JPH0547646A - Plotting method for electron beam - Google Patents

Plotting method for electron beam

Info

Publication number
JPH0547646A
JPH0547646A JP20913791A JP20913791A JPH0547646A JP H0547646 A JPH0547646 A JP H0547646A JP 20913791 A JP20913791 A JP 20913791A JP 20913791 A JP20913791 A JP 20913791A JP H0547646 A JPH0547646 A JP H0547646A
Authority
JP
Japan
Prior art keywords
height
sample
electron beam
plotting
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20913791A
Other languages
Japanese (ja)
Inventor
Genya Matsuoka
玄也 松岡
Teruo Iwasaki
照雄 岩崎
Hirozumi Ando
宏純 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20913791A priority Critical patent/JPH0547646A/en
Publication of JPH0547646A publication Critical patent/JPH0547646A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To accurately plot by measuring a height of an alignment mark and a chip, and correcting an alignment correction coefficient based on an obtained step difference. CONSTITUTION:A height between A-A' of a sample 101 is measured by using a laser light, maximum and minimum values of data are obtained, and set as a slice level to an average value. Then, average of data of larger values than the slice level is calculated as a height of a chip. Similarly, an average value of data of the level or lower is used as a height of a scribing area 103, and a difference between both is regarded as a step difference (h). Then, alignment marks 104 on the wafer are sequentially detected to obtain an alignment coefficient, and a height of the area 103 is measured. At the time of plotting, sum of the height of the area 103 and the difference (h) is used as a height of a plotting surface, and plotting is performed. Since the position of the mark and the actual position of the plotting surface are corrected, accurate plotting is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子線描画装置に係
り、特に高精度な描画を実現するための描画方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam drawing apparatus, and more particularly to a drawing method for realizing highly accurate drawing.

【0002】[0002]

【従来の技術】半導体素子の製造においては、図1に示
すように試料101上に、チップと呼ばれる素子を形成
する部分102が、多数ある。このチップ部の間は、ス
クライブエリア103と呼ばれる領域である。該領域
は、半導体素子が完成した後に、試料101を、各チッ
プに分離するための領域である。従って、該領域は素子
としては不要の領域であるため、合わせマーク104な
ど直接素子の機能に関係しないパターンが形成されてい
る。
2. Description of the Related Art In the manufacture of a semiconductor device, as shown in FIG. 1, a sample 101 has a large number of portions 102 for forming devices called chips. A space called the scribe area 103 is provided between the chip portions. The region is a region for separating the sample 101 into each chip after the semiconductor element is completed. Therefore, since the region is an unnecessary region for the element, a pattern such as the alignment mark 104 that is not directly related to the function of the element is formed.

【0003】一方、電子線描画法により高精度描画を実
現するには、電子線照射軸に対する試料の位置が重要で
ある。図2は、電子銃から放射された電子線201をx
だけ偏向し、試料面a上のP点に照射させる場合を示し
たものである。この際に、試料位置が変動し、試料面が
△zだけ下がったb面にあったとすると、電子線301
は、Q点に照射することになる。その結果、Δxの描画
誤差が生じることになる。例えば、変更点Oから試料面
aまでを100mm、変更量xを3.5mm とした場合に、
Δzが3μm変化すると、Δxは、0.1μm となる。
この値は、サブミクロン領域のパターンを描画するに
は、大きな誤差である。従って、高精度描画においては
試料の位置を計測し、もしも、試料面がbの位置にあれ
ば偏向量を小さくすることによって、同図202で示す
ように電子線がb面上の偏向距離xの位置、即ち、P′
点に照射するように補正して描画を行なっていた。
On the other hand, the position of the sample with respect to the electron beam irradiation axis is important for realizing high-precision drawing by the electron beam drawing method. FIG. 2 shows an electron beam 201 emitted from an electron gun.
This is a case where only the light is deflected and the point P on the sample surface a is irradiated. At this time, if the sample position fluctuates and the sample surface is on the b surface lowered by Δz, the electron beam 301
Will illuminate point Q. As a result, a drawing error of Δx occurs. For example, when the distance from the change point O to the sample surface a is 100 mm and the change amount x is 3.5 mm,
When Δz changes by 3 μm, Δx becomes 0.1 μm.
This value is a large error for drawing a pattern in the submicron region. Therefore, in high-accuracy drawing, the position of the sample is measured, and if the sample surface is at the position of b, the deflection amount is reduced so that the electron beam has a deflection distance x on the b surface as shown in FIG. Position of P '
Drawing was performed with correction so as to irradiate points.

【0004】[0004]

【発明が解決しようとする課題】しかし、微細化が進む
につれて、半導体素子の構造はより複雑なものとなり、
その結果、以下に示す新たな問題が生じてきた。即ち、
図1に示した試料のAA′断面は、図2に示すような構
造であるが、最近の半導体素子では、スクライブエリア
103の部分と、チップ部102間の段差hは、数μm
と大きくなってきた。先に述べたように、合わせマーク
は、通常、スクライブエリア103内に形成されてお
り、直接描画においては該合わせマークを検出して、既
存パターンと新規描画パターンとの位置的整合性を得て
いる。しかし、段差hが数μmにもなると、図2で説明
したように、位置誤差が許容出来ない値となってくる。
その結果、合わせマークを検出して合わせ描画を行なっ
ても、十分な描画精度が得られないという問題が生じて
きた。
However, as miniaturization progresses, the structure of semiconductor devices becomes more complicated,
As a result, the following new problems have arisen. That is,
The AA ′ cross section of the sample shown in FIG. 1 has a structure as shown in FIG. 2. However, in the recent semiconductor element, the step h between the scribe area 103 and the chip portion 102 is several μm.
Is getting bigger. As described above, the alignment mark is usually formed in the scribe area 103, and in direct writing, the alignment mark is detected to obtain the positional consistency between the existing pattern and the new writing pattern. There is. However, if the step h becomes several μm, the position error becomes an unacceptable value as described with reference to FIG.
As a result, even if the alignment mark is detected and the alignment drawing is performed, sufficient drawing accuracy cannot be obtained.

【0005】本発明の目的は、係る問題点に注目し、直
接描画における高精度な描画方法を提供することにあ
る。以下、電子線軸に対する試料面の位置を、試料高さ
と称して、本発明を説明する。
An object of the present invention is to provide a highly accurate drawing method in direct drawing, paying attention to such problems. Hereinafter, the position of the sample surface with respect to the electron beam axis will be referred to as the sample height, and the present invention will be described.

【0006】[0006]

【課題を解決するための手段】上記の問題を解決するた
めに、合わせマークの高さと、描画を行なうチップ部の
2ヵ所の高さを計測し、両者間での段差を求める。更
に、得られた段差を基に合わせ補正係数を修正して描画
を行なう。
In order to solve the above problems, the height of the alignment mark and the heights of two portions of the chip portion where drawing is performed are measured, and the step between them is obtained. Further, drawing is performed by correcting the correction coefficient based on the obtained step difference.

【0007】[0007]

【作用】合わせマークと、チップ部での高さ計測を行な
い、その結果に応じて、合わせ描画係数を補正するた
め、実際の描画時の合わせ係数は描画面、即ち、チップ
面での合わせ係数となっている。従って、図2で説明し
たような、スクライブエリアとチップ部での高さの差に
よる描画誤差を、防ぐことが出来る。
The height of the alignment mark and the height of the chip are measured, and the alignment drawing coefficient is corrected according to the result. Therefore, the alignment coefficient at the actual drawing is the alignment coefficient on the drawing surface, that is, the chip surface. Has become. Therefore, it is possible to prevent the drawing error due to the difference in height between the scribe area and the chip portion as described in FIG.

【0008】[0008]

【実施例】以下に、本発明の実施例を説明する。図4
は、本発明で用いた電子線描画装置の概略構成図であ
る。電子光学系400は、電子銃401,電子レンズ4
02,403により構成されている。試料室404内に
は、試料406を搭載するための試料台405があり、
該試料台は駆動モータ407と、駆動軸408によって
結合されている。試料台の動きは、試料台制御回路41
4によって管理されており、一方、電子線の偏向はデー
タ制御回路412によって制御されている。試料高さの
計測は、以下のようにして行なった。レーザダイオード
409からレーザ光を斜めに照射し、試料406による
反射光を、位置検出器410で検出し、該計測結果を、
信号処理回路413によって処理して、試料高さを求め
た。又、電子線描画装置全体の制御は、制御用計算機4
11で行なった。
EXAMPLES Examples of the present invention will be described below. Figure 4
FIG. 1 is a schematic configuration diagram of an electron beam drawing apparatus used in the present invention. The electron optical system 400 includes an electron gun 401 and an electron lens 4.
02, 403. In the sample chamber 404, there is a sample table 405 for mounting the sample 406,
The sample stage is connected to a drive motor 407 and a drive shaft 408. The movement of the sample table is controlled by the sample table control circuit 41.
4, the deflection of the electron beam is controlled by the data control circuit 412. The sample height was measured as follows. Laser light is obliquely emitted from the laser diode 409, the reflected light from the sample 406 is detected by the position detector 410, and the measurement result is
Processing was performed by the signal processing circuit 413 to obtain the sample height. Further, the control of the electron beam drawing apparatus is controlled by the control computer 4
Performed at 11.

【0009】本発明に基づく試料高さの補正は、以下の
ようにして行なった。まず、図1に示すAA′間の高さ
を計測した。図5は、その結果を示したものである。試
料表面の高さ変化に応じて、測定した値も変化してい
る。この計測結果を得た信号処理回路413は、まず、
データの最大値と、最小値を求め、その1/2の値にス
ライスレベル501を設定した。次に、該スライスレベ
ルより大きい値のデータの平均をとり、それをチップ部
の高さとした。同様に、スライスレベル以下のデータの
平均値をスクライブエリアの高さとし、両者の差を段差
hとみなした。次に、ウェハ上の合わせマーク104を
順次検出することによって合わせ係数を求めるととも
に、スクライブエリアの高さを計測した。描画時には、
スクライブエリアの高さに、先に求めた段差hを加えた
ものを描画面の高さとし、描画を行なった。
The correction of the sample height based on the present invention was performed as follows. First, the height between AA 'shown in FIG. 1 was measured. FIG. 5 shows the result. The measured value also changes according to the height change of the sample surface. The signal processing circuit 413, which has obtained the measurement result, first
The maximum value and the minimum value of the data were obtained, and the slice level 501 was set to half the value. Next, the data having a value larger than the slice level was averaged and used as the height of the chip portion. Similarly, the average value of the data below the slice level was taken as the height of the scribe area, and the difference between the two was considered as the step h. Next, the alignment coefficient was obtained by sequentially detecting the alignment marks 104 on the wafer, and the height of the scribe area was measured. When drawing,
Drawing was performed with the height of the scribe area plus the step h previously obtained as the height of the drawing surface.

【0010】この様に、合わせマーク部での高さと、チ
ップ部での高さを考慮して合わせ補正係数を求めること
によって、従来にない高精度な描画を行なうことが出来
た。
As described above, by obtaining the alignment correction coefficient in consideration of the height at the alignment mark portion and the height at the chip portion, it is possible to perform highly accurate drawing which has never been achieved.

【0011】[0011]

【発明の効果】本発明によれば、合わせマークの位置
と、実際の描画面との位置を補正しているために、高精
度な描画が可能である。
According to the present invention, since the position of the alignment mark and the position of the actual drawing surface are corrected, highly accurate drawing is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】試料の平面的構造を説明する図。FIG. 1 is a diagram illustrating a planar structure of a sample.

【図2】試料位置の変化に起因する描画誤差を説明する
図。
FIG. 2 is a diagram illustrating a drawing error caused by a change in sample position.

【図3】試料の断面構造を説明する図。FIG. 3 is a diagram illustrating a cross-sectional structure of a sample.

【図4】本発明の実施例で用いた電子線描画装置の概略
構成図。
FIG. 4 is a schematic configuration diagram of an electron beam drawing apparatus used in an embodiment of the present invention.

【図5】試料位置の計測結果例。FIG. 5 shows an example of the measurement result of the sample position.

【符号の説明】[Explanation of symbols]

101…試料、102…チップ、103…スクライブエ
リア、104…合わせマーク、201…電子線、202
…電子線、400…電子光学鏡筒、401…電子銃、4
02…電子レンズ、403…電子レンズ、404…試料
室、405…試料台、406…試料、407…駆動モー
タ、408…駆動軸、409…レーザダイオード、41
0…位置検出器、411…制御計算機、412…データ
制御回路、413…信号処理回路、414…試料台制御
回路、501…スライスレベル。
101 ... Sample, 102 ... Chip, 103 ... Scribing area, 104 ... Alignment mark, 201 ... Electron beam, 202
... electron beam, 400 ... electron optical lens barrel, 401 ... electron gun, 4
Reference numeral 02 ... Electron lens, 403 ... Electron lens, 404 ... Sample chamber, 405 ... Sample stand, 406 ... Sample, 407 ... Drive motor, 408 ... Drive shaft, 409 ... Laser diode, 41
0 ... Position detector, 411 ... Control computer, 412 ... Data control circuit, 413 ... Signal processing circuit, 414 ... Sample stage control circuit, 501 ... Slice level.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定の形状の電子線を偏向し、試料上に所
定のパターンを描画する電子線描画装置において、該試
料上の合わせマークが存在する領域の電子線照射軸に対
する位置を計測する手段と、描画を行なう領域の電子線
照射軸に対する位置を測定する手段と、両者の位置の差
を求める手段と、該位置の差を合わせ補正係数に反映さ
せる手段とからなる電子線描画方法。
1. An electron beam drawing apparatus for deflecting an electron beam of a predetermined shape to draw a predetermined pattern on a sample, and measuring the position of an area on the sample where an alignment mark is present with respect to the electron beam irradiation axis. An electron beam drawing method comprising: a means, a means for measuring a position of an area for drawing with respect to an electron beam irradiation axis, a means for obtaining a difference between the positions of the areas, and a means for reflecting the difference between the positions in a correction coefficient.
JP20913791A 1991-08-21 1991-08-21 Plotting method for electron beam Pending JPH0547646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20913791A JPH0547646A (en) 1991-08-21 1991-08-21 Plotting method for electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20913791A JPH0547646A (en) 1991-08-21 1991-08-21 Plotting method for electron beam

Publications (1)

Publication Number Publication Date
JPH0547646A true JPH0547646A (en) 1993-02-26

Family

ID=16567913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20913791A Pending JPH0547646A (en) 1991-08-21 1991-08-21 Plotting method for electron beam

Country Status (1)

Country Link
JP (1) JPH0547646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8220495B2 (en) 2007-05-31 2012-07-17 Fujikin Incorporated Fluid control apparatus and method for assembling the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8220495B2 (en) 2007-05-31 2012-07-17 Fujikin Incorporated Fluid control apparatus and method for assembling the same

Similar Documents

Publication Publication Date Title
US4423959A (en) Positioning apparatus
US4701053A (en) Mark position detecting method and apparatus
US5209813A (en) Lithographic apparatus and method
EP0024884A2 (en) Method of detecting the position of a substrate using an electron beam
JPH0244137B2 (en)
US4558225A (en) Target body position measuring method for charged particle beam fine pattern exposure system
US4792693A (en) Step-and-repeat exposure method
US20040227918A1 (en) Exposure apparatus, reticle shape measurement apparatus and method
JP3036081B2 (en) Electron beam drawing apparatus and method, and sample surface height measuring apparatus thereof
US5608226A (en) Electron-beam exposure method and system
JP3318440B2 (en) Stage origin position determining method and apparatus, and stage position detector origin determining method and apparatus
JPH0547646A (en) Plotting method for electron beam
US5972772A (en) Electron beam drawing process
US6337486B2 (en) Electron beam drawing process and electron beam drawing apparatus
JP3260513B2 (en) Charged beam drawing equipment
JPH09167734A (en) Method and system for electron beam lithography
US6127683A (en) Electron beam drawing apparatus
JP2000329521A (en) Pattern measuring method and aligning method
JPH09293477A (en) Charged beam adjusting method
JPH04162337A (en) Electron beam device
JPH063115A (en) Measuring equipment of height of sample
JP2865164B2 (en) Particle beam drawing equipment
JPH0513306A (en) Mask position measuring device
JPH07120618B2 (en) Particle beam drawing method
EP0201858A2 (en) Electron beam substrate height sensor