JPH0547664A - Compound semiconductor ultrafine particle vapor manufacturing apparatus - Google Patents

Compound semiconductor ultrafine particle vapor manufacturing apparatus

Info

Publication number
JPH0547664A
JPH0547664A JP20043391A JP20043391A JPH0547664A JP H0547664 A JPH0547664 A JP H0547664A JP 20043391 A JP20043391 A JP 20043391A JP 20043391 A JP20043391 A JP 20043391A JP H0547664 A JPH0547664 A JP H0547664A
Authority
JP
Japan
Prior art keywords
vapor
gaas
ultrafine particles
compound semiconductor
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20043391A
Other languages
Japanese (ja)
Inventor
Shunsuke Otsuka
俊介 大塚
Tadashi Koyama
正 小山
Hisao Nagata
久雄 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP20043391A priority Critical patent/JPH0547664A/en
Publication of JPH0547664A publication Critical patent/JPH0547664A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture ultrafine particles having excellent crystallinity, held at a stoichiometrical ratio even if vapor pressure difference between compound constituting elements is large by generating vapor for preventing decomposition ionization between the compound constituting elements near evaporation of a material compound when material compound semiconductor is evaporated. CONSTITUTION:When GaAs ultrafine particles are manufactured, first, GaAs single crystalline and polycrystalline substrate is heated to be evaporated by using an evaporation crucible 3. In this case, in order to prevent GaAs decomposition ionization to occur due to very larger evaporating pressure of As than the evaporating pressure of Ga, As vapor is generated on the surface of a GaAs substrate by a vapor generating mechanism 4. The decomposition ionization between the Ga and the As of constituting elements of the GaAs is prevented by injecting the As vapor, and GaAs ultrafine particles having excellent crystallinity, held at a stoichiometrical ratio can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超高速光スイッチなど
に利用される非線形光学効果の大きい化合物半導体超微
粒子の気相製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a vapor phase of compound semiconductor ultrafine particles having a large non-linear optical effect which is used for an ultra high speed optical switch or the like.

【0002】[0002]

【従来の技術】粒径100nm以下の超微粒子では、バ
ルク状では存在しない数多くの特異な性質が現われ、機
能性材料として応用されている。たとえば、超微粒子を
使って、ノイズの少なくかつ耐候性の優れた磁気記録用
テ−プの開発が行なわれた(小田正明:”超微粒子”固
体物理別冊特集号(1984)p103)。このよう
に、機能性材料としての応用が期待される超微粒子は、
鉄、ニッケル、銅などの金属あるいはその酸化物に関し
て研究開発が活発に進められてきた。このような超微粒
子の製造方法として、従来からガス中蒸発法が使用され
てきている。ガス中蒸発法の特徴として、高純度の不
活性ガス中での凝集現象により生成されるため高純度で
結晶性がよい、粒径制御が蒸発源温度と不活性ガス圧
力により容易に行え、しかも粒径分布はシャープであ
る、蒸発できる元素であればすべて超微粒子にするこ
とができる、などを挙ることができる。
2. Description of the Related Art Ultrafine particles having a particle size of 100 nm or less exhibit many unique properties that do not exist in a bulk state and are used as functional materials. For example, ultrafine particles have been used to develop a tape for magnetic recording having less noise and excellent weather resistance (Masaaki Oda: "Ultrafine Particles", Special Issue on Solid State Physics (1984) p103). Thus, the ultrafine particles expected to be applied as functional materials are
Research and development have been actively carried out on metals such as iron, nickel, and copper or oxides thereof. As a method for producing such ultrafine particles, a gas evaporation method has been used conventionally. The characteristics of the in-gas evaporation method are high purity and good crystallinity because they are generated by the agglomeration phenomenon in high purity inert gas, and particle size control can be easily performed by the evaporation source temperature and the inert gas pressure. It can be mentioned that the particle size distribution is sharp, that any element that can be evaporated can be made into ultrafine particles.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、元来ガ
ス中蒸発法は単原子分子材料用の超微粒子製造手段であ
り、一部を除き化合物系の超微粒子製造は困難であっ
た。これは、抵抗加熱などの連続加熱法を使用すること
から、原料化合物構成元素間の蒸気圧差が大きい場合、
加熱蒸発の際に原料化合物を構成する元素間での分解解
離が起こり、生成される化合物超微粒子の化学量論比の
保持ができないからである。特に、化合物半導体にとっ
ては重大な欠点となっていた。
However, the gas evaporation method was originally a means for producing ultrafine particles for monoatomic molecule materials, and it was difficult to produce compound-type ultrafine particles except for a part thereof. Since this uses a continuous heating method such as resistance heating, when the vapor pressure difference between the raw material compound constituent elements is large,
This is because decomposition and dissociation occur between elements constituting the raw material compound during heating and evaporation, and the stoichiometric ratio of the resulting compound ultrafine particles cannot be maintained. In particular, it has been a serious drawback for compound semiconductors.

【0004】本発明は、上記問題点を解決するためにな
されたもので、その目的は、原料化合物蒸発時における
化合物自身の分解解離を防ぐことのできる化合物半導体
超微粒子の気相製造装置を提供することにある。
The present invention has been made to solve the above problems, and an object thereof is to provide a vapor phase production apparatus for compound semiconductor ultrafine particles which can prevent decomposition and dissociation of the compound itself during evaporation of the raw material compound. To do.

【0005】[0005]

【課題を解決するための手段】請求項1の化合物半導体
超微粒子気相製造装置は、化合物半導体の超微粒子をガ
ス中蒸発法により製造させる装置において、原料化合物
半導体の構成元素の内、蒸気圧の高い元素の蒸気を外部
より導入し、原料化合物蒸発源近傍に発生させる機構を
装備することを特徴とする。
According to a first aspect of the present invention, there is provided an apparatus for producing ultrafine particles of a compound semiconductor by a vaporization method in a gas, wherein a vapor pressure of constituent elements of a raw material compound semiconductor is vapor pressure. It is characterized in that it is equipped with a mechanism for introducing a vapor of a high element from the outside to generate it in the vicinity of the source compound evaporation source.

【0006】[0006]

【作用】本発明によれば、原料化合物半導体を蒸発させ
る際に、化合物構成元素間の分解解離を防止するための
蒸気を原料化合物蒸発源近傍に発生させるため、原料化
合物の加熱法によらず化学量論比の保持された超微粒子
を製造することができる。
According to the present invention, when the source compound semiconductor is evaporated, vapor for preventing decomposition and dissociation between the constituent elements of the compound is generated in the vicinity of the source compound evaporation source. Ultrafine particles having a stoichiometric ratio can be produced.

【0007】[0007]

【実施例】以下、図面を参照して実施例について説明す
る。
EXAMPLES Examples will be described below with reference to the drawings.

【0008】第1図は、本発明の実施例に係る化合物半
導体超微粒子気相製造装置の全体図、第2図は同装置内
蒸気発生機構の詳細図である。
FIG. 1 is an overall view of a compound semiconductor ultrafine particle vapor phase production apparatus according to an embodiment of the present invention, and FIG. 2 is a detailed view of a vapor generation mechanism in the apparatus.

【0009】本実施例では、化合物半導体超微粒子気相
製造装置は、原料化合物の蒸発室1と製造された超微粒
子を捕集する捕集室2から構成される。原料化合物の蒸
発には抵抗加熱を利用した蒸発坩堝3を使用し、連続的
に加熱蒸発を行なう。原料化合物としてGaAsの単結
晶および多結晶基板を使用した。原料蒸発時に原料化合
物自身の分解解離を防ぐための蒸気を発生させるための
蒸気発生機構4は、蒸発室1に取りつけた。原料化合物
であるGaAsの分解解離は、Asの蒸気圧がGaのそ
れと比較して非常に大きいことに起因している。したが
って、抵抗加熱によって基板が高温に加熱される時に、
As単独の蒸発を防ぐことが必要である。As単独の蒸
発を防ぐためにはGaAs基板表面にAs圧を加えれば
よいから、As蒸気を発生させるために、金属Asを蒸
気発生機構4内に封入した。坩堝5は、炭素あるいは窒
化ホウ素(BN)を材質として用い、容積500cm3
の円柱状の形状とした。坩堝5のまわりに螺旋状に抵抗
加熱用のコイル6を巻き、最大1000℃までの加熱が
行えるようにした。坩堝5内の温度をモニタ−するため
の熱電対7を埋め込んである。また、坩堝加熱の際の外
部への輻射熱を遮蔽するために坩堝5全体は熱反射板8
で完全に覆われている。発生したAs蒸気をGaAs基
板上へ噴出させるために、内径7mmのキャピラリ−9
を坩堝蓋10に取り付けた。発生したAs蒸気がキャピ
ラリ−9内で凝結付着することのないようにキャピラリ
−加熱用抵抗体11が巻き付けられている。なお、キャ
ピラリ−加熱用抵抗体11の材質はタンタルである。
In the present embodiment, the vapor phase production apparatus for compound semiconductor ultrafine particles comprises an evaporation chamber 1 for raw material compounds and a collection chamber 2 for collecting the produced ultrafine particles. An evaporation crucible 3 utilizing resistance heating is used for evaporation of the raw material compounds, and heating evaporation is continuously performed. Single crystal and polycrystalline substrates of GaAs were used as raw material compounds. The vapor generation mechanism 4 for generating vapor for preventing decomposition and dissociation of the raw material compound itself during vaporization of the raw material was attached to the vaporization chamber 1. The decomposition and dissociation of GaAs, which is a raw material compound, is caused by the vapor pressure of As being much larger than that of Ga. Therefore, when the substrate is heated to a high temperature by resistance heating,
It is necessary to prevent the evaporation of As alone. In order to prevent the vaporization of As alone, it is sufficient to apply As pressure to the surface of the GaAs substrate. Therefore, metal As was enclosed in the vapor generation mechanism 4 in order to generate As vapor. The crucible 5 uses carbon or boron nitride (BN) as a material and has a volume of 500 cm 3
It has a cylindrical shape. A coil 6 for resistance heating was spirally wound around the crucible 5 so that heating up to 1000 ° C. could be performed. A thermocouple 7 for monitoring the temperature inside the crucible 5 is embedded. Further, in order to shield the radiant heat to the outside at the time of heating the crucible, the entire crucible 5 is a heat reflection plate 8.
Is completely covered with. In order to eject the generated As vapor onto the GaAs substrate, a capillary 9 having an inner diameter of 7 mm is used.
Was attached to the crucible lid 10. The capillary heating resistor 11 is wound so that the generated As vapor does not condense and adhere in the capillary 9. The material of the capillary heating resistor 11 is tantalum.

【0010】金属Asの加熱温度が600〜800℃の
時に坩堝5内のAs蒸気圧は10-2〜10Torrであ
り、この時キャピラリ−9から噴出されるAs蒸気によ
ってGaAsの構成元素であるGaとAs間の分解解離
を防ぎ、化学量論比の保持された結晶性のよいGaAs
超微粒子を製造することができた。この時、原料である
GaAs基板の加熱温度は1400℃で、生成されたG
aAs超微粒子の平均粒径は6nmであった。
When the heating temperature of the metal As is 600 to 800 ° C., the As vapor pressure in the crucible 5 is 10 −2 to 10 Torr, and the As vapor ejected from the capillary 9 at this time causes Ga to be a constituent element of GaAs. GaAs with good crystallinity that prevents decomposition and dissociation between As and As, and maintains a stoichiometric ratio
It was possible to produce ultrafine particles. At this time, the heating temperature of the raw material GaAs substrate is 1400 ° C., and the generated G
The average particle size of the aAs ultrafine particles was 6 nm.

【0011】本実施例ではGaAs超微粒子の製造につ
いて述べたが、これに限ることなく、たとえば、In
P、InGaAsなどのIII−V族多元化合物半導体
あるいはCdS、CdSSeなどのII−VI族多元化
合物半導体でも同様の超微粒子が製造できる。
In this embodiment, the production of GaAs ultrafine particles has been described, but the present invention is not limited to this.
Similar ultrafine particles can be produced from III-V group compound semiconductors such as P and InGaAs or II-VI group compound semiconductors such as CdS and CdSSe.

【0012】[0012]

【発明の効果】本発明によれば、化合物半導体超微粒子
をガス中蒸発法によって製造する際に、化合物構成元素
間の蒸気圧差が大きい場合でも、化学量論比の保持され
た結晶性のよい超微粒子を製造できる。
According to the present invention, when the compound semiconductor ultrafine particles are manufactured by the gas evaporation method, the stoichiometric ratio is maintained and the crystallinity is good even if the vapor pressure difference between the constituent elements of the compound is large. Ultrafine particles can be produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る化合物半導体超微粒子気
相製造装置の全体図である。
FIG. 1 is an overall view of a compound semiconductor ultrafine particle vapor phase production apparatus according to an embodiment of the present invention.

【図2】同装置内蒸気発生機構の詳細図である。FIG. 2 is a detailed view of a steam generating mechanism in the apparatus.

【符号の説明】[Explanation of symbols]

1 蒸発室 2 捕集室 3 蒸発坩堝 4 蒸気発生機構 5 坩堝 6 抵抗加熱用コイル 9 キャピラリ− 10 坩堝蓋 1 Evaporation Chamber 2 Collection Chamber 3 Evaporation Crucible 4 Vapor Generation Mechanism 5 Crucible 6 Resistance Heating Coil 9 Capillary 10 Crucible Lid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体の超微粒子をガス中蒸発法
により製造させる装置において、原料化合物半導体の構
成元素の内、蒸気圧の高い元素の蒸気を外部より導入
し、原料化合物蒸発源近傍に発生させる機構を装備する
ことを特徴とする、化合物半導体超微粒子気相製造装
置。
1. An apparatus for producing ultrafine particles of a compound semiconductor by a gas evaporation method, wherein vapor of an element having a high vapor pressure among constituent elements of a raw material compound semiconductor is introduced from the outside to generate in the vicinity of a raw material compound evaporation source. An apparatus for producing a vapor phase of a compound semiconductor ultrafine particle, which is equipped with a mechanism for making it.
JP20043391A 1991-08-09 1991-08-09 Compound semiconductor ultrafine particle vapor manufacturing apparatus Pending JPH0547664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20043391A JPH0547664A (en) 1991-08-09 1991-08-09 Compound semiconductor ultrafine particle vapor manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20043391A JPH0547664A (en) 1991-08-09 1991-08-09 Compound semiconductor ultrafine particle vapor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JPH0547664A true JPH0547664A (en) 1993-02-26

Family

ID=16424215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20043391A Pending JPH0547664A (en) 1991-08-09 1991-08-09 Compound semiconductor ultrafine particle vapor manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0547664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181705A (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Composition, film, optical filter, laminate, solid state image sensor, image display device, and infrared sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181705A (en) * 2016-03-30 2017-10-05 富士フイルム株式会社 Composition, film, optical filter, laminate, solid state image sensor, image display device, and infrared sensor

Similar Documents

Publication Publication Date Title
JP3165685B2 (en) Sublimation growth of silicon carbide single crystal
Wieder Intermetallic Semiconducting Films: International Series of Monographs in Semiconductors
CN111206283B (en) Preparation and application of chromium diselenide two-dimensional material
Gerhards et al. Ion beam synthesis of diamond-like carbon thin films containing copper nanocrystals
JPH0547664A (en) Compound semiconductor ultrafine particle vapor manufacturing apparatus
US5055280A (en) Process for producing transition metal boride fibers
Chen et al. Nanoscale ferromagnetic chromium oxide film from gas-phase nanocluster deposition
KR920008222B1 (en) Iron carbide thin film magnetic recording medium
EP0367030B1 (en) Process for forming thin films of metastable binary compounds
KR100385867B1 (en) Method of synthesizing highly purified carbon nanotubes
CN107445157B (en) Preparation method of single-layer vanadium diselenide two-dimensional material
Okuda et al. Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering
JPH079372Y2 (en) Molecular beam cell for high temperature
JP3465848B2 (en) Production method of thin film using organometallic complex
Zuli et al. Effect of N2-gas partial pressure on the structure and properties of copper nitride films by dc reactive magnetron sputtering
US6440562B1 (en) Tungsten super fine particle and method for producing the same
Wang et al. The effect of hydrogen on Cu3N thin films deposited by radio frequency magnetron sputtering
Shi et al. Preparation and characterization of Ni-C composite films
Mendoza et al. Incorporation of selenium into carbon films by chemical vapor deposition
Islam et al. Initial stage of the growth of GaS thin films on GaAs
RU2122243C1 (en) Method for production of magnetically soft heat-resistant amorphous condensate of 3d metals
JPS61502767A (en) Method for producing rare earth chalcogenide thin film
JPH09115834A (en) Molecular beam evaporation source cell
Nakai et al. Singular Diffusion as a Function of Nanoparticles Size in Antimony Film–Selenium Particles and Antimony Film–Tellurium Particles
Raven et al. The discontinuous growth modes of zinc selenide deposited upon clean, restructured and oxygen-stabilized (100) germanium surfaces