JPH0547763U - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH0547763U
JPH0547763U JP10337191U JP10337191U JPH0547763U JP H0547763 U JPH0547763 U JP H0547763U JP 10337191 U JP10337191 U JP 10337191U JP 10337191 U JP10337191 U JP 10337191U JP H0547763 U JPH0547763 U JP H0547763U
Authority
JP
Japan
Prior art keywords
heat
low temperature
peltier cooler
refrigeration cycle
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10337191U
Other languages
Japanese (ja)
Inventor
雅明 花田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP10337191U priority Critical patent/JPH0547763U/en
Publication of JPH0547763U publication Critical patent/JPH0547763U/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】 【目的】 冷却性能の低下を防止しながら、超低温を得
る。 【構成】 吸熱部71が冷凍室50内に配置されたペル
チエ冷却器70の放熱部72を冷凍サイクル80の蒸発
器84により冷却する。 【効果】 ペルチエ冷却器70の放熱部72での放熱作
用が促進され、結果的にペルチエ冷却器70での熱移動
が低温域で行われて超低温を得ることができるととも
に、超低温域に冷凍サイクル80が配置されないので、
冷凍サイクル80内のオイル凍結に起因する冷却性能の
低下を防止できる。
(57) [Summary] [Purpose] To obtain ultra-low temperature while preventing deterioration of cooling performance. [Structure] A heat radiating portion 72 of a Peltier cooler 70 having a heat absorbing portion 71 arranged in a freezing chamber 50 is cooled by an evaporator 84 of a refrigerating cycle 80. [Effects] The heat radiation effect in the heat radiation portion 72 of the Peltier cooler 70 is promoted, and as a result, the heat transfer in the Peltier cooler 70 is performed in a low temperature range to obtain an ultra low temperature, and a refrigeration cycle in the ultra low temperature range. Since 80 is not placed,
It is possible to prevent the deterioration of the cooling performance due to the freezing of oil in the refrigeration cycle 80.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、例えば超低温フリーザ等に利用される冷凍装置に関する。 The present invention relates to a refrigerating device used in, for example, an ultra-low temperature freezer.

【0002】[0002]

【従来の技術】[Prior Art]

一般に、フロン冷媒を使用する冷凍サイクルでは、その高温域と低温域との温 度差はおよそ80度程度である。このため、−85℃以下の超低温域を得るため に、冷凍サイクルを複数設けた多元冷凍サイクルを利用する技術が知られている 。 Generally, in a refrigeration cycle using a CFC refrigerant, the temperature difference between the high temperature region and the low temperature region is about 80 degrees. Therefore, in order to obtain an ultra-low temperature range of −85 ° C. or lower, a technique using a multi-source refrigeration cycle provided with a plurality of refrigeration cycles is known.

【0003】 図2は2元冷凍サイクルが利用された従来の冷凍装置を示す構成図である。同 図に示すように、この冷凍装置は、R502等のフロン冷媒(以下「高沸点冷媒 」と称す)が封入された高温側冷凍サイクル10と、R502よりも低沸点のR 503等のフロン冷媒(以下「低沸点冷媒」と称す)が封入された低温側冷凍サ イクル20とを有している。そして、高温側冷凍サイクル10の圧縮機11で圧 縮された高沸点冷媒が、凝縮器12で凝縮されて液化し、キャピラリチュ−ブ1 3で減圧膨張した後、カスケード凝縮器14で低温側冷凍サイクル20の低沸点 冷媒から熱を吸収して気化し、圧縮機11に戻る。一方、低温側冷凍サイクル2 0の圧縮機21で圧縮された低沸点冷媒は、カスケード凝縮器14で上記高沸点 冷媒により冷却されて液化し、キャピラリチュ−ブ23で減圧膨張した後、蒸発 器24で冷凍室1内から熱を吸収して気化し、圧縮機21に戻る。このように、 高温側冷凍サイクル10により低温側冷凍サイクル20の低沸点冷媒を凝縮して 、−85℃以下の超低温を得るようにしている。FIG. 2 is a configuration diagram showing a conventional refrigeration system using a two-way refrigeration cycle. As shown in the figure, this refrigerating apparatus includes a high temperature side refrigeration cycle 10 in which a Freon refrigerant such as R502 (hereinafter referred to as "high boiling point refrigerant") is enclosed, and a Freon refrigerant such as R503 having a lower boiling point than R502. The low temperature side refrigerating cycle 20 (hereinafter referred to as “low boiling point refrigerant”) is enclosed. Then, the high boiling point refrigerant compressed in the compressor 11 of the high temperature side refrigeration cycle 10 is condensed in the condenser 12 and liquefied, and is decompressed and expanded in the capillary tube 13 and then in the low temperature side in the cascade condenser 14. Heat is absorbed from the low boiling point refrigerant of the refrigeration cycle 20 to be vaporized, and then returned to the compressor 11. On the other hand, the low boiling point refrigerant compressed by the compressor 21 of the low temperature side refrigeration cycle 20 is cooled by the high boiling point refrigerant in the cascade condenser 14 to be liquefied, decompressed and expanded in the capillary tube 23, and then evaporated. At 24, heat is absorbed from the freezer compartment 1 to be vaporized, and then returned to the compressor 21. In this way, the high-temperature side refrigeration cycle 10 condenses the low-boiling-point refrigerant in the low-temperature side refrigeration cycle 20 to obtain an ultra-low temperature of -85 ° C or lower.

【0004】 図3に他の従来の冷凍装置の構成図を示す。同図に示すように、冷凍庫30の 壁部に取り付けられたペルチエ冷却器32の吸熱部32aが冷凍室31内に配置 されるとともに、放熱部32bが冷凍室31外部の機械室33に配置される。こ の機械室33内に放熱部32bを冷却するための冷却ファン34が取り付けられ る。この冷凍装置において、電源部35からペルチエ冷却器32に給電がなされ ると、冷凍室31内の熱がペルチエ冷却器32の吸熱部32aにより吸熱されて 放熱部32bから放熱され、こうして冷凍室31内が冷却される。そしてこの冷 却運転中、冷凍室31内の温度がセンサ36により検出されて制御装置37に入 力され、制御装置37はその検出温度に基づき電源部35によるペルチエ冷却器 32への給電量を制御して冷凍室31内を所定の設定温度に保つ。FIG. 3 shows a block diagram of another conventional refrigeration system. As shown in the figure, the heat absorbing part 32a of the Peltier cooler 32 attached to the wall part of the freezer 30 is arranged in the freezing chamber 31, and the heat radiating part 32b is arranged in the machine room 33 outside the freezing chamber 31. It A cooling fan 34 for cooling the heat radiating portion 32b is installed in the machine room 33. In this refrigeration system, when power is supplied from the power supply section 35 to the Peltier cooler 32, the heat in the freezer compartment 31 is absorbed by the heat absorbing section 32a of the Peltier cooler 32 and radiated from the heat radiating section 32b. The inside is cooled. During this cooling operation, the temperature in the freezer compartment 31 is detected by the sensor 36 and input to the control device 37, and the control device 37 determines the amount of power supplied to the Peltier cooler 32 by the power supply unit 35 based on the detected temperature. The inside of the freezer compartment 31 is controlled to maintain a predetermined set temperature.

【0005】[0005]

【考案が解決しようとする課題】[Problems to be solved by the device]

しかしながら、図2の冷凍装置では、低温側冷凍サイクル20の蒸発器24周 辺の温度が−85℃以下の超低温となるため、圧縮機21から冷媒経路内に流出 した潤滑用オイルが蒸発器24周辺で凍結して冷媒経路を封鎖し、これにより冷 媒の循環が阻止されて冷却性能が低下するという問題があった。 However, in the refrigerating apparatus of FIG. 2, the temperature around the evaporator 24 of the low temperature side refrigeration cycle 20 becomes an extremely low temperature of −85 ° C. or less, so that the lubricating oil that has flowed out of the compressor 21 into the refrigerant path is evaporated. There was a problem in that the refrigerant was frozen in the periphery and the refrigerant path was blocked, thereby blocking the circulation of the cooling medium and lowering the cooling performance.

【0006】 一方、図3の冷却装置では、ペルチエ冷却器32の主要部が熱伝導度の高い金 属で構成されてその金属部への熱の移動による熱損失が大きいため、吸熱部32 aと放熱部32bとの温度差は80度程度が限界となっている。このため、−8 5℃以下の超低温を得ることができないという問題があった。On the other hand, in the cooling device of FIG. 3, the main part of the Peltier cooler 32 is made of metal having high thermal conductivity, and the heat loss due to the transfer of heat to the metal part is large. The temperature difference between the heat radiation part 32b and the heat radiation part 32b is limited to about 80 degrees. Therefore, there is a problem that it is impossible to obtain an ultralow temperature of −85 ° C. or less.

【0007】 この考案は、上記従来技術の問題を解消し、冷却性能の低下を防止しながら超 低温域を得ることができる冷凍装置を提供することを目的とする。An object of the present invention is to provide a refrigerating apparatus which solves the above-mentioned problems of the prior art and is capable of obtaining an ultra-low temperature range while preventing deterioration of cooling performance.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

上記目的を達成するため、この考案の冷凍装置は、吸熱部が冷凍室内に配置さ れたペルチエ冷却器の放熱部を前記冷凍室の外部に配置するとともに、圧縮機、 凝縮器、減圧手段および蒸発器からなる冷凍サイクルのその蒸発器を、前記放熱 部近傍に配置して、前記放熱部を前記蒸発器との熱交換により冷却するようにし ている。 In order to achieve the above object, the refrigerating apparatus of the present invention is arranged such that a heat radiating portion of a Peltier cooler having a heat absorbing portion arranged inside the freezing chamber is arranged outside the freezing chamber, and a compressor, a condenser, a decompression means, and The evaporator of the refrigeration cycle including the evaporator is arranged in the vicinity of the heat radiating portion, and the heat radiating portion is cooled by heat exchange with the evaporator.

【0009】[0009]

【作用】 この考案の冷凍装置によれば、吸熱部が冷凍室内に配置されたペルチエ冷却器 の放熱部を、冷凍サイクルの蒸発器により冷却するようにしているため、ペルチ エ冷却器の放熱部での放熱作用が促進され、結果的にペルチエ冷却器による吸熱 部から放熱部への熱移動が低温域で行われるようになって冷凍室内に超低温を得 ることができる。また、超低温域である冷凍室内にに冷凍サイクルが配置されて いないので、冷凍サイクル内のオイル凍結に起因する冷却性能の低下も防止でき る。According to the refrigerating apparatus of the present invention, the heat absorbing portion is arranged so that the heat radiating portion of the Peltier cooler arranged in the freezing chamber is cooled by the evaporator of the refrigeration cycle. As a result, the heat dissipation effect in the freezer is promoted, and as a result, the heat transfer from the heat absorption part to the heat dissipation part by the Peltier cooler is performed in the low temperature region, and an ultralow temperature can be obtained in the freezing compartment. In addition, since the refrigeration cycle is not installed in the cryogenic chamber, which is the ultra-low temperature range, it is possible to prevent the cooling performance from deteriorating due to oil freezing in the refrigeration cycle.

【0010】[0010]

【実施例】【Example】

図1はこの考案の一実施例である冷凍装置が適用された超低温フリーザを示す 構成図である。同図に示すように、このフリーザには、冷凍庫40と、ペルチエ 冷却器70と、冷凍サイクル80とが設けられている。 FIG. 1 is a block diagram showing an ultra-low temperature freezer to which a refrigerating apparatus according to an embodiment of the present invention is applied. As shown in the figure, the freezer is provided with a freezer 40, a Peltier cooler 70, and a refrigeration cycle 80.

【0011】 略ボックス状の冷凍庫40は、一面側に開口52が形成された冷凍庫本体51 と、冷凍庫本体51に開閉自在に取り付けられて開口52をパッキン53を介し て閉塞自在な蓋体54とで構成されている。冷凍庫40の本体51および蓋体5 4は、それぞれその表面部が金属パネル55により構成されるとともに、内部に 断熱材56が挿入される。The substantially box-shaped freezer 40 includes a freezer main body 51 having an opening 52 formed on one surface side thereof, and a lid 54 which is openably and closably attached to the freezer main body 51 to close the opening 52 via a packing 53. It is composed of. Each of the main body 51 and the lid 54 of the freezer 40 has a surface portion formed of a metal panel 55, and a heat insulating material 56 is inserted inside.

【0012】 冷凍庫本体51の奥壁内には低温室57が形成され、ペルチエ冷却器70が、 その吸熱部71を冷凍室50に臨ませるようにして低温室57に取り付けられる 。A low temperature chamber 57 is formed in the inner wall of the freezer main body 51, and a Peltier cooler 70 is attached to the low temperature chamber 57 so that its heat absorbing portion 71 faces the freezing chamber 50.

【0013】 一方、冷凍サイクル80は、圧縮機81と、凝縮器82と、キャピラリチュ− ブ83等の減圧手段と、低温室57内に収容される蒸発器84と、これらを接続 する冷媒経路85とで構成され、この冷凍サイクル80内にはR502等のフロ ン冷媒が封入される。さらに、上記蒸発器84はペルチエ冷却器70の放熱部7 2に接するように配置され、これにより放熱部72が蒸発器84との熱交換によ り冷却されるように構成している。On the other hand, the refrigeration cycle 80 includes a compressor 81, a condenser 82, pressure reducing means such as a capillary tube 83, an evaporator 84 housed in the low temperature chamber 57, and a refrigerant path connecting them. The refrigeration cycle 80 is filled with a refrigerant such as R502. Further, the evaporator 84 is arranged so as to be in contact with the heat dissipation portion 72 of the Peltier cooler 70, whereby the heat dissipation portion 72 is cooled by heat exchange with the evaporator 84.

【0014】 冷凍室50内および低温室57内には温度検出センサ61,62が配置される とともに、これらのセンサ61,62と、ペルチエ冷却器70に給電するための 電源部63と、圧縮機81とが制御装置100にそれぞれ接続されている。Temperature detection sensors 61 and 62 are arranged in the freezer compartment 50 and the low temperature compartment 57, and these sensors 61 and 62, a power supply section 63 for supplying power to the Peltier cooler 70, and a compressor. 81 and 81 are connected to the control device 100, respectively.

【0015】 このフリーザにおいて、制御装置100に動作開始指令を与えると、圧縮機8 1が駆動するとともに、ペルチエ冷却器70への給電が開始される。これにより 、圧縮機81から吐出された高温のフロン冷媒が凝縮器82により凝縮されて液 化し、キャピラリチュ−ブ83で減圧膨張した後、蒸発器84でペルチエ冷却器 70の放熱部72から熱を吸収して気化し、圧縮機81に戻る。In this freezer, when an operation start command is given to the control device 100, the compressor 81 is driven and power supply to the Peltier cooler 70 is started. As a result, the high-temperature CFC refrigerant discharged from the compressor 81 is condensed and liquefied by the condenser 82, decompresses and expands in the capillary tube 83, and then heats from the heat radiating portion 72 of the Peltier cooler 70 in the evaporator 84. Is vaporized and returned to the compressor 81.

【0016】 また、ペルチエ冷却器70では、冷凍室50内の熱が吸熱部71で吸熱されて 放熱部72から放出され、こうして吸熱部71から放熱部72に向けて熱が移動 して冷凍室50内が冷却される。このとき、放熱部72側が冷凍サイクル80の 蒸発器84により冷却されるので、放熱部72での放熱作用が促進され、結果的 にペルチエ冷却器70での熱移動が低温域で行われて冷凍室50内が超低温に冷 却される。例えば、装置周囲温度が常温の場合、上述したようにペルチエ冷却器 70および冷凍サイクル80の吸熱側と放熱側の温度差はともに80度程度であ るため、放熱側の温度が低くなると、熱損失を考慮しても冷凍室50内を−85 ℃以下の超低温に冷却することができる。Further, in the Peltier cooler 70, the heat in the freezer compartment 50 is absorbed by the heat absorbing portion 71 and released from the heat radiating portion 72, and thus heat is moved from the heat absorbing portion 71 toward the heat radiating portion 72, so that the freezer compartment is cooled. The inside of 50 is cooled. At this time, the heat radiating portion 72 side is cooled by the evaporator 84 of the refrigeration cycle 80, so that the heat radiating action in the heat radiating portion 72 is promoted, and consequently the heat transfer in the Peltier cooler 70 is performed in the low temperature region. The inside of the chamber 50 is cooled to an ultra low temperature. For example, when the ambient temperature of the device is room temperature, the temperature difference between the heat absorbing side and the heat radiating side of the Peltier cooler 70 and the refrigeration cycle 80 is about 80 degrees as described above. Even if the loss is taken into consideration, the inside of the freezing chamber 50 can be cooled to an ultra-low temperature of −85 ° C. or less.

【0017】 一方、フリーザの駆動中、冷凍室50内および低温室57内の温度が温度セン サ61,62により逐一検出されて制御装置100に入力され、制御装置100 は冷凍室50内の温度が、あらかじめ設定された温度と等しくなるように電源部 63によるペルチエ冷却器70への給電量を制御するとともに、低温室57内の 温度が、あらかじめ設定された温度範囲内に保たれるように圧縮機81の駆動・ 停止を行う。On the other hand, while the freezer is being driven, the temperatures in the freezer compartment 50 and the low temperature compartment 57 are detected by the temperature sensors 61 and 62 one by one and input to the control device 100. Control the amount of power supplied to the Peltier cooler 70 by the power supply unit 63 so as to be equal to the preset temperature, and keep the temperature in the low temperature chamber 57 within the preset temperature range. The compressor 81 is driven and stopped.

【0018】 このフリーザによれば、吸熱部71が冷凍室50内に配置されたペルチエ冷却 器70の放熱部72を、冷凍サイクル80の蒸発器84により冷却するようにし ているため、ペルチエ冷却器70の放熱部72での放熱作用が促進し、結果的に ペルチエ冷却器70での熱移動が低温域で行われて、冷凍室50内を超低温に冷 却できる。According to this freezer, the heat absorbing portion 71 is configured to cool the heat radiating portion 72 of the Peltier cooler 70 arranged in the freezer compartment 50 by the evaporator 84 of the refrigeration cycle 80, and thus the Peltier cooler. The heat radiating action of the heat radiating portion 72 of the 70 is promoted, and as a result, the heat transfer in the Peltier cooler 70 is performed in the low temperature region, and the inside of the freezing chamber 50 can be cooled to an ultra low temperature.

【0019】 また、超低温域である冷凍室50外に冷凍サイクル80は配置されるため、冷 凍サイクル80内のオイル凍結に起因する冷却性能の低下を防止できる。Further, since the refrigeration cycle 80 is arranged outside the freezing chamber 50, which is an ultra-low temperature region, it is possible to prevent the cooling performance from deteriorating due to oil freezing in the freezing / freezing cycle 80.

【0020】 また、図2に示す2元冷凍サイクルを利用した従来の冷凍装置と比較した場合 、故障発生率の高い圧縮機の数が2個から1個となるので、故障の発生も半減し て装置の信頼性に優れるとともに、運転音も小さくなる。Further, when compared with the conventional refrigeration system using the dual refrigeration cycle shown in FIG. 2, since the number of compressors having a high failure occurrence rate is from two to one, the occurrence of failures is halved. The device is highly reliable and the operating noise is low.

【0021】[0021]

【考案の効果】[Effect of the device]

以上のように、この冷凍装置によれば、吸熱部が冷凍室内に配置されたペルチ エ冷却器の放熱部を、冷凍サイクルの蒸発器により冷却するようにしているため 、ペルチエ冷却器の放熱部での放熱作用が促進され、結果的にペルチエ冷却器で の熱移動が低温域で行われて超低温を得ることができるとともに、超低温域に冷 凍サイクルが配置されないので、冷凍サイクル内のオイル凍結に起因する冷却性 能の低下を防止できるという効果が得られる。 As described above, according to this refrigeration system, the heat radiating portion of the Peltier cooler having the heat absorbing portion arranged in the freezing chamber is cooled by the evaporator of the refrigeration cycle. The heat transfer effect in the Peltier cooler is accelerated, and as a result, the heat transfer in the Peltier cooler is performed in a low temperature range to obtain an ultra-low temperature. It is possible to obtain the effect of preventing the deterioration of the cooling performance due to the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】この考案の一実施例の冷凍装置が適用されたフ
リーザを示す構成図である。
FIG. 1 is a configuration diagram showing a freezer to which a refrigerating apparatus according to an embodiment of the present invention is applied.

【図2】従来の2元冷凍サイクルが適用された冷凍装置
を示す構成図である。
FIG. 2 is a configuration diagram showing a refrigerating apparatus to which a conventional dual refrigeration cycle is applied.

【図3】他の従来の冷凍装置を示す構成図である。FIG. 3 is a configuration diagram showing another conventional refrigeration system.

【符号の説明】[Explanation of symbols]

50 冷凍室 70 ペルチエ冷却器 71 吸熱部 72 放熱部 80 冷凍サイクル 81 圧縮機 82 凝縮器 83 キャピラリチュ−ブ 84 蒸発器 50 Freezing Room 70 Peltier Cooler 71 Heat Absorbing Part 72 Heat Dissipating Part 80 Refrigeration Cycle 81 Compressor 82 Condenser 83 Capillary Tube 84 Evaporator

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 吸熱部が冷凍室内に配置されたペルチエ
冷却器の放熱部を前記冷凍室の外部に配置するととも
に、圧縮機、凝縮器、減圧手段および蒸発器からなる冷
凍サイクルのその蒸発器を、前記放熱部近傍に配置し
て、前記放熱部を前記蒸発器との熱交換により冷却する
ことを特徴とした冷凍装置。
1. An evaporator of a refrigerating cycle comprising a compressor, a condenser, a pressure reducing means and an evaporator, and a heat radiating portion of a Peltier cooler having a heat absorbing portion arranged in the freezing chamber, arranged outside the freezing chamber. Is disposed in the vicinity of the heat radiating portion, and the heat radiating portion is cooled by heat exchange with the evaporator.
JP10337191U 1991-11-19 1991-11-19 Refrigeration equipment Pending JPH0547763U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10337191U JPH0547763U (en) 1991-11-19 1991-11-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10337191U JPH0547763U (en) 1991-11-19 1991-11-19 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JPH0547763U true JPH0547763U (en) 1993-06-25

Family

ID=14352254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10337191U Pending JPH0547763U (en) 1991-11-19 1991-11-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH0547763U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087235A (en) * 2015-10-15 2018-08-01 포노닉, 인크. Hybrid steam compression / thermoelectric heat transfer system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180087235A (en) * 2015-10-15 2018-08-01 포노닉, 인크. Hybrid steam compression / thermoelectric heat transfer system
CN108474593A (en) * 2015-10-15 2018-08-31 弗诺尼克公司 Mixed vapour compression/thermoelectricity heat-transfer system
JP2018534521A (en) * 2015-10-15 2018-11-22 フォノニック デバイセズ、インク Hybrid vapor compression / thermoelectric heat transfer system
US10718551B2 (en) 2015-10-15 2020-07-21 Phononic, Inc. Hybrid vapor compression/thermoelectric heat transport system
CN108474593B (en) * 2015-10-15 2021-02-02 弗诺尼克公司 Hybrid vapor compression/thermoelectric heat transfer system

Similar Documents

Publication Publication Date Title
KR102455080B1 (en) Mobile air conditioner and its cooling method
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP6437660B2 (en) Ultra-low temperature freezer
JP2010038516A (en) Refrigerator-freezer and cooling storage
JP2005016740A (en) Refrigerator
KR970001837B1 (en) Refrigerator
JP2007093112A (en) Cooling storage
JP3784286B2 (en) Stirling refrigerator heat exchanger and Stirling refrigerator
JP6326708B2 (en) Refrigeration equipment
JPH0547763U (en) Refrigeration equipment
JP2004324902A (en) Freezing refrigerator
JP2002162143A (en) Refrigerator with freezer
KR20060000943A (en) Refrigeration system in the refrigerator and refrigeration control method implementing it
KR100377618B1 (en) Refrigerator with Phase change material
JP2000329414A (en) Hybrid refrigerating machine
JPH07332829A (en) Freezer
KR100550581B1 (en) Refrigerator with a deep freezer
JP2573082Y2 (en) Late-night electric power type refrigerator
JP2005283023A (en) Stirling cooler
RU2447377C1 (en) Refrigerating plant
KR200251008Y1 (en) Refrigeration cycle device for refrigerator
KR200161214Y1 (en) Apparatus for cooling of a refrigerator
KR101014189B1 (en) Refrigeration system in refrigerator
JP2005257246A (en) Refrigerator
JP2006090684A (en) Refrigerator