JPH06273592A - Stratum simulation device - Google Patents

Stratum simulation device

Info

Publication number
JPH06273592A
JPH06273592A JP6572893A JP6572893A JPH06273592A JP H06273592 A JPH06273592 A JP H06273592A JP 6572893 A JP6572893 A JP 6572893A JP 6572893 A JP6572893 A JP 6572893A JP H06273592 A JPH06273592 A JP H06273592A
Authority
JP
Japan
Prior art keywords
soil
sample water
storage container
sample
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6572893A
Other languages
Japanese (ja)
Inventor
Nobuhiko Matsumoto
暢彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6572893A priority Critical patent/JPH06273592A/en
Publication of JPH06273592A publication Critical patent/JPH06273592A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To provide a stratum simulation device capable of exactly testing with a simple structure the transportation state of radioactive species in soil by simulating an actual disposal environment state near the objective location for ground disposal. CONSTITUTION:A container vessel 1 having a sample water inlet opening 1d and a sample water draining opening 1e at the top and the bottom, respectively, a multihole plate 4 arranged on an upper filter 10 over a soil containing part 2 formed in the container vessel to press the upper filter downward, and a pressing plate 5 connected to the multihole plate 4 in the container vessel by a connection rod 13 are provided. Also, a bellows 6 placed between the pressing plate and the inner surface of the container vessel to support the pressing plate movablly up and down in sealed state, and a rupture disk 7 which is fixed in a hole 5a formed in the pressing plate and broken when a load over a specified value is added, are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地層処分対象箇所近傍
における土壌中の放射線核種の移行状況を試験するため
に用いられる地層シュミレーション装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stratum simulation apparatus used for testing the migration status of radionuclides in soil near a geological disposal target site.

【0002】[0002]

【従来の技術】原子炉プラント関連施設において発生す
る放射線廃棄物(廃液等)は、例えばガラス固化処理す
ることによって、取り扱い性を向上させることができ
る。
2. Description of the Related Art A radioactive waste (a waste liquid or the like) generated in a facility associated with a nuclear reactor plant can be handled easily, for example, by vitrification treatment.

【0003】[0003]

【発明が解決しようとする課題】そして、ガラス固化物
を容器に収納した状態の固化パッケージ(キャニスタ)
は、放射線汚染を防止するために、人工的に構築した放
射線廃棄物貯蔵施設に、放射線の放出が著しく減少する
まで長時間保管貯蔵する計画の他、深地層内に収納処分
して生活圏から隔離する計画がなされている。
Then, a solidified package (canister) in which a glass solidified product is contained in a container
In order to prevent radiation pollution, in addition to the plan to store and store in an artificially constructed radiation waste storage facility for a long time until the emission of radiation is significantly reduced, There is a plan to isolate it.

【0004】この深地層処分を行なう計画では、自然の
岩石が持つ性質を利用して、放射性核種の移動拡散を抑
制することができるが、安全性を考慮した場合、放射線
核種の漏出を人為的な工作物を用いて抑制することによ
り、多重の抑制策が考えられている。また、現計画で
は、固化体としてホウケイ酸ガラスを用いること、収納
容器としてステンレス系合金を用いて固化パッケージ
(キャニスタ)とすることが有力であるとされている。
In this plan for deep geological disposal, the nature of natural rocks can be used to suppress the migration and diffusion of radionuclides, but in consideration of safety, leakage of radionuclides is artificial. Multiple suppression measures are considered by suppressing with various workpieces. In addition, in the current plan, it is said that it is effective to use borosilicate glass as a solidified body and use a stainless alloy as a storage container to form a solidified package (canister).

【0005】さらに、放射性廃棄物を閉じ込めた固化パ
ッケージは、岩盤を掘削して処分孔を明けておいて、該
処分孔の底部にベントナイトからなる緩衝材を適量敷
き、その上に炭素鋼等の適宜金属材からなるオーバーパ
ックでキャニスタを閉塞した状態で載置して、さらに、
オーバーパックの回りに緩衝材を充填して緩衝層を形成
した後、蓋でその上を覆う処分が実施される。
Further, in the solidified package in which radioactive waste is confined, rock is excavated to open a disposal hole, an appropriate amount of a cushioning material made of bentonite is laid on the bottom of the disposal hole, and carbon steel or the like is placed on the cushioning material. Place the canister with the overpack made of a metal material closed, and
After filling the cushioning material around the overpack to form the cushioning layer, the disposal is performed by covering it with a lid.

【0006】このような処分を行なうと、深地層中を流
れる地下水等の基づいて岩盤から浸透水が生じた場合
に、緩衝材の一部が膨潤して緩衝層の内圧が高まること
により、水の浸入を妨げて密封性を確保することができ
る。
[0006] When such disposal is performed, when infiltration water is generated from the bedrock due to groundwater flowing in the deep formation, a part of the cushioning material swells and the internal pressure of the cushioning layer is increased, so that water is absorbed. It is possible to prevent the infiltration of the water and ensure the hermeticity.

【0007】一方、深地層中の岩盤や地層処分対象箇所
近傍の土壌にあっては、地下水が浸水する現象をも仮定
して、これらの土壌に対する放射線核種の移行状況等を
予め研究調査しておくことは、地層処分の性能評価上必
要とされ、実施が図られている。
On the other hand, in the case of bedrock in the deep underground and soil near the geological disposal target site, assuming the phenomenon of groundwater inundation, researches and studies on the migration status of radionuclides to these soils in advance. Preservation is necessary and is being implemented in the performance evaluation of geological disposal.

【0008】従来、地層処分対象箇所近傍における土壌
中の放射線核種の移行状況を試験するため、土壌を所定
圧まで加圧しこの状態で試料水を注入する地層シュミレ
ーション装置が考えられているが、従来の地層シュミレ
ーション装置では、土壌を加圧するために試料供給系と
は別に土壌加圧系を備えるものであり、構造が複雑にな
る欠点があった。
Conventionally, in order to test the migration status of radionuclides in soil near the geological disposal target site, a geological simulation device has been considered which pressurizes the soil to a predetermined pressure and injects sample water in this state. The above-mentioned stratum simulation device has a soil pressurizing system in addition to the sample supply system for pressurizing the soil, and has a drawback that the structure becomes complicated.

【0009】本発明はかかる事情に鑑みてなされたもの
で、地層処分対象箇所近傍における土壌中に放射性核種
の移行状況を、実際の処分環境に模擬した状態で正確か
つ簡単な構造で試験することができる地層シュミレーシ
ョン装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, and it is possible to test the transfer status of radionuclides in the soil in the vicinity of the geological disposal target site with an accurate and simple structure in a state simulated in an actual disposal environment. It is an object of the present invention to provide a formation simulation device capable of performing the above.

【0010】[0010]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明にかかる地層シュミレーション装置にあっ
ては、上下に試料水注入用開口と試料水排出用開口をそ
れぞれ備える収納容器と、該収納容器内に上下をフイル
タにより覆われて形成される土壌収納部と、該土壌収納
部を形成する前記上部フィルタの上側に配されて該上部
フイルタを下方へ押圧する多孔板と、前記収納容器内で
あって前記多孔板に連結棒を介して連結された加圧板
と、該加圧板と前記収納容器の内周面との間に介在され
て加圧板を上下動可能かつ収納容器の内周面に対して気
密状態で支持するベローズと、前記加圧板に形成された
孔に組み付けられ所定以上の荷重が加わるときに破断さ
れるラプチャディスクと、前記試料水注入用開口に接続
され前記収納容器の内部に試料水を加圧状態で供給する
試料水供給手段とを備える構成としている。
In order to achieve such an object, in a formation simulation apparatus according to the present invention, a storage container having a sample water injection opening and a sample water discharge opening at the top and bottom, respectively, A soil storage part formed by covering the upper and lower sides with a filter in the storage container, a perforated plate arranged above the upper filter forming the soil storage part and pressing the upper filter downward, the storage container And a pressure plate connected to the perforated plate via a connecting rod, and vertically movable between the pressure plate and the inner peripheral surface of the storage container, and the inner periphery of the storage container. A bellows that supports the surface in an airtight state, a rupture disc that is assembled in a hole formed in the pressure plate and is broken when a predetermined load or more is applied, and the storage container that is connected to the sample water injection opening of It has a configuration and a sample water supply means for supplying the water sample under pressure to the section.

【0011】[0011]

【作用】上記構成の地層シュミレーション装置によれ
ば、まず、収納容器内の土壌収納部に土壌試料を充填
し、該土壌試料の上から上部フイルタを被せ、さらにそ
の上に多孔板を配する。多孔板に連結した加圧板をベロ
ーズにより上下動可能かつ気密状態で支持させる。この
状態から、試料水供給手段により試料水注入用開口を介
して収納容器内に試料水を加圧状態で供給する。
According to the formation simulation apparatus having the above-described structure, first, the soil sample is filled in the soil container in the container, the upper sample is covered with the soil sample, and the perforated plate is further arranged thereon. A pressure plate connected to the perforated plate is supported by a bellows in a vertically movable and airtight state. From this state, the sample water supply means supplies the sample water in a pressurized state into the storage container through the sample water injection opening.

【0012】収納容器内に試料水が加圧状態で供給され
ると、収納容器内の上方の空間すなわち加圧板で仕切ら
れた上側の空間が加圧され、これにより、加圧板が下方
へ押圧される。加圧板と一体になっている多孔板も下方
へ押圧され、これにより土壌が加圧される。
When the sample water is supplied under pressure to the storage container, the upper space inside the storage container, that is, the upper space partitioned by the pressure plate, is pressurized, whereby the pressure plate is pressed downward. To be done. The perforated plate, which is integrated with the pressure plate, is also pressed downward, which pressurizes the soil.

【0013】そして、収容容器内の圧力が所定圧に達す
ると、ラプチャディスクが破断され、前記収納容器の上
側に存する試料水は、該壊れたラプチャデイスクを通っ
て加圧板の下側の空間に至り、多孔板からフイルタを通
って土壌試料に浸透する。試料水が浸透された試験後の
土壌試料中には、放射線核種が残留することとなり、こ
れにより放射性核種の移行状況を等価的に把握すること
ができる。
When the pressure in the storage container reaches a predetermined pressure, the rupture disc is broken, and the sample water existing on the upper side of the storage container passes through the broken rupture disc into the space below the pressure plate. Then, it penetrates the soil sample from the perforated plate through the filter. The radionuclide remains in the soil sample after the test where the sample water has been infiltrated, whereby the transfer status of the radionuclide can be equivalently understood.

【0014】[0014]

【実施例】図1ないし図3は、本発明にかかる地層シュ
ミレーション装置の一実施例を示している。これら各図
において、符号1は収納容器、2は土壌収納部、3は土
壌収納部2に収納される土壌試料、4は多孔板、5は加
圧板、6はベローズ、7は加圧板5に組み込まれたラプ
チャディスク、8は試料水供給手段である。
1 to 3 show an embodiment of a formation simulation apparatus according to the present invention. In these figures, reference numeral 1 is a storage container, 2 is a soil storage portion, 3 is a soil sample stored in the soil storage portion 4, 4 is a porous plate, 5 is a pressure plate, 6 is a bellows, and 7 is a pressure plate 5. The incorporated rupture disc, 8 is a sample water supply means.

【0015】前記収納容器1は、円筒状に形成された胴
部1aの上下に上蓋1bと下蓋1cがフランジ30a、
30bをボルト・ナット31にて締め付けられている。
上蓋1bと下蓋1cの中心部には開口が形成され、該開
口には試料水注入用ノズル1dと試料水排出用ノズル1
eが取り付けられている。
In the storage container 1, an upper lid 1b and a lower lid 1c are provided on the upper and lower sides of a cylindrical body portion 1a, and a flange 30a,
30b is fastened with bolts and nuts 31.
An opening is formed in the center of the upper lid 1b and the lower lid 1c, and the sample water injection nozzle 1d and the sample water discharge nozzle 1 are formed in the opening.
e is attached.

【0016】収納容器1の下部には上下をそれぞれフイ
ルタ10、11により覆われて前記土壌収納部2が形成
されている。下側のフイルタ11は試料水排出用ノズル
1eの基端部を覆うことができる程度の小径にとどめら
れている。これらフイルタ10、11は土壌試料3に所
定の圧力が加わるときに、該土壌試料3の外部への流出
を阻止しつつ、試料水の侵入および排出を許容するもの
であり、具体的にはナイロンクロスあるいは不織布等に
よって作られる。上記土壌収納部2には深地層中の土砂
等の土壌、地層処分対象箇所近傍から採取した前記土壌
試料3が収納される。
At the bottom of the storage container 1, the soil storage portion 2 is formed by covering the top and bottom with filters 10 and 11, respectively. The lower filter 11 has a small diameter such that it can cover the base end of the sample water discharge nozzle 1e. These filters 10 and 11 allow the inflow and outflow of the sample water while blocking the outflow of the soil sample 3 when a predetermined pressure is applied to the soil sample 3, and specifically, nylon Made of cloth or non-woven fabric. The soil storage unit 2 stores soil such as soil in a deep geological formation, and the soil sample 3 collected from the vicinity of the geological disposal target site.

【0017】前記多孔板4は、図2にも示すように上下
に貫通する多数の孔4aを備えるものであって、前記上
部フィルタ10を介して土壌試料3を下方へ押圧できる
程度の剛性を備えるものである。該多孔板4の中央には
連結用のボルト13の下端がナット14を介して螺合さ
れ、連結用ボルト13の上端には加圧板5がナット15
を介して螺合されている。この連結ボルト13を介し
て、加圧板5は多孔板4の上方に該多孔板4と平行とな
るように一体的に取り付けられている。
As shown in FIG. 2, the perforated plate 4 is provided with a large number of holes 4a penetrating vertically, and has a rigidity such that the soil sample 3 can be pressed downward through the upper filter 10. Be prepared. The lower end of the connecting bolt 13 is screwed into the center of the perforated plate 4 via a nut 14, and the pressing plate 5 is attached to the upper end of the connecting bolt 13 by a nut 15.
It is screwed through. The pressure plate 5 is integrally mounted above the perforated plate 4 via the connecting bolt 13 so as to be parallel to the perforated plate 4.

【0018】加圧板5は前記試料注入用ノズル1dから
試料水が供給されるとき、該試料水の静水圧を受ける部
分であり、したがって、試料水の静水圧が加わるときで
も損傷しない程度の剛性を備える材料によって作られて
いる。16は収納容器1の内周に形成された鍔部であ
り、この鍔部16と前記加圧板5との間には前記ベロー
ズ6が介在されている。このべローズ6によって加圧板
5が上下動可能かつ収納容器1の内周面に対して気密状
態に支持されている。したがって、加圧板5によって仕
切られる前記収納容器内の上下の空間17、18は気密
に区分けされている。
The pressure plate 5 is a portion which receives the hydrostatic pressure of the sample water when the sample water is supplied from the nozzle 1d for injecting the sample. Therefore, the pressurizing plate 5 has such a rigidity that it is not damaged even when the hydrostatic pressure of the sample water is applied. It is made of material. Reference numeral 16 denotes a collar portion formed on the inner circumference of the storage container 1, and the bellows 6 is interposed between the collar portion 16 and the pressure plate 5. The pressure plate 5 is vertically movable by the bellows 6 and is supported in an airtight state with respect to the inner peripheral surface of the storage container 1. Therefore, the upper and lower spaces 17 and 18 in the storage container partitioned by the pressure plate 5 are airtightly divided.

【0019】前記加圧板5には上下に貫通する複数の孔
5aが形成され、そこには前記ラプチャディスク7が組
み付けられている。ラプチャディスク7は所定以上の荷
重が加わるとき、具体的に言えば加圧板5で仕切られる
上下の空間17、18の圧力差が所定以上になるときに
破断されるものであり、プラスチックあるいは金属等の
材料によって作られる。
The pressurizing plate 5 is formed with a plurality of holes 5a penetrating vertically, and the rupture disc 7 is assembled therein. The rupture disc 7 is broken when a load of a predetermined amount or more is applied, specifically, when the pressure difference between the upper and lower spaces 17 and 18 partitioned by the pressure plate 5 becomes a predetermined amount or more, such as plastic or metal. Made by the material.

【0020】前記試料水注入用ノズル1dを介して前記
収納容器1の内部に試料水を加圧状態で供給する試料水
供給手段8は、試料水タンク19と、該試料水タンク1
9と前記試料水注入用ノズル1dとを接続する管路20
と、該管路20に介在される加圧ポンプ21とから構成
されている。22は前記管路20に介在された仕切弁で
ある。なお、前記管路20にはそこから分岐して開放タ
ンク23につながるバイパス通路24が形成され、この
バイパス通路24には圧力逃がし弁25が介装されてい
る。この圧力逃がし弁25は前記収納容器1の上部空間
17の圧力を検知するセンサ26によってオンオフ制御
される。なお、27は試料水を溜めるためのタンクであ
る。
The sample water supply means 8 for supplying sample water under pressure to the inside of the storage container 1 through the sample water injection nozzle 1d comprises a sample water tank 19 and the sample water tank 1
9 for connecting 9 and the sample water injection nozzle 1d
And a pressurizing pump 21 interposed in the conduit 20. Reference numeral 22 is a sluice valve interposed in the pipe 20. A bypass passage 24 is formed in the pipe 20 to branch from the pipe passage 20 to the open tank 23, and a pressure relief valve 25 is provided in the bypass passage 24. The pressure relief valve 25 is on / off controlled by a sensor 26 that detects the pressure in the upper space 17 of the storage container 1. Incidentally, 27 is a tank for storing the sample water.

【0021】このような構造の地層シュミレーション装
置を用いた土壌の核種移行試験について説明する。予
め、下部フイルタ11によって試料水排出用ノズル1e
の基部を塞いだ状態で収納容器1内の土壌収納部2に採
取した土壌試料3を充填する。そして、土壌試料3の上
から上部フイルタ10を被せ、その上に多孔板4を配置
する。次いで、加圧板5と収納容器1の内周面の鍔部1
6との間にベローズ6を配置し、加圧板5を上下動可能
に支持するとともに、かつ加圧板5で仕分けされた収納
容器内の上下の空間17、18を気密に区分けする。こ
の状態で、上蓋1bの外周を収納容器1の胴部1aに溶
接する。
A nuclide migration test of soil using a stratum simulation apparatus having such a structure will be described. The sample water discharge nozzle 1e is previously used by the lower filter 11.
The soil sample 3 is filled in the soil storage part 2 in the storage container 1 with the base part of 1 being closed. Then, the soil filter 3 is covered with the upper filter 10 and the perforated plate 4 is arranged thereon. Next, the pressure plate 5 and the collar portion 1 on the inner peripheral surface of the storage container 1
A bellows 6 is arranged between the pressure plate 5 and the pressure plate 5, and the pressure plate 5 is supported so as to be movable up and down, and the upper and lower spaces 17 and 18 in the storage container sorted by the pressure plate 5 are airtightly divided. In this state, the outer periphery of the upper lid 1b is welded to the body portion 1a of the storage container 1.

【0022】加圧ポンプ21を駆動し、試料水タンク1
9に溜められている試料水を管路20および試料水注入
用ノズル1dを通じて収容容器1の上部空間17に注入
する。この試料水の注入により上部空間17の圧力が徐
々に上昇し、これとともに加圧板5および該加圧板5と
連結されている多孔板4が下方降に押され、この結果土
壌試料3に押圧力が加わる。そして、上記試料水が注入
され続けることにより土壌試料3への押圧力が次第に高
まり、ひいては地層処分対象箇所の地下水が挿通する土
壌が受ける圧力と同等の圧力となる。
The pressure pump 21 is driven to drive the sample water tank 1
The sample water stored in 9 is injected into the upper space 17 of the container 1 through the pipe 20 and the sample water injection nozzle 1d. By the injection of the sample water, the pressure in the upper space 17 gradually rises, and the pressing plate 5 and the porous plate 4 connected to the pressing plate 5 are pushed downward together with this, and as a result, the pressing force is applied to the soil sample 3. Is added. Then, by continuously injecting the sample water, the pressing force on the soil sample 3 gradually increases, and eventually the pressure becomes equivalent to the pressure received by the soil through which the groundwater at the geological disposal target site is inserted.

【0023】収納容器1内の上部空間17の圧力が所定
値に達し、加圧板5で仕切られる上下の空間17、18
の圧力差が所定以上になるときにラプチャディスク7が
破断される。これに伴い、図1中矢印で示すように、前
記収納容器1の上部空間17に存する試料水が、壊れた
ラプチャデイスク7を通って加圧板5の下側の空間18
に至り、多孔板4の孔4aから上部フイルタ10を通っ
て土壌試料3の内部に浸透する。そして、収容容器の底
部に達した余分な試料水は、下部フイルタ11から試料
水排出用ノズル1eを介して下方の試料水タンク27に
致る。前記試料水を浸透させた試験後の土壌試料3の中
には、放射性核種が試料水の浸透方向に沿って残留する
こととなる。
The upper space 17 in the storage container 1 reaches a predetermined pressure and is partitioned by the pressure plate 5 into upper and lower spaces 17, 18.
The rupture disk 7 is broken when the pressure difference between the two exceeds a predetermined value. Along with this, as shown by the arrow in FIG. 1, the sample water existing in the upper space 17 of the storage container 1 passes through the broken rupture disc 7 and the space 18 below the pressure plate 5.
To the inside of the soil sample 3 through the upper filter 10 from the hole 4a of the porous plate 4. Then, the excess sample water that has reached the bottom of the container is collected from the lower filter 11 through the sample water discharge nozzle 1e into the sample water tank 27 below. In the soil sample 3 after the test in which the sample water is infiltrated, the radionuclide remains along the infiltrating direction of the sample water.

【0024】実際の地層処分環境では、土壌部分の面積
および体積が大きいため、放射性核種の移行方向が相互
平行になると考えられるので、図1の試験範囲における
土壌試料3の試料核種の濃度分布は、土砂状の土壌にあ
っても深地層等における地下水の浸透方向を模擬して等
価なものとなる。
In the actual geological disposal environment, since the area and volume of the soil part are large, the transfer directions of the radionuclide are considered to be parallel to each other. Therefore, the concentration distribution of the sample nuclide of the soil sample 3 in the test range of FIG. Even in sandy soil, it is equivalent by simulating the infiltration direction of groundwater in deep layers.

【0025】上記のように試料水を浸透させた後、放射
性核種を移行させた土壌試料3を、上蓋1bを取り除き
収納容器1から引き出し、該土壌試料3について放射性
物質の付着濃度を検出すること等によって、地層処分環
境の土壌を模擬した状態の把握が可能となる。
After permeating the sample water as described above, the soil sample 3 to which the radionuclide has been transferred is removed from the storage container 1 by removing the upper lid 1b, and the concentration of radioactive substances attached to the soil sample 3 is detected. By doing so, it becomes possible to grasp the state of simulating soil in the geological disposal environment.

【0026】なお、収納容器1の上部空間17の圧力を
検知するセンサ26と圧力逃がし弁25のインタロック
により、上部空間17内の圧力を所定圧力に保つことが
でき、かつ必要に応じて上部空間17内の圧力を大気圧
と同程度に設定することもできる。
The pressure inside the upper space 17 can be maintained at a predetermined pressure by interlocking the sensor 26 for detecting the pressure in the upper space 17 of the storage container 1 and the pressure relief valve 25. The pressure in the space 17 can be set to the same level as the atmospheric pressure.

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、以
下の効果を奏する。 試料水を土壌試料の加圧用として利用することができ
るため、収納容器に供給する流体は試料水一種でよく、
したがって装置の全体構成を簡素化でき、しかも経済性
の向上が図れる。 ラプチャディスクを種々用意しそれらを選択的に加圧
板に組み付けること並びに加圧水を試料水として用いる
ことにより、土壌試料に対し種々の設定圧力下でのシュ
ミレーション試験が可能となり、幅広いシュミレーショ
ン試験が実現でき、実用性が増す。
As described above, the present invention has the following effects. Since the sample water can be used for pressurizing the soil sample, the fluid supplied to the storage container may be one type of sample water,
Therefore, the entire structure of the device can be simplified and the economical efficiency can be improved. By preparing various rupture discs and selectively assembling them on the pressure plate and using pressurized water as sample water, it is possible to perform simulation tests on soil samples under various set pressures, and a wide range of simulation tests can be realized. Practicality increases.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる地層シュミレーション装置の一
実施例を示す要部断面図。
FIG. 1 is a cross-sectional view of essential parts showing an embodiment of a formation simulation device according to the present invention.

【図2】図1のXーX線に沿う断面図。FIG. 2 is a sectional view taken along line XX of FIG.

【図3】本発明にかかる地層シュミレーション装置の一
実施例を示す全体図。
FIG. 3 is an overall view showing an embodiment of a formation simulation device according to the present invention.

【符号の説明】[Explanation of symbols]

1 収納容器 1d 試料水供給用開口(ノズル) 1e 試料水排出用開口(ノズル) 2 土壌収納部 3 土壌試料 4 多孔板 5 加圧板 5a 孔 6 ベローズ 7 ラプチャディスク 8 試料水供給手段 10 上部フィルタ 11 下部フィルタ 13 連結棒(連結用ボルト) 16 鍔部 19 試料水タンク 21 加圧ポンプ 1 Storage Container 1d Sample Water Supply Opening (Nozzle) 1e Sample Water Discharging Opening (Nozzle) 2 Soil Storage Section 3 Soil Sample 4 Perforated Plate 5 Pressurizing Plate 5a Hole 6 Bellows 7 Rupture Disc 8 Sample Water Supply Means 10 Top Filter 11 Lower filter 13 Connecting rod (connecting bolt) 16 Collar 19 Sample water tank 21 Pressurizing pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 地層処分対象箇所近傍における土壌中の
放射線核種の移行状況を試験するために用いる地層シュ
ミレーション装置であって、 上下に試料水注入用開口と試料水排出用開口をそれぞれ
備える収納容器と、該収納容器内に上下をフイルタによ
り覆われて形成される土壌収納部と、該土壌収納部を形
成する前記上部フィルタの上側に配されて該上部フイル
タを下方へ押圧する多孔板と、前記収納容器内であって
前記多孔板に連結棒を介して連結された加圧板と、該加
圧板と前記収納容器の内周面との間に介在されて加圧板
を上下動可能かつ収納容器の内周面に対して気密状態で
支持するベローズと、前記加圧板に形成された孔に組み
付けられ所定以上の荷重が加わるときに破断されるラプ
チャディスクと、前記試料水注入用開口に接続され前記
収納容器の内部に試料水を加圧状態で供給する試料水供
給手段とを備えてなることを特徴とする地層シュミレー
ション装置。
1. A stratum simulation device used for testing the migration status of radionuclides in soil in the vicinity of a geological disposal target site, the storage container having upper and lower sample water injection openings and sample water discharge openings, respectively. A soil storage part formed by covering the top and bottom with a filter in the storage container, and a perforated plate arranged above the upper filter forming the soil storage part and pressing the upper filter downward. A pressure plate that is connected to the perforated plate via a connecting rod in the storage container, and is vertically interposed between the pressure plate and the inner peripheral surface of the storage container, and the storage container can be moved up and down. A bellows that is supported in an airtight state on the inner peripheral surface of the rupture disc, a rupture disc that is assembled in a hole formed in the pressure plate and is broken when a predetermined load or more is applied, and a sample water injection opening. By formation simulation apparatus characterized by comprising a sample water supply means for supplying the water sample under pressure to the interior of the container.
JP6572893A 1993-03-24 1993-03-24 Stratum simulation device Withdrawn JPH06273592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6572893A JPH06273592A (en) 1993-03-24 1993-03-24 Stratum simulation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6572893A JPH06273592A (en) 1993-03-24 1993-03-24 Stratum simulation device

Publications (1)

Publication Number Publication Date
JPH06273592A true JPH06273592A (en) 1994-09-30

Family

ID=13295376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6572893A Withdrawn JPH06273592A (en) 1993-03-24 1993-03-24 Stratum simulation device

Country Status (1)

Country Link
JP (1) JPH06273592A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901138A (en) * 1986-12-04 1990-02-13 Kabushiki Kaisha Toshiba Semiconductor converter
US5801400A (en) * 1995-01-10 1998-09-01 Victor Company Of Japan, Ltd. Active matrix device
JP2001108797A (en) * 1999-10-06 2001-04-20 Kobe Steel Ltd Device for simulating actual undergound environment
JP2006053151A (en) * 2005-08-12 2006-02-23 Kobe Steel Ltd Practical underground environment simulator
US7581457B2 (en) * 2005-10-12 2009-09-01 Agence Spatiale Europeenne Method and apparatus for testing materials

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901138A (en) * 1986-12-04 1990-02-13 Kabushiki Kaisha Toshiba Semiconductor converter
US5801400A (en) * 1995-01-10 1998-09-01 Victor Company Of Japan, Ltd. Active matrix device
JP2001108797A (en) * 1999-10-06 2001-04-20 Kobe Steel Ltd Device for simulating actual undergound environment
JP2006053151A (en) * 2005-08-12 2006-02-23 Kobe Steel Ltd Practical underground environment simulator
US7581457B2 (en) * 2005-10-12 2009-09-01 Agence Spatiale Europeenne Method and apparatus for testing materials

Similar Documents

Publication Publication Date Title
US4335978A (en) Induced intragradient system for secure landfill
CN103529190B (en) Aeration and vapor extraction combination two-dimensional testing device
US4701280A (en) Procedure for permanently storing radioactive material
JPH02287198A (en) Bolt apparatus for radioactive waste disposal and waste disposal method
JPH06273592A (en) Stratum simulation device
US5269172A (en) Processes and apparatus for the prevention, detection and/or repair of leaks or avenues for leaks from above-ground storage tanks
US4998848A (en) Method and apparatus for removing ground contaminants
US4861194A (en) Waste disposal system
US5864069A (en) Lysimeter for collecting chemical samples from the vadose zone
CN103999163A (en) system for abatement of noxious emissions in the atmosphere from an industrial or nuclear power plant
JPH06294792A (en) Device for testing movement of nuclear species in soil
CN210243647U (en) Soil column leaching device for downward infiltration and migration of pollutants
JPH0593799A (en) Nuclear species migration testing device of earth
CA2226014A1 (en) Oil spill containment system
US6796746B2 (en) Subterranean drilling and in situ treatment of wastes using a contamination control system and methods relating thereto
US5394737A (en) Permeability tester
JP2514953B2 (en) Shielding method for radioactive waste storage facility
JPH0593798A (en) Nucleus seed migration testing device of rock body for disposing stratum
JPH0627016A (en) Water permeation and absorption tester for radiation shield
Edil et al. Large-size test for transport of organics through clay liners
JP3640200B2 (en) Water leakage repair method for concrete bottom slab
WO1995022750A1 (en) Lysimeter for collecting chemical samples from the vadose zone
Nyhan Development of technology for the long-term stabilization and closure of shallow land burial sites in semiarid environments
JPH073477B2 (en) Underground structure for storage and disposal of radioactive waste
Peckham et al. Considerations for Selection and Operation of Radioactive Waste Burial Sites

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530