buffer layer 5 and the fluid outlet. The gas permeability of the buffer layer 5 is tested by discharging the hydrogen gas from the buffer layer 5.

【0009】[0009]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかし、図4例のガス透気試験では、水素ガスを多孔質層14によって外側方 に広げて、緩衝層5の全域で平均的に透過させようとしても、緩衝層5と耐圧容 器11の内壁との境界を経由する流路の抵抗が小さくなるために、水素ガスの透 過路が図4に各矢印で示すように、外側に寄った状態となり易く、また、容積及 び寸法の限られた範囲の緩衝層5についての試験となるため、外側に寄った部分 のガス挿通量の割合が大きくなって、緩衝層5のガス透気性を正確に実証するこ とが困難になり易い。 However, in the gas permeation test of the example of FIG. 4, even if hydrogen gas is spread outward by the porous layer 14 and evenly permeated through the entire area of the buffer layer 5, the hydrogen gas of the buffer layer 5 and the pressure-resistant container 11 is not changed. Since the resistance of the flow path passing through the boundary with the inner wall becomes small, the hydrogen gas permeation path tends to be in a state of being shifted to the outside as shown by the arrows in Fig. 4, and the volume and size are limited. Since the test is performed on the buffer layer 5 in a different range, the ratio of the gas insertion amount of the portion closer to the outside becomes large, and it becomes difficult to accurately verify the gas permeability of the buffer layer 5.

【0010】 本考案は、かかる事情に鑑みてなされたもので、試験用耐圧容器や緩衝材の容 量や寸法が制限を受ける場合にあっても、緩衝層におけるガス透気性を正確に模 擬した試験を行なうことを目的とするものである。The present invention has been made in view of the above circumstances, and accurately simulates the gas permeability of the buffer layer even when the capacity and size of the pressure container for testing and the buffer material are limited. The purpose is to carry out the tests described above.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

かかる目的を達成するため、地層処分時に使用される緩衝材のガス透気特性を 試験するための装置において、膨潤状態の被試験緩衝材が装填される耐圧容器と 、該耐圧容器に配される流体入口及び流体出口と、該流体入口及び流体出口と被 試験緩衝材との間に介在させられる多孔質層と、耐圧容器の内壁面と被試験緩衝 材との接触部分に流体入口側または流体出口側の多孔質層を囲んだ状態に配され るガス透過抑制用凹凸部とを具備する構成の地層処分用緩衝材のガス透気試験装 置としている。 In order to achieve such an object, in a device for testing the gas permeability characteristics of a cushioning material used during geological disposal, a pressure-resistant container loaded with a buffer material to be tested in a swollen state, and a pressure-resistant container arranged in the pressure-resistant container. The fluid inlet and the fluid outlet, the porous layer interposed between the fluid inlet and the fluid outlet and the buffer material under test, and the fluid inlet side or the fluid at the contact portion between the inner wall surface of the pressure-resistant container and the buffer material under test. The gas permeation test equipment for the buffer material for geological disposal is provided with a concavo-convex portion for suppressing gas permeation that is arranged so as to surround the porous layer on the outlet side.

【0012】[0012]

【作用】[Action]

試験用ガスを流体入口から耐圧容器の内部に送り込むと、多孔質層によってガ スが拡散して膨潤状態の緩衝層の内部を透過する流路と、耐圧容器の内面に沿っ て流体出口まで緩衝層を経由しないで透過する流路とが形成されることになるが 、この場合にあって、流体出入口の近傍には、多孔質層を囲んだ状態のガス透過 抑制用凹凸部が配されて、耐圧容器の内面に沿った流路が長くなっているために 、ここを経由するガス量が制限され、離間する多孔質層の間の緩衝層を透過する ガスの流れが、全体として平均化されて大きな容積及び寸法の緩衝層に近似する ものとなる。 When the test gas is sent from the fluid inlet to the inside of the pressure vessel, the gas is diffused by the porous layer and permeates the inside of the swollen buffer layer, and the fluid flows along the inner surface of the pressure vessel to the fluid outlet. A flow passage is formed without passing through the layer.In this case, however, a gas permeation suppression uneven part surrounding the porous layer is placed near the fluid inlet / outlet. Since the flow path along the inner surface of the pressure vessel is long, the amount of gas passing therethrough is limited, and the flow of gas that passes through the buffer layer between the separated porous layers is averaged as a whole. It is similar to a large volume and size buffer layer.

【0013】[0013]

【実施例】【Example】

図1及び図2は、本考案に係る地層処分用緩衝材のガス透気試験装置の一実施 例を示すもので、図中符号5は被試験緩衝材(緩衝材、緩衝層)、11は耐圧容 器、11Aは容器胴、11Bは入口側蓋体、11Cは出口側蓋体、11Dはフラ ンジ部、11Eはシール材、11Fはボルト等の締結具、12は流体入口、13 は流体出口、14Aは入口側多孔質層(多孔質層)、14Bは出口側多孔質層( 多孔質層)、15はガス透過抑制用凹凸部、20は加圧試験ガス供給系、21は ガス供給配管、22は開閉弁、23は圧力計である。 1 and 2 show an embodiment of a gas permeability test apparatus for a buffer material for geological disposal according to the present invention, in which reference numeral 5 is a buffer material to be tested (buffer material, buffer layer), and 11 is Pressure-resistant container, 11A is a container barrel, 11B is an inlet side lid, 11C is an outlet side lid, 11D is a flange part, 11E is a sealing material, 11F is a fastener such as a bolt, 12 is a fluid inlet, 13 is a fluid Outlet, 14A is an inlet side porous layer (porous layer), 14B is an outlet side porous layer (porous layer), 15 is an uneven portion for suppressing gas permeation, 20 is a pressurized test gas supply system, 21 is gas supply Piping, 22 is an open / close valve, and 23 is a pressure gauge.

【0014】 前記耐圧容器11は、図1に示すように、容器胴11Aが例えば直円筒状に形 成され、両フランジ部11Dと入口側蓋体11B及び出口側蓋体11Cとの間に シール材11Eを介在させた状態で、締結具11Fによって密封構造に一体化さ れる。As shown in FIG. 1, the pressure-resistant container 11 has a container body 11A formed in, for example, a right cylindrical shape, and a seal is provided between both flange portions 11D and the inlet side lid body 11B and the outlet side lid body 11C. With the material 11E interposed, it is integrated with the sealing structure by the fastener 11F.

【0015】 前記入口側多孔質層14A及び出口側多孔質層14Bは、図4例と同様に、流 体入口12及び流体出口13と被試験緩衝材5との間に介在させられるものであ るが、図1例では、入口側多孔質層14Aの直径が小さくなるように設定されて いる。The inlet-side porous layer 14A and the outlet-side porous layer 14B are interposed between the fluid inlet 12 and the fluid outlet 13 and the buffer material 5 to be tested, as in the example of FIG. However, in the example of FIG. 1, the diameter of the inlet side porous layer 14A is set to be small.

【0016】 前記ガス透過抑制用凹凸部15は、流体入口12の内方を同心円状に囲むよう に配される複数の環状壁15a,15b,15c等を配したものであり、これら の環状壁15a,15b,15cが、入口側蓋体11Bの内面に対して突出した 状態に一体に形成される。 そして、流体入口12に近接状態の環状壁15aの突出高さが最大となるよう に設定される。The gas permeation suppression concavo-convex portion 15 is provided with a plurality of annular walls 15a, 15b, 15c, etc. arranged so as to concentrically surround the inside of the fluid inlet 12, and these annular walls are arranged. 15a, 15b, 15c are integrally formed in a state of protruding with respect to the inner surface of the inlet side lid body 11B. Then, the protrusion height of the annular wall 15a close to the fluid inlet 12 is set to be maximum.

【0017】 前記加圧試験ガス供給系20は、例えば加圧状態の水素ガスの供給装置であり 、ガス供給配管21によって開閉弁22を介して流体入口12と接続されて、試 験圧力まで加圧された水素ガスの供給を行なうとともに、その試験圧力は、圧力 計23によって逐次検出される。The pressurized test gas supply system 20 is, for example, a pressurized hydrogen gas supply device, is connected to the fluid inlet 12 via an on-off valve 22 by a gas supply pipe 21, and applies a test pressure up to the test pressure. The pressurized hydrogen gas is supplied, and the test pressure is successively detected by the pressure gauge 23.

【0018】 被試験緩衝材5のガス透気試験を実施する場合には、図1に示すように、容器 胴11Aを立てた状態で出口側蓋体11Cを外し、環状壁15aで囲まれた窪部 にフルター等を装填して多孔質層14Aを形成した状態で、容器胴11Aの中に 、所望量の被試験緩衝材5を順次装填し、その後、容器胴11Aに出口側蓋体1 1Cを取り付けて、全体を密封構造とする。When carrying out the gas permeability test of the buffer material 5 to be tested, as shown in FIG. 1, the outlet side lid body 11C is removed with the container body 11A standing upright and surrounded by the annular wall 15a. A desired amount of the buffer material 5 to be tested is sequentially loaded into the container barrel 11A in a state where the porous layer 14A is formed by loading a filter or the like in the recessed portion, and then the outlet-side lid 1 is attached to the container barrel 11A. 1C is attached to make the whole a sealed structure.

【0019】 次いで、流体入口12から容器胴11Aの内部に、水を注入して被試験緩衝材 5に吸水させる。 被試験緩衝材5は、前述したベントナイト等であり、その主成分であるモンモ リロナイトの性質に由来して、層間に多量の水を取り込むことによる大きな膨潤 性を有する。Next, water is injected from the fluid inlet 12 into the inside of the container body 11A so that the buffer material 5 to be tested absorbs water. The buffer material 5 to be tested is bentonite or the like as described above, and has a large swelling property due to taking in a large amount of water between the layers due to the property of montmorillonite which is its main component.

【0020】 被試験緩衝材5を膨潤させた状態として、加圧試験ガス供給系20から試験用 ガス(水素ガス)を流体入口12から耐圧容器11の内部に送り込むと、入口側 多孔質層14Aが形成されている範囲から、膨潤状態の緩衝層5へのガスの拡散 が行なわれ、この場合に、緩衝層5の内部のみを透過する流路と、耐圧容器11 の内面に沿って流体出口13に到達する流路とが考えられる。 つまり、緩衝層5の内部のみを透過するガス流路は、図2に実線の矢印で示す ように、入口側多孔質層14Aから緩衝層5の全域に広がるものとなる。 一方、耐圧容器11の内面に沿うガス流路は、図2に破線の矢印で示すように 、入口側多孔質層14A、環状壁15a,15b,15c、容器胴11Aの内面 及び出口側蓋体11Cを順次経由するものとなって、図4例と比較して距離が長 く、抵抗の大きなものとなる結果、ここを経由するガス量が抑制される。 したがって、入口側多孔質層14Aよりも若干広い範囲の緩衝層5では、これ を透過するガスの流れが、全体としてほぼ平行になる等の平均化がなされ、緩衝 層5の容積及び寸法を著しく大きくしたものに近似した状態となる。When the test gas (hydrogen gas) is sent from the pressurized test gas supply system 20 to the inside of the pressure resistant container 11 from the fluid inlet 12 with the buffer material 5 under test swollen, the inlet side porous layer 14A The gas diffuses from the area where the buffer layer 5 is formed to the swollen buffer layer 5, and in this case, the flow path that passes only through the buffer layer 5 and the fluid outlet along the inner surface of the pressure container 11 are formed. The flow path reaching 13 is considered. That is, the gas flow path that penetrates only the inside of the buffer layer 5 extends from the inlet side porous layer 14A to the entire area of the buffer layer 5, as indicated by the solid arrow in FIG. On the other hand, the gas flow path along the inner surface of the pressure-resistant container 11 has an inlet-side porous layer 14A, annular walls 15a, 15b, 15c, the inner surface of the container body 11A and an outlet-side lid as shown by the dashed arrow in FIG. 11C in order, the distance is longer and the resistance is larger than that in the example of FIG. 4, so that the amount of gas passing therethrough is suppressed. Therefore, in the buffer layer 5 in a slightly wider range than the inlet side porous layer 14A, the flow of gas passing through the buffer layer 5 is averaged such that the flow is almost parallel as a whole, and the volume and size of the buffer layer 5 are remarkably increased. It will be in a state similar to a larger one.

【0021】 <他の実施態様> なお、本考案に係る地層処分用緩衝材のガス透気試験装置にあっては、次の技 術を採用することができる。 ガス透過抑制用凹凸部15を流体出口13の側に配すること。 ガス透過抑制用凹凸部15を流体入口12及び流体出口13の両方に配するこ と。 環状壁15a,15b,15cの数を任意とすること。<Other Embodiments> The following techniques can be adopted in the gas permeability test apparatus for the buffer material for geological disposal according to the present invention. Disposing the gas permeation suppression uneven portion 15 on the fluid outlet 13 side. The gas permeation suppression concavo-convex portion 15 is provided at both the fluid inlet 12 and the fluid outlet 13. Make the number of the annular walls 15a, 15b, 15c arbitrary.

【0022】[0022]

【考案の効果】[Effect of the device]

以上説明したように、本考案に係る地層処分用緩衝材のガス透気試験装置によ れば、膨潤状態の被試験緩衝材が装填される耐圧容器と、流体入口及び流体出口 と、流体入口及び流体出口と被試験緩衝材との間に介在させられる多孔質層と、 流体入口側または流体出口側に多孔質層を囲んだ状態に配されるガス透過抑制用 凹凸部とを具備するものとしているから、以下のような効果を奏する。 (1) ガス透過抑制用凹凸部によって、耐圧容器の内面に沿った流路が長く抵 抗の大きなものとなるので、試験用耐圧容器や緩衝材の容量や寸法によって生じ るガス透気性試験時の測定誤差を少なくすることができる。 (2) 試験用ガスの大部分を膨潤状態の緩衝層に透過させることにより、ガス 流路の平行となる容積部分が大きくなり、緩衝層におけるガス透気性を正確に模 擬した試験を行なうことができる。 As described above, according to the gas permeability test apparatus for the buffer material for geological disposal according to the present invention, the pressure resistant container in which the buffer material under test in the swollen state is loaded, the fluid inlet and the fluid outlet, and the fluid inlet. And a porous layer interposed between the fluid outlet and the cushioning material to be tested, and a gas permeation suppression uneven portion arranged on the fluid inlet side or the fluid outlet side so as to surround the porous layer. Therefore, the following effects are obtained. (1) Due to the gas permeation suppression irregularities, the flow path along the inner surface of the pressure vessel becomes long and has a large resistance. Therefore, during the gas permeability test caused by the capacity and size of the pressure vessel for test and the cushioning material. It is possible to reduce the measurement error of. (2) By allowing most of the test gas to permeate through the swollen buffer layer, the parallel volume of the gas flow path increases, and a test that accurately simulates gas permeability in the buffer layer is performed. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案に係る地層処分用緩衝材のガス透気試験
装置の一実施例を示す一部を切欠した状態の斜視図であ
る。
FIG. 1 is a partially cutaway perspective view showing an embodiment of a gas permeability test apparatus for a cushioning material for geological disposal according to the present invention.

【図2】図1のガス透気試験装置によるガス透過状況を
示す正断面図である。
2 is a front sectional view showing a gas permeation state by the gas permeation test device of FIG. 1. FIG.

【図3】放射性廃棄物の地層処分計画の構造例を示す正
断面図である。
FIG. 3 is a front sectional view showing a structural example of a geological disposal plan for radioactive waste.

【図4】従来のガス透気試験装置によるガス透過状況を
示す正断面図である。
FIG. 4 is a front sectional view showing a gas permeation state by a conventional gas permeation test device.

【符号の説明】 5 被試験緩衝材(緩衝材、緩衝層) 11 耐圧容器 11A 容器胴 11B 入口側蓋体 11C 出口側蓋体 11D フランジ部 11E シール材 11F 締結具 12 流体入口 13 流体出口 14 多孔質層 14A 入口側多孔質層 14B 出口側多孔質層 15 ガス透過抑制用凹凸部 15a 環状壁 15b 環状壁 15c 環状壁 20 加圧試験ガス供給系 21 ガス供給配管 22 開閉弁 23 圧力計[Explanation of Codes] 5 Buffer material to be tested (buffer material, buffer layer) 11 Pressure-resistant container 11A Container body 11B Entrance side lid body 11C Exit side lid body 11D Flange portion 11E Seal material 11F Fastener 12 Fluid inlet 13 Fluid outlet 14 Porous Quality layer 14A inlet side porous layer 14B outlet side porous layer 15 gas permeation suppression uneven portion 15a annular wall 15b annular wall 15c annular wall 20 pressurized test gas supply system 21 gas supply pipe 22 on-off valve 23 pressure gauge

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 地層処分時に使用される緩衝材のガス透
気特性を試験するための装置であって、膨潤状態の被試
験緩衝材が装填される耐圧容器と、該耐圧容器に配され
る流体入口及び流体出口と、該流体入口及び流体出口と
被試験緩衝材との間に介在させられる多孔質層と、耐圧
容器の内壁面と被試験緩衝材との接触部分に流体入口側
または流体出口側の多孔質層を囲んだ状態に配されるガ
ス透過抑制用凹凸部とを具備することを特徴とする地層
処分用緩衝材のガス透気試験装置。
1. A device for testing the gas permeability of a cushioning material used for geological disposal, which is provided with a pressure resistant container loaded with a buffer material to be tested in a swollen state, and arranged in the pressure resistant container. The fluid inlet and the fluid outlet, the porous layer interposed between the fluid inlet and the fluid outlet and the buffer material under test, and the fluid inlet side or the fluid at the contact portion between the inner wall surface of the pressure resistant container and the buffer material under test. A gas permeation test device for a buffer material for geological disposal, comprising: a gas permeation suppression concavo-convex portion that is arranged so as to surround a porous layer on the outlet side.
JP8786891U 1991-10-25 1991-10-25 Gas permeability test equipment for buffer material for geological disposal Withdrawn JPH0547898U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8786891U JPH0547898U (en) 1991-10-25 1991-10-25 Gas permeability test equipment for buffer material for geological disposal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8786891U JPH0547898U (en) 1991-10-25 1991-10-25 Gas permeability test equipment for buffer material for geological disposal

Publications (1)

Publication Number Publication Date
JPH0547898U true JPH0547898U (en) 1993-06-25

Family

ID=13926854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8786891U Withdrawn JPH0547898U (en) 1991-10-25 1991-10-25 Gas permeability test equipment for buffer material for geological disposal

Country Status (1)

Country Link
JP (1) JPH0547898U (en)

Similar Documents

Publication Publication Date Title
US4701280A (en) Procedure for permanently storing radioactive material
JP4993199B2 (en) Rock reactor
Johnson et al. Canister options for the disposal of spent fuel
Gallé et al. Evaluation of gas transport properties of backfill materials for waste disposal: H2 migration experiments in compacted Fo-Ca clay
US5789662A (en) Method and apparatus for determining spatial distribution of fluids migrating through porous media under vacuum-induced pressure differential
CN113866355B (en) Simulation experiment method for water rock action and nuclide migration in multiple barriers of treatment library
CN113155701B (en) Bentonite penetration-diffusion-expansive force combined test device and test method thereof
US3236053A (en) Underground storage and disposal of radioactive products
CN108680467B (en) Method for in-situ determination of radon diffusion coefficient and transportable radon generation rate in underground engineering
JPH0547898U (en) Gas permeability test equipment for buffer material for geological disposal
CA2085431A1 (en) Processes and apparatus for the prevention, detection and/or repair of leaks or avenues for leaks from above-ground storage tanks
US5171483A (en) Method for retrievable/permanent storage of hazardous waste materials
JPH06294792A (en) Device for testing movement of nuclear species in soil
RU2382383C1 (en) Method of evaluating maximum radioactive contamination of marine environment in accident sites or dumping sites of objects with spent nuclear fuel
JP3120674B2 (en) Permeability test equipment
JP4370700B2 (en) Method of flooding test specimens in radioactive waste
JPH0593799A (en) Nuclear species migration testing device of earth
JPH06273592A (en) Stratum simulation device
Caron et al. CO2 transport through the capillary fringe in sand
JPH0627016A (en) Water permeation and absorption tester for radiation shield
Neretnieks et al. Some mechanisms which may reduce radiolysis
JP2503652Y2 (en) Geological disposal structure for radioactive waste
JPH0593798A (en) Nucleus seed migration testing device of rock body for disposing stratum
DE4000383C1 (en) Confining hydrogen explosion in container of radioactive waste - by storing container in borehole of geological salt formation and surrounding with salt chippings to form flame barrier
Bradley et al. Leach test methodology for the waste/rock interactions technology program

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19960208