JPH0547496B2 - - Google Patents

Info

Publication number
JPH0547496B2
JPH0547496B2 JP17394284A JP17394284A JPH0547496B2 JP H0547496 B2 JPH0547496 B2 JP H0547496B2 JP 17394284 A JP17394284 A JP 17394284A JP 17394284 A JP17394284 A JP 17394284A JP H0547496 B2 JPH0547496 B2 JP H0547496B2
Authority
JP
Japan
Prior art keywords
water
weight
calcium silicate
amount
extrusion molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17394284A
Other languages
Japanese (ja)
Other versions
JPS6153141A (en
Inventor
Isamu Hamada
Yonetsumi Ichikawa
Masahiro Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON INSULATION KK
Original Assignee
NIPPON INSULATION KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON INSULATION KK filed Critical NIPPON INSULATION KK
Priority to JP59173942A priority Critical patent/JPS6153141A/en
Publication of JPS6153141A publication Critical patent/JPS6153141A/en
Publication of JPH0547496B2 publication Critical patent/JPH0547496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、耐熱性に優れ軽量且つ高強度のけい
酸カルシウム成形体の押出成形による製造法に関
する。 けい酸カルシウム成形体は、優れた耐熱性を有
し、軽量且つ高強度であり、しかも加工性に富む
ところから、特に建材として好適なものである。 従来技術及びその欠点 従来、けい酸カルシウム結晶の成形体は、珪酸
原料、石灰原料及び水を含む原料スラリーを水熱
合成反応させて得られるけい酸カルシウム結晶の
二次粒子のスラリーに必要に応じて補強繊維等を
添加し、これを成形金型に充填し、プレス脱水成
形等により成形後、乾燥して製造されている。し
かし、この方法では、長尺のもの、薄いもの、複
雑な形状のものを製造するのが困難である等の欠
点があつた。上記欠点を改良するためには、連続
押出成形法によれば良いのであるが、けい酸カル
シウム結晶スラリーは、押出成形用の成形材料に
要求される性質を備えておらず、そのままでは押
出成形できないとされていた。 即ち、押出成形用の成形材料は、(1)応力により
所定の形状に変形、成形される可塑性、(2)成形時
材料が口金を通り滑らかに押出される平滑性、(3)
成形体が乾燥されるまでの過程でその形状を維持
する保形性等の性質を有することが必要である
が、けい酸カルシウム結晶スラリーはこれらの性
質が不充分なため、そのままでは押出成形を行な
うことができない。従つて、何らかの成形助剤を
加えることが必要となる。 けい酸カルシウム成形体の押出成形法による製
造法としては、珪酸カルシムウに水ガラス等の粘
結剤とメチルセルロース等の押出成形促進剤を加
え、全体の含水率を70〜80重量%として押出成形
する方法(特開昭57−191260号)も提案されてい
る。しかしながら、この方法では、水ガラス等の
粘結剤の使用を不可欠とするために、強度が小と
なり、主に真空断熱容器の支持材として使用され
る程度の強度のものしか得られず、とうてい建材
用として使用できる強度を有するものは得られな
いという欠点がある。また、押出時の脱水防止の
ために押出成形促進材を固形分中5〜15重量%と
多量に使用しているので耐熱性が低下するという
欠点もある。 解決手段 本発明者等は、上記従来方法の欠点を解消し、
耐熱性に優れ、軽量且つ高強度で、特に建材とし
て好適に使用できるけい酸カルシウム成形体を押
出成形により効率的に製造することを目的として
鋭意研究した。特に、得られる成形体をより軽量
且つ高強度にするためにはけい酸カルシウム水熱
合成反応により得られる球状二次粒子の形態のけ
い酸カルシウム結晶を用いるのが好ましいこと、
押出成形用材料の全体の含水率の広い範囲におい
て押出成形を可能にすることによつて更に高強度
の成形体を得ること等を考慮して研究した。 その結果、水熱合成反応させて得たけい酸カル
シウム結晶に水溶性有機高分子物質及び吸水性繊
維質物質を加えることにより、押出成形用材料に
必要な適度の可塑性、平滑性及び保形性を付与す
ることができ、目的が達成できることを見出し
た。 即ち、水熱合成反応により得られる二次粒子の
形態をもつけい酸カルシウム結晶スラリーは、チ
クソトロピーの性質を有し、これを攪拌すると水
を分離して、このまま押出成形をすると、二次粒
子間及び押出成形機と該粒子間の潤滑を促すため
押出成形が困難となるが、ここに固形分に対し吸
水性繊維質物質2〜10重量%及び水溶性有機高分
子物質0.2重量%〜5重量%未満を添加した場合
には、吸水性繊維質物質が該スラリーの撹拌によ
る分離水を吸収することにより適度な平滑性とす
ることができ、且つ保形性にも寄与でき、水溶性
有機高分子物質を0.2重量%〜5重量%未満と少
量加えるだけで該スラリーに適度の可塑性及び保
形性を付与でき、これらの作用によりけい酸カル
シウム結晶スラリーを円滑に押出成形できると共
に、得られた成形体は耐熱性にも優れ、軽量且つ
高強度であり、特に建材として著しく有利に使用
できることを見出した。 本発明は、上記諸知見に基づいて完成されたも
のである。 発明の構成 本発明は、けい酸原料、石灰原料及び水を含む
原料スラリーを水熱合成反応させて得たけい酸カ
ルシウム結晶の二次粒子に、固形分に対し水溶性
有機高分子物質0.2重量%〜5重量%未満及び吸
水性繊維質物質2〜10重量%を混合し、全体の含
水率を20〜85重量%とした材料を、押出成形する
ことを特徴とするけい酸カルシウム成形体の製造
法に係る。 本発明におけるけい酸カルシウム結晶スラリー
は、けい酸原料、石灰原料及び水よりなる原料ス
ラリーを、加圧下加熱攪拌しながら水熱合成反応
せしめることによつて製造される。得られたけい
酸カルシウム結晶は、三次元的に、結合してほぼ
球状の二次粒子を形成しており、それにより最終
的に得られた成形体の強度が高められるものであ
る。球状二次粒子の大きさは、水熱合成反応の条
件特に水の量等により変動するが、通常5〜
150μm程度である。 けい酸原料及び石灰原料としては、通常のけい
酸カルシウム結晶の製造用原料として使用されて
きたものをいずれも有効に使用でき、例えばけい
酸原料としてはけい石、けい砂、シリカフラワ
ー、けい藻土、シリコンダスト、フエロシリコン
ダスト等を、石灰原料としては生石灰、消石灰、
カーバイト滓等を例示できる。 水熱合成反応時の水の量(けい酸原料、石灰原
料及び水を水熱合成反応させるときの水の割合)
は、通常83〜97重量%(固形分に対して5〜30重
量倍)程度とするのが好ましい。この際、けい酸
原料と石灰原料のCaO/SiO2モル比は、トベル
モライト結晶を合成しようとする場合は0.70〜
0.90程度、ゾノトライト結晶を合成しようとする
場合は0.90〜1.15程度とする。水熱合成反応は、
通常4Kg/cm2以上、好ましくは6Kg/cm2以上の飽
和水蒸気圧下で行なわれる。この反応によりトベ
ルモライト結晶又は(及び)ゾノトライト結晶よ
りなる球状二次粒子が水中に分散したけい酸カル
シウム結晶スラリーが得られる。 次いで、けい酸カルシウム結晶スラリーに水溶
性有機高分子物質及び吸水性繊維質物質等を混合
し、全体の含水率を20〜85重量%程度に調整して
押出成形用材料とする。この際、けい酸カルシウ
ム結晶スラリーは、水熱合成反応により得られた
ものをそのまま用いても勿論差し支えないが、こ
れを加圧脱水過して含水率が通常20〜90重量%
程度の脱水ケーキに調整しておき、この脱水ケー
キに所定の配合物及び必要に応じて水を混合する
のが便利である。 ここで、押出用成形用材料の含水率が85重量%
を越えると押出成形時の保形性が低下して押出時
の脱水が多く不都合であり、含水率が20重量%未
満であれば押出成形用材料の可塑性が失なわれ押
出成形が困難になるので好ましくない。 本発明における水溶性有機高分子物質として
は、例えばメチルセルロース、カルボキシメチル
セルロース、ヒドロキシエチルセルロース、ヒド
ロキシプロピルセルロース等の水溶性セルロース
誘導体、ポリビニルアルコール、ポリアクリル酸
ソーダ、ポリアクリル酸アミド等の水溶性高分子
等を挙げることができ、これらの少なくとも1種
を用いる。 また、吸水性繊維質物質としては、例えばパル
プ、木綿等の天然繊維、アクリル繊維等の合成繊
維等の有機繊維質物質、石綿等の無機繊維質物質
を挙げることができ、これらの少なくとも1種を
用いる。これらの内特に好ましいものは、分散性
の点から、パルプ就中粉末パルプ、石綿等であ
り、粉末パルプは親水性が高いので保水し易く成
形時の滑りを抑制する点でも極めて有効である。 本発明における押出成形用材料は、基本的に
は、前記各成分からなるが、必要に応じて、更に
セメント、石膏、粘土、ガラス繊維、スチール繊
維等を加えても良い。 水溶性有機高分子物質及び吸水性繊維質物質の
使用量は、広い範囲から選択し得るが、押出成形
用材料の全固形分中前者を通常0.2重量%以上5
重量%未満程度、後者を通常2〜10重量%程度と
するのが望ましい。 水溶性有機高分子物質の使用量が上記範囲を越
えると成形材料が押出成形機の押出スクリユー部
で滑り易くなつて成形が困難になる傾向がある。
しかも水溶性有機高分子物質の使用量を5重量%
未満と少量用いることにより成形助剤としての効
果を発現せしめ得るから、けい酸カルシウム成形
体の耐熱性を損なわない。一方その使用量が上記
範囲に満たない場合は成形材料の可塑性、保形性
が不充分になる傾向がみられるので好ましくな
い。 また、吸水性繊維質物質の使用量が上記範囲を
越えた場合は成形材料の可塑性が低下する傾向が
あり、使用量が上記範囲に満たない場合は、成形
材料の平滑性、保形性が低下する傾向があるので
好ましくない。 更に、水溶性有機高分子物質と吸水性繊維質物
質との使用量は、けい酸カルシウム結晶水熱合成
反応時の水の量に応じて上記範囲内で適宜調節す
るのが望ましい。 即ち、水熱合成反応時の水の量により生成する
二次粒子の大きさが変動し、通常水の量が多い程
二次粒子が小さくなる。二次粒子が小さくなる
と、前記したチクソトロピー性が高くなることが
認められ、他方スラリーの平滑性がそのままでは
押出成形できないが比較的高くなる。従つて、分
離水がより多くなるのに対応して吸水性繊維質物
質の使用量を多くし、他方水溶性有機高分子物質
の使用量を少なくするのが良いことになる。水熱
合成反応時の水の量が少なくなつた場合には、上
記と逆の理由により、吸水性繊維質物質の使用量
は比較的少なくて良く、他方水溶性有機高分子物
質の使用量は比較的多くするのが良いことにな
る。 水溶性有機高分子物質及び吸水性繊維質物質の
好ましい使用量は、水熱合成反応時の水の量が95
重量%を越えるときは、それぞれ押出成形用材料
の全固形分中0.2〜2.5重量%程度及び3〜10重量
%程度、より好ましくは1.5〜2重量%及び4〜
8重量%、水熱合成反応時の水の量が91重量%以
上95重量%以下のときは、それぞれ全固形分中
0.2〜3.7重量%程度及び2.5〜8.7重量%程度、よ
り好ましくは1.8〜2.5重量%及び3.5〜6.5重量%、
水熱合成反応時の水の量が91重量%未満のとき
は、それぞれ全固形分中0.2〜0.5重量%未満程度
及び2.0〜6.5重量%程度、より好ましくは2.0〜
3.0重量%及び3.0〜5.0重量%である。 本発明においては、前記した通り、各成分を混
練機等を用いて充分均一に混合することにより、
水溶性有機高分子物質、吸水性繊維質物質等とけ
い酸カルシウム結晶とが均質な状態となつて、押
出成形に適する性質を呈し、次いでこれを通常の
真空押出成形機等の押出成形機を用いて押出成形
した後、乾燥することによつて、優れた特性を有
するけい酸カルシウム成形体を生産性良く収得で
きる。 尚、本発明における含水率は、下記の通りに定
義されるものである。 含水率(%)=W/W+S×100 但し、Wは水分(g)を、Sは固形分(g)を示す。 発明の効果 本発明によれば、下記の如き顕著な効果が得ら
れる。 (1) 従来そのままでは押出成形不能とされていた
けい酸カルシウム結晶二次粒子の成形材料から
押出成形により各種形状の成形体を容易に製造
することが可能となる。 (2) 用いる押出成形用材料中のけい酸カルシウム
結晶が、水熱合成反応により得られる二次粒子
の形態であること、吸水性繊維質物質が添加さ
れていること、押出成形用材料の含水量を低く
できること等により、軽量且つ高強度のけい酸
カルシウム成形体が収得できる。 (3) 可燃物の添加量が少なくて良いので、得られ
る成形体の耐熱性が高い。 (4) 上記(2)、(3)により、特に建材として好適であ
る。 (5) 成形体の表面が極めて滑らかであるので、表
面仕上げが不要である。 (6) 配合組成の工夫により、広い範囲の含水量で
押出成形が可能である。 (7) 押出成形機の口金を交換するだけで、種々の
断面形状の成形体が得られ、長尺の成形体、薄
い成形体、ハニカム状等の複雑な形状の成形体
等を容易に製造できる。 (8) 押出成形法で製造することにより、連続的に
製造できるので生産性が高く、又省力化も容易
である。 実施例 以下、実施例を挙げて、本発明を更に具体的に
説明する。各例中、部はすべて重量部を、%はす
べて重量%を示す。 実施例 1 生石灰(CaO成分95.2%)42.3部を温水500部
中で消和し、ホモミキサーで30分間水中分散し
た。この石灰乳に平均粒子径5.3μm程度のけい石
粉末(SiO2成分97.0%)45.2部を加えて、水の量
が96%になるように水を添加し、これを圧力15
Kg/cm2、温度200.4℃で3.5時間攪拌しながら水熱
合成反応を行つた。反応生成物はゾノトライト結
晶であり、この生成物を加圧脱水過し、含水率
80%の脱水ケーキを得た。このケーキの固形分が
押出成形用材料の固形分の93%、メチルセルロー
スが2%、粉末パルプが5%となる様に上記各原
料を混練機で均一に充分混合した。含水率は78.8
%となつた。このペースト状の押出成形用材料を
真空押出成形機で成形し、次いで160℃で12時間
乾燥した。得られた成形品の物性を第1表試料No.
1及び2に示す。 実施例 2 生石灰(CaO成分95.2%)67.7部を温水700部
中で消和した。この石灰乳に実施例1で用いたけ
い石粉末72.3部を加えて、水の量が94%になるよ
うに水を添加し、これを圧力18Kg/cm2、温度
208.8℃で2.5時間攪拌しながら水熱合成反応を行
つて、ゾノトライト結晶スラリーを得た。この反
応スラリーを加圧脱水過し、含水率60%の脱水
ケーキを得た。このケーキの固形分が押出成形用
材料の93.3%、メチルセルロースが2.2%、木綿
が4.5%となる様に、各原料を混練機で均一に充
分混合した。含水率は58.3%となつた。これを真
空押出成形機で押出成形し、150℃、14時間乾燥
した。得られた成形品の物性を第1表試料No.3及
び4に示す。 実施例 3 生石灰(CaO成分95.0%)101.5部を温水1000
部中で消和した。これにけい石粉末(SiO2成分
97.5%、平均粒子径3.9μm)108.5部を加え次いで
水の量が90%となるように水を加え、これを圧力
12Kg/cm2、温度190.7℃で8時間、攪拌しながら
水熱合成反応を行つてゾノトライト結晶スラリー
を得た。この生成物スラリーを脱水し、含水率35
%の脱水ケーキを得た。このケーキの固形分が押
出成形用材料の固形分の93.5%、メチルセルロー
スが2.5%、粉末パルプが4%となる様に各原料
を充分均一になるように混練機で混合した。含水
率は33.5%となつた。これを真空押出成形機で押
出成形し、150℃、14時間乾燥した。得られた成
形品の物性を第1表試料No.5及び6に示す。 実施例 4 生石灰(CaO成分95.0%)38.0部を温水500部
中で消和した。これにけい石粉末(SiO2成分94
%、平均粒子径4.2μm)49.5部を加え、次いで水
の量が94%となるように水を添加し、これを圧力
15Kg/cm2、温度200.4℃で2.0時間攪拌しながら水
熱合成反応を行つて、トベルモライト結晶スラリ
ーを得た。この反応スラリーを加圧脱水過し、
含水率70%の脱水ケーキを得た。このケーキの固
形分が押出成形用材料の93.3%、カルボキシメチ
ルセルロースが2.1%、粉末パルプが4.6%となる
様に、各原料を混練機で均一に充分混合した。含
水率は68.5%となつた。このペースト状の押出成
形用材料の真空押出成形機で成形し、次いで150
℃で13時間乾燥した。得られた成形品の物性を第
2表試料No.7及び8に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a calcium silicate molded body having excellent heat resistance, light weight, and high strength by extrusion molding. Calcium silicate molded bodies have excellent heat resistance, are lightweight, have high strength, and are highly processable, so they are particularly suitable as building materials. Prior art and its disadvantages Conventionally, molded bodies of calcium silicate crystals have been produced by adding a slurry of secondary particles of calcium silicate crystals, which is obtained by subjecting a raw material slurry containing a silicate raw material, a lime raw material, and water to a hydrothermal synthesis reaction, as needed. It is manufactured by adding reinforcing fibers and the like, filling it into a molding die, molding it by press dehydration molding, etc., and then drying it. However, this method has drawbacks such as difficulty in manufacturing long, thin, and complex-shaped products. Continuous extrusion molding can be used to improve the above drawbacks, but calcium silicate crystal slurry does not have the properties required of a molding material for extrusion, and cannot be extruded as is. It was said that In other words, the molding material for extrusion molding has (1) plasticity so that it can be deformed and molded into a predetermined shape by stress, (2) smoothness so that the material can be extruded smoothly through the die during molding, and (3)
It is necessary for the molded product to have properties such as shape retention to maintain its shape during the drying process, but calcium silicate crystal slurry does not have these properties sufficiently, so it cannot be extruded as it is. I can't do it. Therefore, it is necessary to add some forming aid. To produce calcium silicate molded bodies by extrusion molding, a binder such as water glass and an extrusion accelerator such as methylcellulose are added to calcium silicate, and the mixture is extruded to a total moisture content of 70 to 80% by weight. A method (Japanese Unexamined Patent Publication No. 191260/1983) has also been proposed. However, since this method requires the use of a binder such as water glass, the strength is low, and the strength is only strong enough to be used mainly as a support material for vacuum insulated containers. The drawback is that it is not possible to obtain a material with enough strength to be used as a building material. In addition, since a large amount of extrusion accelerator is used in order to prevent dehydration during extrusion, amounting to 5 to 15% by weight based on the solid content, there is also a drawback that heat resistance is reduced. Solution The present inventors solved the drawbacks of the above conventional method,
We conducted intensive research with the aim of efficiently producing by extrusion molding a calcium silicate molded body that has excellent heat resistance, is lightweight, and has high strength, and can be particularly suitable for use as a building material. In particular, in order to make the resulting molded product lighter and stronger, it is preferable to use calcium silicate crystals in the form of spherical secondary particles obtained by a calcium silicate hydrothermal synthesis reaction;
Research was conducted with consideration given to obtaining a molded product with even higher strength by making extrusion molding possible over a wide range of overall moisture content of the extrusion molding material. As a result, by adding a water-soluble organic polymer substance and a water-absorbing fibrous substance to calcium silicate crystals obtained through a hydrothermal synthesis reaction, we have achieved the appropriate plasticity, smoothness, and shape retention necessary for extrusion molding materials. It was discovered that the objective could be achieved by adding In other words, the calcium phosphate crystal slurry in the form of secondary particles obtained by a hydrothermal synthesis reaction has thixotropic properties, and when it is stirred, water is separated, and when it is extruded as it is, the particles between the secondary particles are separated. Extrusion molding is difficult because it promotes lubrication between the extrusion molding machine and the particles, but here, 2 to 10% by weight of a water-absorbing fibrous material and 0.2 to 5% by weight of a water-soluble organic polymeric material are added to the solid content. %, the water-absorbing fibrous material absorbs the water separated by stirring the slurry, making it suitable for smoothness and also contributing to shape retention. By simply adding a small amount of molecular substance, from 0.2% to less than 5% by weight, it is possible to impart appropriate plasticity and shape retention to the slurry, and these effects allow smooth extrusion of the calcium silicate crystal slurry, as well as the resulting It has been found that the molded product has excellent heat resistance, is lightweight, and has high strength, and can be particularly advantageously used as a building material. The present invention has been completed based on the above findings. Structure of the Invention The present invention provides secondary particles of calcium silicate crystals obtained by hydrothermal synthesis reaction of a raw material slurry containing a silicic acid raw material, a lime raw material, and water. % to less than 5% by weight and 2 to 10% by weight of a water-absorbing fibrous material, and the material has a total moisture content of 20 to 85% by weight. Pertains to manufacturing method. The calcium silicate crystal slurry in the present invention is produced by subjecting a raw material slurry consisting of a silicate raw material, a lime raw material, and water to a hydrothermal synthesis reaction while heating and stirring under pressure. The obtained calcium silicate crystals are three-dimensionally bonded to form approximately spherical secondary particles, thereby increasing the strength of the finally obtained molded product. The size of the spherical secondary particles varies depending on the conditions of the hydrothermal synthesis reaction, especially the amount of water, etc., but is usually 5-
It is about 150 μm. As silicic acid raw materials and lime raw materials, any of those used as raw materials for producing ordinary calcium silicate crystals can be effectively used. For example, silicic acid raw materials include silica stone, silica sand, silica flour, and diatoms. Soil, silicon dust, ferrosilicon dust, etc. are used as lime raw materials, quicklime, slaked lime, etc.
An example is carbide slag. Amount of water during hydrothermal synthesis reaction (ratio of water when silicic acid raw material, lime raw material, and water are subjected to hydrothermal synthesis reaction)
It is usually preferable to set the amount to about 83 to 97% by weight (5 to 30 times the solid content). At this time, the CaO/SiO 2 molar ratio of the silicic acid raw material and the lime raw material is 0.70 to 0.70 when trying to synthesize tobermolite crystals.
It should be about 0.90, or about 0.90 to 1.15 when trying to synthesize xonotlite crystals. The hydrothermal synthesis reaction is
It is carried out under a saturated steam pressure of usually 4 kg/cm 2 or more, preferably 6 kg/cm 2 or more. This reaction yields a calcium silicate crystal slurry in which spherical secondary particles made of tobermolite crystals and/or xonotrite crystals are dispersed in water. Next, a water-soluble organic polymer substance, a water-absorbing fibrous substance, etc. are mixed with the calcium silicate crystal slurry, and the total water content is adjusted to about 20 to 85% by weight to prepare a material for extrusion molding. At this time, the calcium silicate crystal slurry obtained by hydrothermal synthesis reaction may of course be used as it is, but it is dehydrated under pressure and the water content is usually 20 to 90% by weight.
It is convenient to adjust the dehydrated cake to a certain degree, and then mix a predetermined composition and water as necessary to this dehydrated cake. Here, the moisture content of the extrusion molding material is 85% by weight.
If the water content exceeds 20% by weight, the shape retention during extrusion will deteriorate and dehydration will occur during extrusion, which is disadvantageous.If the water content is less than 20% by weight, the extrusion material will lose its plasticity and extrusion will become difficult. So I don't like it. Examples of water-soluble organic polymer substances in the present invention include water-soluble cellulose derivatives such as methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, and hydroxypropyl cellulose, water-soluble polymers such as polyvinyl alcohol, sodium polyacrylate, and polyacrylic acid amide. At least one of these is used. Examples of water-absorbing fibrous substances include organic fibrous substances such as natural fibers such as pulp and cotton, synthetic fibers such as acrylic fibers, and inorganic fibrous substances such as asbestos. Use. Particularly preferred among these are pulp, especially powder pulp, asbestos, etc. from the viewpoint of dispersibility.Powder pulp has high hydrophilicity, so it easily retains water and is extremely effective in suppressing slippage during molding. The extrusion molding material in the present invention basically consists of the above-mentioned components, but cement, gypsum, clay, glass fiber, steel fiber, etc. may be added as necessary. The amount of the water-soluble organic polymer substance and the water-absorbing fibrous substance to be used can be selected from a wide range, but the former is usually 0.2% by weight or more of the total solid content of the extrusion molding material.
It is desirable that the amount is less than 2% by weight, and the latter is usually about 2 to 10% by weight. If the amount of the water-soluble organic polymer substance used exceeds the above range, the molding material tends to become slippery in the extrusion screw part of the extrusion molding machine, making molding difficult.
Moreover, the amount of water-soluble organic polymer substances used is 5% by weight.
Since the effect as a molding aid can be expressed by using a small amount of less than 100 ml, the heat resistance of the calcium silicate molded article is not impaired. On the other hand, if the amount used is less than the above range, the plasticity and shape retention of the molding material tend to be insufficient, which is not preferable. Furthermore, if the amount of water-absorbing fibrous material used exceeds the above range, the plasticity of the molding material tends to decrease, and if the amount used is less than the above range, the smoothness and shape retention of the molding material will decrease. This is not preferable because it tends to decrease. Further, it is desirable that the amounts of the water-soluble organic polymeric substance and the water-absorbing fibrous substance used be appropriately adjusted within the above ranges depending on the amount of water during the calcium silicate crystal hydrothermal synthesis reaction. That is, the size of the secondary particles produced varies depending on the amount of water during the hydrothermal synthesis reaction, and usually the larger the amount of water, the smaller the secondary particles. It is recognized that as the secondary particles become smaller, the above-mentioned thixotropy increases, and on the other hand, the smoothness of the slurry becomes relatively high although it cannot be extruded as it is. Therefore, as the amount of separated water increases, it is better to increase the amount of water-absorbing fibrous material used, while decreasing the amount of water-soluble organic polymer material used. When the amount of water during the hydrothermal synthesis reaction decreases, the amount of water-absorbing fibrous material used can be relatively small for the opposite reason to the above, while the amount of water-soluble organic polymer material used can be reduced. It is better to have a relatively large amount. The preferred amount of the water-soluble organic polymer substance and water-absorbing fibrous substance is that the amount of water during the hydrothermal synthesis reaction is 95%
If it exceeds 0.2 to 2.5% by weight and 3 to 10% by weight, more preferably 1.5 to 2% by weight and 4 to 10% by weight, respectively, based on the total solid content of the extrusion molding material.
8% by weight, and when the amount of water during the hydrothermal synthesis reaction is 91% to 95% by weight, respectively, based on the total solid content.
About 0.2 to 3.7% by weight and about 2.5 to 8.7% by weight, more preferably 1.8 to 2.5% by weight and 3.5 to 6.5% by weight,
When the amount of water during the hydrothermal synthesis reaction is less than 91% by weight, it is about 0.2 to less than 0.5% by weight and about 2.0 to 6.5% by weight, more preferably 2.0 to 6.5% by weight, respectively, based on the total solid content.
3.0% by weight and 3.0-5.0% by weight. In the present invention, as described above, by sufficiently uniformly mixing each component using a kneader or the like,
Water-soluble organic polymer substances, water-absorbing fibrous substances, etc. and calcium silicate crystals become homogeneous and exhibit properties suitable for extrusion molding. By extrusion molding and drying, a calcium silicate molded product having excellent properties can be obtained with high productivity. In addition, the moisture content in the present invention is defined as follows. Moisture content (%)=W/W+S×100 where W indicates water (g) and S indicates solid content (g). Effects of the Invention According to the present invention, the following remarkable effects can be obtained. (1) It becomes possible to easily produce molded bodies of various shapes by extrusion molding from a molding material of calcium silicate crystal secondary particles, which was previously thought to be impossible to extrude as it is. (2) The calcium silicate crystals in the extrusion molding material used are in the form of secondary particles obtained by a hydrothermal synthesis reaction, a water-absorbing fibrous substance is added, and the extrusion molding material contains By reducing the amount of water, a lightweight and high-strength calcium silicate molded body can be obtained. (3) Since only a small amount of combustible material is added, the resulting molded product has high heat resistance. (4) Due to (2) and (3) above, it is particularly suitable as a building material. (5) Since the surface of the molded product is extremely smooth, no surface finishing is required. (6) Extrusion molding is possible with a wide range of moisture content by adjusting the composition. (7) Molded bodies with various cross-sectional shapes can be obtained by simply replacing the extruder mouthpiece, making it easy to produce long molded bodies, thin molded bodies, and molded bodies with complex shapes such as honeycomb shapes. can. (8) Manufacturing by extrusion molding allows continuous manufacturing, resulting in high productivity and easy labor savings. Examples Hereinafter, the present invention will be explained in more detail with reference to Examples. In each example, all parts indicate parts by weight, and all percentages indicate weight %. Example 1 42.3 parts of quicklime (CaO content 95.2%) was slaked in 500 parts of warm water and dispersed in water for 30 minutes using a homomixer. Add 45.2 parts of silica powder (SiO 2 component 97.0%) with an average particle size of about 5.3 μm to this milk of lime, add water so that the amount of water becomes 96%, and press it to 15
A hydrothermal synthesis reaction was carried out at Kg/cm 2 and a temperature of 200.4° C. for 3.5 hours with stirring. The reaction product is xonotlite crystal, and this product is dehydrated under pressure to determine the water content.
An 80% dehydrated cake was obtained. The above raw materials were uniformly and sufficiently mixed in a kneader so that the solid content of this cake was 93% of the solid content of the extrusion molding material, 2% of methyl cellulose, and 5% of powder pulp. Moisture content is 78.8
%. This pasty extrusion molding material was molded using a vacuum extruder and then dried at 160°C for 12 hours. The physical properties of the obtained molded products are shown in Table 1 Sample No.
1 and 2. Example 2 67.7 parts of quicklime (CaO content 95.2%) was slaked in 700 parts of warm water. 72.3 parts of the silica powder used in Example 1 was added to this milk of lime, and water was added so that the amount of water became 94%.
A hydrothermal synthesis reaction was carried out at 208.8°C with stirring for 2.5 hours to obtain a xonotlite crystal slurry. This reaction slurry was dehydrated under pressure to obtain a dehydrated cake with a water content of 60%. The raw materials were uniformly and sufficiently mixed using a kneader so that the solid content of this cake was 93.3% of the extrusion molding material, 2.2% of methyl cellulose, and 4.5% of cotton. The moisture content was 58.3%. This was extruded using a vacuum extruder and dried at 150°C for 14 hours. The physical properties of the molded products obtained are shown in Sample Nos. 3 and 4 in Table 1. Example 3 Add 101.5 parts of quicklime (CaO content 95.0%) to 1000 g of hot water
It all went away in the club. Add silica powder (SiO 2 ingredients) to this.
97.5%, average particle size 3.9μm) was added, then water was added so that the amount of water was 90%, and this was heated under pressure.
A hydrothermal synthesis reaction was carried out at 12 Kg/cm 2 and a temperature of 190.7° C. for 8 hours with stirring to obtain a xonotrite crystal slurry. This product slurry was dehydrated to a moisture content of 35
% dehydrated cake was obtained. The raw materials were sufficiently uniformly mixed using a kneader so that the solid content of this cake was 93.5% of the solid content of the extrusion molding material, 2.5% of methyl cellulose, and 4% of powder pulp. The moisture content was 33.5%. This was extruded using a vacuum extruder and dried at 150°C for 14 hours. The physical properties of the molded products obtained are shown in Samples No. 5 and 6 in Table 1. Example 4 38.0 parts of quicklime (CaO content 95.0%) was slaked in 500 parts of warm water. Add silica powder (SiO 2 component 94
%, average particle size 4.2 μm), then water was added so that the amount of water was 94%, and this was heated under pressure.
A hydrothermal synthesis reaction was carried out at 15 kg/cm 2 and a temperature of 200.4° C. with stirring for 2.0 hours to obtain tobermolite crystal slurry. This reaction slurry was dehydrated under pressure,
A dehydrated cake with a moisture content of 70% was obtained. The raw materials were uniformly and sufficiently mixed using a kneader so that the solid content of this cake was 93.3% of the extrusion molding material, 2.1% of carboxymethyl cellulose, and 4.6% of powder pulp. The moisture content was 68.5%. This pasty extrusion material is molded in a vacuum extruder, and then
Dry at ℃ for 13 hours. The physical properties of the molded articles obtained are shown in Sample Nos. 7 and 8 in Table 2.

【表】【table】

【表】 比較例 1 粉末パルプを用いない以外は実施例1と同様に
して押出成形用材料を調製した。次いで、この材
料を実施例1と同様に真空押出成形機で押出成形
したところ、押出された成形体は軟かすぎ、しか
も割れを生じたため、押出成形により所定の成形
体を得ることは不可能であつた。 比較例 2 押出成形用材料中の粉末パルプの含有率(対固
形分)を13%とした以外は実施例1と同様にして
押出成形用材料を調製した。次いで、この材料を
実施例1と同様に真空押出成形機で成形しようと
試みたが、当該材料の流動性が乏しく口金からの
押出しが困難であり、しかも押出された成形体の
表面が粗くなり、押出成形によりは所定の成形体
を得ることは不可能であつた。 以上の結果より、吸水性繊維質物質を用いない
場合及びそれを用いてもその量が10%(対固形
分)を超える場合は、いずれも押出成形が円滑に
行なえず、所定量の吸水性繊維質物質を含有する
押出成形用材料を用いる本発明方法によつてはじ
めて良好に押出成形できることがわかる。
[Table] Comparative Example 1 An extrusion molding material was prepared in the same manner as in Example 1 except that powder pulp was not used. Next, when this material was extruded using a vacuum extrusion molding machine in the same manner as in Example 1, the extruded molded product was too soft and cracked, making it impossible to obtain the desired molded product by extrusion molding. It was hot. Comparative Example 2 An extrusion material was prepared in the same manner as in Example 1 except that the content of powder pulp (based on solid content) in the extrusion material was 13%. Next, an attempt was made to mold this material using a vacuum extrusion molding machine in the same manner as in Example 1, but the material had poor fluidity and was difficult to extrude from the die, and the surface of the extruded molded product was rough. However, it was impossible to obtain a desired molded product by extrusion molding. From the above results, extrusion molding cannot be performed smoothly when no water-absorbing fibrous material is used, and when it is used but the amount exceeds 10% (based on solid content), It can be seen that good extrusion molding can only be achieved by the method of the present invention using an extrusion molding material containing a fibrous substance.

Claims (1)

【特許請求の範囲】 1 けい酸原料、石灰原料及び水を水熱合成反応
させて得たけい酸カルシウム結晶に、水溶性有機
高分子物質及び吸水性繊維質物質を混合し、全体
の含水率を20〜85重量%に調整して押出成形する
ことを特徴とするけい酸カルシウム成形体の製造
法。 2 水溶性有機高分子物質の使用量が全固形分中
0.2重量%以上5重量%未満である特許請求の範
囲第1項に記載の製造法。
[Scope of Claims] 1 Calcium silicate crystals obtained by hydrothermal synthesis reaction of silicic acid raw materials, lime raw materials, and water are mixed with a water-soluble organic polymer substance and a water-absorbing fibrous substance, and the total water content is determined. A method for producing a calcium silicate molded body, which comprises adjusting the amount of calcium silicate to 20 to 85% by weight and extrusion molding. 2 The amount of water-soluble organic polymer substances used in the total solid content
The manufacturing method according to claim 1, wherein the content is 0.2% by weight or more and less than 5% by weight.
JP59173942A 1984-08-21 1984-08-21 Manufacture of calcium silicate formed body Granted JPS6153141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173942A JPS6153141A (en) 1984-08-21 1984-08-21 Manufacture of calcium silicate formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173942A JPS6153141A (en) 1984-08-21 1984-08-21 Manufacture of calcium silicate formed body

Publications (2)

Publication Number Publication Date
JPS6153141A JPS6153141A (en) 1986-03-17
JPH0547496B2 true JPH0547496B2 (en) 1993-07-16

Family

ID=15969920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173942A Granted JPS6153141A (en) 1984-08-21 1984-08-21 Manufacture of calcium silicate formed body

Country Status (1)

Country Link
JP (1) JPS6153141A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856167A (en) * 1987-02-12 1989-08-15 Eaton Corporation Method for producing near net ring gear forgings
CN107694540B (en) * 2017-09-27 2019-12-24 沈阳建筑大学 Preparation method of diatom morph-genetic hydrated calcium silicate superfine powder for dye removal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191260A (en) * 1981-05-20 1982-11-25 Nippon Oxygen Co Ltd Manufacture of calcium silicate formed body
JPS58120555A (en) * 1982-01-09 1983-07-18 昭和電工株式会社 Composition of asbestos cement for extrusion molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191260A (en) * 1981-05-20 1982-11-25 Nippon Oxygen Co Ltd Manufacture of calcium silicate formed body
JPS58120555A (en) * 1982-01-09 1983-07-18 昭和電工株式会社 Composition of asbestos cement for extrusion molding

Also Published As

Publication number Publication date
JPS6153141A (en) 1986-03-17

Similar Documents

Publication Publication Date Title
US5015606A (en) Lightweight ceramic material for building purposes
US5763345A (en) Synthetic clay for ceramics and process for production thereof
US2665996A (en) Hydrous calcium silicates and method of preparation
US2547127A (en) Calcium silicate of microcrystalline lathlike structure
US4402892A (en) Method for making xonotlite insulation by foaming an aqueous slurry of calcareous and siliceous reactants and cellulosic and glass fibers
US3030218A (en) Method of making refractory clay products
US20040258901A1 (en) Gypsum plaster
JPH0987001A (en) Production of inorganic molding
GB2336585A (en) Gypsum plaster
JPH0547496B2 (en)
JPS6410469B2 (en)
CN1307083A (en) Method for mfg. thermal insulation and fireproof calcium silicate material
JPS62143854A (en) Manufacture of calcium silicate base formed body
RU2005109C1 (en) Raw materials mixture for ceramic articles production and method of its preparation
JPS5932418B2 (en) Manufacturing method of extrusion molding material
JPH0212894B2 (en)
JPS61186256A (en) Manufacture of calcium silicate molded body
JPS6183667A (en) Manufacture of heat resistant molded body
JPH0631182B2 (en) Manufacturing method of lightweight inorganic extrusion products
JPH0116786B2 (en)
JPH0266256A (en) Inorganic building material
JP3280017B2 (en) Calcium silicate sintered body
JPS586706B2 (en) Method for producing calcium silicate hydrate molded body
JP6052981B2 (en) Calcium silicate molded body and method for producing the same
JPS6022643B2 (en) Calcium silicate hydrate aggregate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees