JPH0547269B2 - - Google Patents

Info

Publication number
JPH0547269B2
JPH0547269B2 JP58213905A JP21390583A JPH0547269B2 JP H0547269 B2 JPH0547269 B2 JP H0547269B2 JP 58213905 A JP58213905 A JP 58213905A JP 21390583 A JP21390583 A JP 21390583A JP H0547269 B2 JPH0547269 B2 JP H0547269B2
Authority
JP
Japan
Prior art keywords
exchange resin
anion exchange
powdered
solution
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58213905A
Other languages
Japanese (ja)
Other versions
JPS60106540A (en
Inventor
Fumio Maekawa
Koji Kawasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITOCHU SEITO KK
Original Assignee
ITOCHU SEITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITOCHU SEITO KK filed Critical ITOCHU SEITO KK
Priority to JP58213905A priority Critical patent/JPS60106540A/en
Publication of JPS60106540A publication Critical patent/JPS60106540A/en
Publication of JPH0547269B2 publication Critical patent/JPH0547269B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は色素成分を中心とする不純物を含み高
色価に着色される溶液の脱色方法に関するもので
あり、特に、他の工程で使用して能力の低下した
使用済陰イオン交換樹脂の再利用方法に関するも
のであり、さらに詳細には粒状イオン交換樹脂の
形態では、どのような方法でも脱着不可能な樹脂
に沈着蓄積された色素等の汚染物質の脱着方法に
関するものである。特に、使用済粒状陰イオン交
換樹脂を微粉末化して調製された粉末状陰イオン
交換樹脂の再生方法を中心とする当該粉末樹脂を
用いた脱色方法の改良に関するものである。 従来、陰イオン交換樹脂が脱塩ばかりでなく脱
色にも有効であることが知られており、例えば精
製糖工業において脱色工程等で利用されている。
そして、その使用態様としては、一般に粒径が
0.3〜0.6mmの粒状陰イオン交換樹脂を吸着塔内に
充填せしめ、当該充填層に被処理液を通液して溶
液中の色素成分を吸着せしめるというものが知ら
れている。 このような充填層に被処理液を通液する方法は
単に充填層に通液するだけであるから操作が比較
的簡単であるという反面、吸着表面積が小さく吸
着速度が遅いので、処理能力が低く通液速度をそ
れほど速くすることができないという欠点を有す
る。このため吸着塔が比較的大きくなり易く、か
つ理論的吸着容量に対する利用率も比較的小さく
なつてしまつている。 そこでさらに、吸着表面積の大きな粉末状陰イ
オン交換樹脂を上記脱色に利用することが考えら
れている。この粉末状陰イオン交換樹脂を用いれ
ば、被処理液の通液速度を大幅に速めることがで
き、かつ理論的吸着容量に対する利用率も上昇
し、わずかな樹脂量で効果的に脱色することがで
きる。 ところで、粒状の陰イオン交換樹脂を充填塔等
に充填し各種溶液の脱色あるいは脱塩等に用いる
と、使用していくうちに貫流容量の低下や処理液
の純度の低下などが生じ、その能力が低下する。
一般に粒状の陰イオン交換樹脂の能力の低下は、
交換容量の低下と粒子表面に有機物が不可逆的に
吸着する所謂有機物汚染による粒子内拡散速度の
低下の2つの要因が考えられるが、例えば溶剤等
で洗浄しても有機物等の被吸着物質をほとんど除
去することができず上記陰イオン交換樹脂の能力
が元の状態に回復しないことが知られている。こ
のため、上記粒状の陰イオン交換樹脂はある時期
に新品のものと交換され、産業廃棄物として廃棄
される。これは、上記粉末状の陰イオン交換樹脂
においても同様であると考えられ、能力の低下し
た粉末状陰イオン交換樹脂も使い捨てにされてい
る。 このように陰イオン交換樹脂を使い捨てにする
と、この陰イオン交換樹脂が高価なものであるの
でランニングコストが増大するばかりか、産業廃
棄物である使用済樹脂の処分が問題となつてい
る。特に高色価溶液を処理する場合には、上記樹
脂を頻繁に交換しなくてはならないので上記問題
が一層顕著なものとなつている。 本発明者等は上述の実情に鑑みて鋭意検討した
結果、他の工程で1度使用して使えなくなつた使
用済み粒状陰イオン交換樹脂を粉砕して微粉末と
なしある種の溶剤と接触させてやると粒状の状態
では脱着不可能であつた被吸着物質を速やかに除
去して新品同様に回生することができ、さらに再
生により繰り返し使用し得ることを見出し本発明
を完成したものであつて、溶液を粉末状陰イオン
交換樹脂に接触させて脱色するにあたり、上記粉
末状陰イオン交換樹脂として使用済みの粒状陰イ
オン交換樹脂を粒径105μm以下の微粒子に粉砕
しさらに酸及び/またはアルカリ金属イオン含有
溶液と接触させることにより回生して得られる粉
末状陰イオン交換樹脂を用いるとともに、上記脱
色により被吸着物質を吸着した粉末状陰イオン交
換樹脂を酸含有溶液と接触させて再生し、繰り返
し使用することを特徴とするものである。 以下、本発明の実施態様を第1図を参照しなが
ら説明する。 本発明においては、溶液を脱色するために粉末
状陰イオン交換樹脂1を用いるわけであるが、こ
の粉末状陰イオン交換樹脂1を製造するために、
使用済み粒状陰イオン交換樹脂2を用意する。 上記使用済み粒状陰イオン交換樹脂2として
は、前述した如き、各種脱色工程や脱塩工程等で
使用され本来廃棄されるようなものでよい。ま
た、その種類も、スチレンとジビニルレベンゼン
の共重合物あるいはアクリルとジビニルベンゼン
の共重合物などの母体に第4級アンモニウム基、
アルカノール基、第3級アミン基、第2級アミン
基、第1級アミン基、ポリアミン基などのイオン
交換基を有する強塩基性陰イオン交換樹脂、中塩
基性陰イオン交換樹脂、弱塩基性陰イオン交換樹
脂等、いかなる陰イオン交換樹脂であつても使用
することができ、そのイオン形もOH形の他、Cl
形、SO4形等の各種の塩形のものが挙げられる
が、特にOH形、Cl形強塩基性陰イオン交換樹脂
が最も効果的である。 次に、この使用済み粒状陰イオン交換樹脂2を
粉砕工程3により微粒子状に粉砕する。この粉砕
工程3により得られる微粒子の粒径としては、
105μm以下であることが好ましい。上記粒径が
105μmを越えると色素成分を中心とする被吸着
物質の脱離が難しくなり、後述の回生が困難なも
のとなる。また、上記粉末状イオン交換樹脂の粒
径が5μm以下、特にリークの危険性が大きい1.5μ
m以下のものであるとろ別が困難なものとなり後
述の脱色溶液中に該樹脂が混入してしまう虞れが
ある。 また、その粉砕方法としては、気流式粉砕法や
凍結粉砂法、機械的粉砕法等が挙げられるが、特
に気流式粉砕法か凍結粉砕法を用いることが好ま
しい。 上記気流式粉砕法は、空気の高速渦流による高
周波な圧力変動にともなう振動により原料である
粒子状陰イオン交換樹脂を自己破砕させ微粒子化
させる方法であり、50μm以下に粉末化するに要
する時間が極めて短時間(数秒程度)であるとい
う特徴を有している。そしてこの粉砕方法によれ
ば、粉砕時の温度上昇が40℃以下であるので熱に
よる樹脂の劣化が生ずることがなく、有効粒径を
5〜50μmとしたときにその生産率は99.9%にも
達する。さらに特徴的なことは色素成分等の脱着
性に優れ回生や再生効果が大きな粉末状陰イオン
交換樹脂が得られることである。 また、上記凍結粉砕法は、粒状の陰イオン交換
樹脂に、例えば液体窒素を直接接触させて−100
℃以下に冷却せしめ、次いで冷却した当該陰イオ
ン交換樹脂をただちにハンマーミル等で粉末化す
るものである。なお、上記冷却に使用できる冷媒
としては、上記液体窒素の他に液体炭酸ガス、液
体酸素、液化プロパン等各種の低沸点液化ガスが
挙げられるが、冷却温度が低いことおよび安全
性、経済性の面で液体窒素を用いることが好まし
い。この場合にも熱劣化の生じることがなく細か
い粒度で、かつ粒子径が比較的揃つた粉末状陰イ
オン交換樹脂が得られる。 これに対し、ボールミルやハンマーミルを用い
た機械的粉砕法では、粉砕物の粒度を揃えること
が難かしく、得られた粉末状陰イオン交換樹脂を
使用するにあたつては、ふるい等で105μm以下
のものを選別して用いることが好ましい。さら
に、上記機械的粉砕法では粉砕に要する時間が長
く温度上昇も大きいので、当該粉末状陰イオン交
換樹脂の脱色性能が低下する虞れもある。 陰イオン交換樹脂はその耐熱温度が比較的低
く、例えば4級アンモニウム基をイオン交換基と
するOH形強塩基性陰イオン交換樹脂の最高操作
温度は60℃とされており、当該温度を越えると急
速にイオン交換基の熱分解が生じる。陰イオン交
換樹脂による色素成分の吸着機構の詳細について
は不明であるが、陰イオン交換樹脂粒子表面の極
性が大いに関与しているものと考えられるので、
その粉砕時に熱が加わるのは好ましくない。 続いて、上記粉砕工程3により微粒子化した樹
脂を回生工程4により回生する。 上記回生工程4に用いられる回生剤としては、
酸及び/またはアルカリ金属イオン含有溶液が挙
げられるが、この酸及び/またはアルカリ金属イ
オン含有溶液としては、酸含有有機溶剤あるいは
アルカリ金属イオン含有有機溶剤が効果的であ
り、特に有機溶剤を親水性有機溶剤とした酸含有
アセトン及び酸含有メタノール、アルカリ金属イ
オン含有メタノールが効果的である。その他、上
記有機溶剤としてエタノール、エーテル、クロロ
ホルム、ヘキサン等の有機溶剤を用いた場合にも
色素成分を脱着する効果がある。また、上記酸と
しては、塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸
等が挙げられるが、塩酸等の鉱酸を用いた方が効
果が高い。さらに、アルカリ金属イオン含有溶液
として、食塩水、水酸化ナトリウム含有食塩水、
塩酸含有食塩水等を用いても効果があるが、上記
酸含有アセトン等に比べてその回生効果が劣る。 最も好ましいのは、先ず酸及び/またはアルカ
リ金属イオン含有溶液と接触させ、続いて酸及
び/またはアルカリ金属イオン含有有機溶剤と接
触させることである。粉末状陰イオン交換樹脂の
再生に適用して最も効果的な再生剤は、酸及び/
又はアルカリ金属イオン含有有機溶剤であつた。
本発明による粉末状陰イオン交換樹脂の場合で
も、この傾向は変わらないが、使用済粉末イオン
交換樹脂の場合の特異な現象として次のことが明
らかになつた。 本発明でいう使用済粉末イオン交換樹脂に限つ
て有機溶剤に限らず、水溶液の場合でも再生効果
の大きいことが見出された。この理由としては、
脱色能力の低下した使用済粒状陰イオン交換樹脂
(廃棄樹脂)中には、粒状の形態では脱着されな
かつた多量の不純物が蓄積されていたこと、微粒
子化されたことによりこの蓄積色素が脱着され易
い状態になつたためと推定される。換言すれば、
粒状と粉末状では色素等に対する吸脱着の平衡関
係が異なることがわかつた。使用済粉末イオン交
換樹脂の場合、経済的な見地から必ずしも多サイ
クルにわたつて反復使用させる必要はない。従つ
て、当該水溶液による再生のみでも十分である
が、多サイクルにわたつて使用させるためには、
有機溶剤、特に酸含有アセトン水と接触させる再
生方法を併用することがよいこともわかつた。有
機溶剤による再生を組み入れる頻度としては、被
処理液中の不純物(色素)の量により影響される
ので一定ではないが、5〜10サイクルに一度実施
するだけで、併用効果が顕著に現れることも認め
られた。 ところで、上記酸含有有機溶剤中の酸濃度につ
いては、その濃度が高いほど脱着速度が速くなる
が、5%以上に増加しても脱着量はそれほど上昇
しなかつた。また、酸含有アセトンを用いた場合
に、アセトン中の水分含量は50%前後まではその
脱着性能に差は見られなかつた。 上記微粒子の陰イオン交換樹脂を、特にアセト
ン等の浸透性の大きな有機溶剤を含む回生剤を使
用して回生する場合には、その脱着速度が非常に
速く、短時間接触させるだけで吸着している色素
成分等をほぼ完全に脱離することができる。ま
た、上記回生剤として水溶液を用いた場合には、
大量の回生剤を使用することが必要となりその使
用条件も高温であることが必要となるが、有機溶
剤を主体とする回生剤を用いる場合にはその使用
量を大幅に低減することができ、通常は回生する
樹脂の10〜20倍量で十分である。そして、上記有
機溶剤を主体とする回生剤を用いる場合には、回
生に利用した有機溶剤を蒸留等により簡単に回収
して再利用することができ、また廃液の量を減少
させることができる等、そのメリツトは大きい。
さらに、上記有機溶剤を回収する場合には、廃液
中の有価物質の回収をも容易にするという効果も
ある。 上述の回生工程4により、使用済み粒状陰イオ
ン交換樹脂2の樹脂細孔内部に蓄積し被吸着物
質、特に高分子色素、重金属を含むコロイド成分
等は容易に除去され、新品同様の粉末陰イオン交
換樹脂1が得られる。 そして、この粉末状陰イオン交換樹脂1に着色
した被処理溶液5を通液し、脱色溶液6を得る。 上記粉末状陰イオン交換樹脂1は脱色作用の点
で骨炭や粒状活性炭より優れた性能を有してお
り、被処理溶液5に対して0.5%の使用量で充分
に目的が達成される。さらに、この使用量は、多
段接触方式または粉末樹脂層方式を採用すること
により大幅に減少することもできる。したがつ
て、単位樹脂量当りの溶液精製量も著しく上昇
し、特に粉末樹脂層方式では従来の粒状の陰イオ
ン交換樹脂を用いたものに比べて約10倍量にも達
する。なお、上記粉末状樹脂層を作成する場合に
は、粉末状陰イオン交換樹脂とケイソウ土、繊維
状ろ過助剤特とを混合使用してもよい。 また、粉末状陰イオン交換樹脂1を用いた場合
の被処理液5としては、色価指数A.I.
(Attenuation Index)100以上の高色価溶液であ
る場合に最も効果的に脱色することができる。 さらに、上記粉末状陰イオン交換樹脂1は、粒
状陰イオン交換樹脂に比べて単に吸着量が多いば
かりでなく、560〜720nmの可視高波長領域に吸
光度特性を有する高分子色素に対して特異的に吸
着量が大きいことが判明した。 一方、上記粉末状陰イオン交換樹脂1の脱色能
力が低下してきたら、再生工程7により再生す
る。この再生工程7で用いる再生剤は、先の回生
工程4で用いた回生剤と同様のものを用いればよ
く、例えば上記粉末状陰イオン交換樹脂1をバツ
チ方式で撹拌接触させて色素成分等の被吸着物質
を脱離し、再び被処理5の脱色に用いる。 本発明は粉末状陰イオン交換樹脂1で吸着する
ことができる色素成分を含む溶液であればいかな
る溶液の脱色にも適用することができるが、特に
甘蔗糖液や甜菜糖液等の各種糖液、各種植物搾
汁、パルプ工場廃液、食品工場排水等の脱色に適
用した場合に再生効果が非常に大きく有用であ
る。 特に、糖液の精製に適用する場合には上述の粉
末状陰イオン交換樹脂と粉末状陰イオン交換樹脂
とを併用することにより、例えばマグネシア清浄
工程や炭酸飽充工程で処理された糖液中の硬度成
分をも除去することができ、精製工程の省略を図
ることができる。 以上述べたように、本発明によれば本来廃棄さ
れるべきものである使用済み粒状陰イオン交換樹
脂を回生して新品同様に使用することができ、さ
らに再生剤により再生して繰り返し使用している
ので、経済的メリツトは極めて大きく、また産業
廃棄物の量が著しく減少するので処理労力や公害
等の観点からも好ましい。さらに、粉末状陰イオ
ン交換樹脂の脱色能力が極めて高いので処理効率
を向上し脱色コストを低減することも可能であ
る。 次に、本発明をより明確なものとするために具
体的な実施例について説明するが、本発明がこれ
ら実施例に限定されるものではないことは言うま
でもない。 実施例 1 甘蔗糖液の精製イオン交換樹脂工程に使用して
能力の低下した使用済み粒状強塩基性陰イオン交
換樹脂をボールミルにて粉砕し、第1表に示すよ
うに粒度分布を有する粉末状陰イオン交換樹脂を
篩分法により調製した。 これら各粒度分布を有する粉末状陰イオン交換
樹脂1g(乾燥重量)を、1%HCl含有10%食塩
水50mlを用いて70℃の温度条件で回生した。この
回生操作で得られた回生排液をPH7に中和して
200mlに希釈し、この排液の吸光度を分光光度計
により測定して各粒度分布における脱着色素量を
その吸光度により比較した。さらに、上記回生操
作により回生した粉末状陰イオン交換樹脂に残存
する重金属量を食品添加物公定分析法に基づいて
測定した。結果を第1表に示す。
The present invention relates to a method for decolorizing a solution that contains impurities, mainly pigment components, and is colored with a high color value.In particular, the present invention relates to a method for decolorizing a solution that is colored with a high color value and contains impurities, mainly pigment components.In particular, the present invention relates to a method for reusing a used anion exchange resin whose capacity has decreased due to use in other processes. The present invention relates to a method, and more particularly, to a method for desorbing contaminants such as pigments deposited and accumulated in a resin that cannot be desorbed by any method in the form of a particulate ion exchange resin. In particular, the present invention relates to improvements in decolorizing methods using powdered anion exchange resins, including methods for regenerating powdered anion exchange resins prepared by pulverizing used granular anion exchange resins. It has been known that anion exchange resins are effective not only for desalination but also for decolorization, and are used, for example, in the decolorization process in the sugar refining industry.
In terms of usage, the particle size is generally
It is known that an adsorption tower is filled with granular anion exchange resins of 0.3 to 0.6 mm, and a liquid to be treated is passed through the packed bed to adsorb a dye component in the solution. This method of passing the liquid to be treated through the packed bed is relatively easy to operate because it simply passes the liquid through the packed bed, but on the other hand, the processing capacity is low because the adsorption surface area is small and the adsorption speed is slow. It has the disadvantage that the liquid passing rate cannot be made very high. For this reason, the adsorption tower tends to be relatively large, and the utilization rate relative to the theoretical adsorption capacity is also relatively small. Therefore, it has been considered to utilize a powdered anion exchange resin having a large adsorption surface area for the above-mentioned decolorization. By using this powdered anion exchange resin, the flow rate of the liquid to be treated can be greatly increased, and the utilization rate relative to the theoretical adsorption capacity can also be increased, making it possible to effectively decolorize with a small amount of resin. can. By the way, when a granular anion exchange resin is packed in a packed tower or the like and used for decolorizing or desalting various solutions, as it is used, the through-flow capacity decreases and the purity of the treated liquid decreases, resulting in a decrease in its capacity. decreases.
In general, the decrease in the ability of granular anion exchange resins is due to
There are two possible causes: a decrease in exchange capacity and a decrease in the diffusion rate within particles due to so-called organic contamination, in which organic substances are irreversibly adsorbed onto the particle surface. It is known that the anion exchange resin cannot be removed and the performance of the anion exchange resin cannot be restored to its original state. Therefore, the granular anion exchange resin is replaced with a new one at some point and discarded as industrial waste. This is thought to be the same for the above-mentioned powdered anion exchange resins, and powdered anion exchange resins with reduced performance are also disposed of. If the anion exchange resin is made disposable in this manner, the running cost not only increases because the anion exchange resin is expensive, but also the disposal of the used resin, which is industrial waste, becomes a problem. Particularly when processing high color value solutions, the above-mentioned problem becomes even more pronounced because the resin must be replaced frequently. As a result of intensive studies in view of the above-mentioned circumstances, the inventors of the present invention have found that used granular anion exchange resin, which has been used once in another process and is no longer usable, is pulverized into a fine powder and brought into contact with a certain type of solvent. The inventors have now completed the present invention by discovering that the adsorbed substances, which could not be desorbed in the granular state, can be quickly removed and the product can be regenerated as if it were new, and furthermore, it can be used repeatedly through regeneration. In order to decolorize the solution by contacting the powdered anion exchange resin, the used granular anion exchange resin as the powdered anion exchange resin is pulverized into fine particles with a particle size of 105 μm or less, and then acid and/or alkali are added. Using a powdered anion exchange resin obtained by regenerating it by contacting it with a metal ion-containing solution, and regenerating the powdered anion exchange resin that has adsorbed the adsorbed substance through the decolorization by bringing it into contact with an acid-containing solution, It is characterized by repeated use. Hereinafter, embodiments of the present invention will be described with reference to FIG. In the present invention, the powdered anion exchange resin 1 is used to decolorize the solution, but in order to produce the powdered anion exchange resin 1,
A used granular anion exchange resin 2 is prepared. The used particulate anion exchange resin 2 may be one that is used in various decolorization processes, desalination processes, etc. and is originally discarded, as described above. In addition, the types include a copolymer of styrene and divinyllebenzene or a copolymer of acrylic and divinylbenzene, etc., with a quaternary ammonium group,
Strongly basic anion exchange resins, medium basic anion exchange resins, weakly basic anion exchange resins having ion exchange groups such as alkanol groups, tertiary amine groups, secondary amine groups, primary amine groups, polyamine groups, etc. Any anion exchange resin such as ion exchange resin can be used, and its ionic form can be OH, Cl, etc.
Although various salt forms such as OH form and SO 4 form can be mentioned, strongly basic anion exchange resins such as OH form and Cl form are the most effective. Next, this used granular anion exchange resin 2 is crushed into fine particles in a crushing step 3. The particle size of the fine particles obtained by this pulverization step 3 is as follows:
It is preferably 105 μm or less. The above particle size is
If the diameter exceeds 105 μm, it becomes difficult to remove adsorbed substances, mainly dye components, and regeneration, which will be described later, becomes difficult. In addition, the particle size of the above powdered ion exchange resin is 5 μm or less, especially 1.5 μm, which has a high risk of leakage.
If the resin is less than m, it will be difficult to separate by filtration, and there is a risk that the resin will be mixed into the decolorizing solution described below. Further, examples of the pulverization method include a pneumatic pulverization method, a frozen powdered sand method, a mechanical pulverization method, etc., and it is particularly preferable to use a pneumatic pulverization method or a freeze pulverization method. The above-mentioned pneumatic pulverization method is a method in which the particulate anion exchange resin, which is the raw material, is self-pulverized into fine particles by vibration caused by high-frequency pressure fluctuations caused by high-speed swirling of air, and the time required to powder it to 50 μm or less is It has the characteristic of being extremely short-lived (about a few seconds). According to this pulverization method, the temperature rise during pulverization is 40℃ or less, so there is no deterioration of the resin due to heat, and when the effective particle size is 5 to 50 μm, the production rate is as high as 99.9%. reach A further characteristic feature is that a powdered anion exchange resin can be obtained which has excellent desorption properties of pigment components and has a large regeneration and regeneration effect. In addition, the above-mentioned freeze-pulverization method involves directly contacting granular anion exchange resin with, for example, liquid nitrogen.
The anion exchange resin is cooled to below .degree. C., and then the cooled anion exchange resin is immediately pulverized using a hammer mill or the like. In addition to the above-mentioned liquid nitrogen, refrigerants that can be used for the above-mentioned cooling include various low-boiling point liquefied gases such as liquid carbon dioxide, liquid oxygen, and liquefied propane. Preferably, liquid nitrogen is used on the surface. In this case as well, a powdered anion exchange resin having a fine particle size and a relatively uniform particle size can be obtained without thermal deterioration. On the other hand, with mechanical pulverization using a ball mill or hammer mill, it is difficult to make the particle size of the pulverized material uniform, and when using the obtained powdered anion exchange resin, it is necessary to sieve it to a size of 105 μm. It is preferable to select and use the following. Furthermore, in the above-mentioned mechanical pulverization method, the time required for pulverization is long and the temperature rise is large, so there is a possibility that the decolorizing performance of the powdered anion exchange resin may be reduced. The heat resistance of anion exchange resins is relatively low. For example, the maximum operating temperature of OH type strongly basic anion exchange resins with quaternary ammonium groups as ion exchange groups is said to be 60℃, and if this temperature is exceeded, Thermal decomposition of the ion exchange groups occurs rapidly. Although the details of the adsorption mechanism of dye components by anion exchange resin are unknown, it is thought that the polarity of the anion exchange resin particle surface is largely involved.
It is undesirable that heat is applied during the grinding. Subsequently, the resin made into fine particles in the pulverization step 3 is regenerated in a regeneration step 4. The regeneration agent used in the regeneration step 4 is as follows:
Examples include solutions containing acids and/or alkali metal ions, and as the solution containing acids and/or alkali metal ions, acid-containing organic solvents or alkali metal ion-containing organic solvents are effective. Acid-containing acetone, acid-containing methanol, and alkali metal ion-containing methanol as organic solvents are effective. In addition, when an organic solvent such as ethanol, ether, chloroform, or hexane is used as the organic solvent, there is also an effect of desorbing the dye component. Further, examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, etc., but it is more effective to use a mineral acid such as hydrochloric acid. Furthermore, as the alkali metal ion-containing solution, saline solution, sodium hydroxide-containing saline solution,
Although it is effective to use a saline solution containing hydrochloric acid, its regeneration effect is inferior to that of the above-mentioned acid-containing acetone and the like. Most preferably, it is first contacted with a solution containing acid and/or alkali metal ions, followed by contact with an organic solvent containing acid and/or alkali metal ions. The most effective regenerants for regenerating powdered anion exchange resins are acids and/or
Or it was an organic solvent containing alkali metal ions.
Although this tendency does not change even in the case of the powdered anion exchange resin according to the present invention, the following phenomenon has been clarified as a unique phenomenon in the case of the used powdered ion exchange resin. It has been found that the used powdered ion exchange resin referred to in the present invention has a great regeneration effect not only in organic solvents but also in aqueous solutions. The reason for this is
Used granular anion exchange resin (waste resin) with reduced decolorizing ability had accumulated a large amount of impurities that could not be desorbed in granular form, and the accumulated pigments were desorbed by being made into fine particles. It is presumed that this is because the condition has become easier. In other words,
It was found that the equilibrium relationship between adsorption and desorption of pigments, etc. is different between granular and powdered materials. In the case of a used powdered ion exchange resin, it is not necessarily necessary to repeatedly use it over many cycles from an economic standpoint. Therefore, regeneration using the aqueous solution alone is sufficient, but in order to use it over multiple cycles,
It has also been found that it is advisable to use a regeneration method in which contact is made with an organic solvent, especially acetone water containing an acid. The frequency of incorporating regeneration with an organic solvent is not constant as it is affected by the amount of impurities (dye) in the liquid to be treated, but the combined effect may be noticeable by performing it once every 5 to 10 cycles. Admitted. By the way, as for the acid concentration in the acid-containing organic solvent, the desorption rate increases as the concentration increases, but even when the acid concentration increases to 5% or more, the amount of desorption does not increase significantly. Furthermore, when acid-containing acetone was used, no difference was observed in the desorption performance up to a water content of around 50%. When regenerating the above-mentioned fine-particle anion exchange resin using a regeneration agent containing a highly permeable organic solvent such as acetone, the desorption rate is extremely fast, and the adsorption is possible even after a short period of contact. It is possible to almost completely remove the pigment components, etc. In addition, when an aqueous solution is used as the regeneration agent,
It is necessary to use a large amount of regeneration agent and the conditions for its use must be high temperatures, but when using a regeneration agent that is mainly based on organic solvents, the amount used can be significantly reduced. Usually, 10 to 20 times the amount of regenerated resin is sufficient. When using a regeneration agent mainly composed of the above-mentioned organic solvent, the organic solvent used for regeneration can be easily recovered and reused by distillation, etc., and the amount of waste liquid can be reduced. , the benefits are great.
Furthermore, when recovering the organic solvent, there is also the effect of facilitating the recovery of valuable substances in the waste liquid. Through the above-mentioned regeneration step 4, adsorbed substances that accumulate inside the resin pores of the used granular anion exchange resin 2, especially colloidal components containing polymeric dyes and heavy metals, are easily removed, and the powdered anion exchange resin becomes as good as new. Exchange resin 1 is obtained. Then, the colored solution 5 to be treated is passed through the powdered anion exchange resin 1 to obtain a decolorized solution 6. The powdered anion exchange resin 1 has better performance than bone char or granular activated carbon in terms of decolorizing action, and the purpose can be sufficiently achieved by using the resin in an amount of 0.5% based on the solution to be treated 5. Furthermore, this amount can be significantly reduced by adopting a multi-stage contact method or a powder resin layer method. Therefore, the amount of solution purified per unit amount of resin increases significantly, and in particular, in the powder resin layer method, the amount is about 10 times that of the conventional method using granular anion exchange resin. In addition, when creating the powdered resin layer, a powdered anion exchange resin, diatomaceous earth, and a fibrous filter aid may be used in combination. In addition, when the powdered anion exchange resin 1 is used, the liquid to be treated 5 has a color value index of AI
(Attenuation Index) A high color value solution of 100 or more can decolorize most effectively. Furthermore, the powdered anion exchange resin 1 not only has a larger adsorption amount than the granular anion exchange resin, but also has specificity for polymeric dyes that have absorbance characteristics in the visible high wavelength region of 560 to 720 nm. It was found that the amount of adsorption was large. On the other hand, if the decolorizing ability of the powdered anion exchange resin 1 begins to decline, it is regenerated in a regeneration step 7. The regenerating agent used in this regeneration step 7 may be the same as the regenerating agent used in the previous regeneration step 4. For example, the powdered anion exchange resin 1 is brought into contact with stirring in batches to remove pigment components, etc. The adsorbed substance is desorbed and used again to decolorize the treated object 5. The present invention can be applied to decolorizing any solution as long as it contains a pigment component that can be adsorbed by the powdered anion exchange resin 1, but in particular various sugar solutions such as cane sugar solution and sugar beet solution. It has a very large regeneration effect and is useful when applied to decolorizing various plant juices, pulp factory waste liquid, food factory waste water, etc. In particular, when applied to the purification of sugar solutions, the above-mentioned powdered anion exchange resin and powdered anion exchange resin can be used in combination, for example, in sugar solutions treated in the magnesia cleaning process or the carbonate filling process. It is also possible to remove the hardness component of , and the purification process can be omitted. As described above, according to the present invention, used granular anion exchange resin, which should originally be discarded, can be regenerated and used as if it were new, and furthermore, it can be regenerated with a regenerating agent and used repeatedly. Therefore, the economic merit is extremely large, and the amount of industrial waste is significantly reduced, which is preferable from the viewpoint of processing labor and pollution. Furthermore, since the powdered anion exchange resin has an extremely high decolorizing ability, it is possible to improve treatment efficiency and reduce decolorizing costs. Next, specific examples will be described in order to make the present invention more clear, but it goes without saying that the present invention is not limited to these examples. Example 1 Used granular strongly basic anion exchange resin whose capacity has decreased due to use in the ion exchange resin process for purification of cane sugar liquid is ground in a ball mill to form a powder having a particle size distribution as shown in Table 1. Anion exchange resin was prepared by sieving method. 1 g (dry weight) of powdered anion exchange resin having each of these particle size distributions was regenerated at a temperature of 70° C. using 50 ml of 10% saline containing 1% HCl. The regenerated effluent obtained from this regeneration operation is neutralized to pH7.
It was diluted to 200 ml, and the absorbance of this waste liquid was measured using a spectrophotometer, and the amount of desorbed dye in each particle size distribution was compared based on the absorbance. Furthermore, the amount of heavy metals remaining in the powdered anion exchange resin regenerated by the regeneration operation was measured based on the official food additive analysis method. The results are shown in Table 1.

【表】 この第1表からも明らかなように、粒状陰イオ
ン交換樹脂(粒径250μm以上)の状態では色素
成分がほとんど脱着しなかつたのに対し、250μ
m以下、特に105μm以下に微粒子化することに
よつて脱着色素量が大幅に向上し、これに伴なつ
て残留重金属も減少して回生効果が向上してい
る。特に、600μmにおける吸光度が100倍以上に
もなつており、従来の粒状陰イオン交換樹脂では
除去することができなかつた高分子の色素成分を
も脱着することができることが判明した。 実施例 2 甘蔗糖液の精製イオン交換樹脂工程に使用して
能力の低下した使用済み粒状強塩基状陰イオン交
換樹脂を気流粉砕法にて粒径50μm以下(平均粒
径18.5μm)に粉砕し、得られる粉末状陰イオン
交換樹脂1g(乾燥重量)に対し第2表に示す回
生剤50mlを加えて撹拌しながら30分間接触させ
た。各回生剤による脱着色素量及び樹脂中に残留
する重金属量を第2表に示す。 なお、上記回生は、回生剤が有機溶剤を主体と
するものである場合には常温下で、水溶液を主体
とするものである場合には70℃で行なつた。ま
た、上記脱着色素量は420nmに吸光度を有する
色素成分に対してのみ算出し、その算出方法は次
式によつた。 脱着色素量=1000(−logT420on)/セル長
(cm)×樹脂量(g)×排液量(ml)
[Table] As is clear from Table 1, in the state of granular anion exchange resin (particle size of 250 μm or more), almost no pigment component was desorbed, whereas
By making the particles smaller than 105 μm, especially 105 μm or less, the amount of desorbed dye is greatly improved, and the residual heavy metals are also reduced, improving the regeneration effect. In particular, the absorbance at 600 μm was more than 100 times higher, indicating that it was possible to desorb polymeric dye components that could not be removed using conventional granular anion exchange resins. Example 2 Purification of cane sugar liquid Used granular strong basic anion exchange resin whose capacity has decreased due to use in the ion exchange resin process is pulverized to a particle size of 50 μm or less (average particle size 18.5 μm) using an air flow pulverization method. 50 ml of the regenerating agent shown in Table 2 was added to 1 g (dry weight) of the obtained powdered anion exchange resin, and the mixture was brought into contact with the resin for 30 minutes while stirring. Table 2 shows the amount of dye desorbed by each regenerating agent and the amount of heavy metals remaining in the resin. Note that the above regeneration was performed at room temperature when the regeneration agent was mainly an organic solvent, and at 70° C. when the regeneration agent was mainly an aqueous solution. Further, the amount of the desorbed dye was calculated only for the dye component having absorbance at 420 nm, and the calculation method was based on the following formula. Desorption dye amount = 1000 (-logT 420on ) / cell length (cm) x resin amount (g) x drainage volume (ml)

【表】 この第2表から、有機溶剤を主体とする回生剤
において脱着効果が優れ、特に先ず酸及び/また
はアルカリ金属イオン含有溶液である1%
NaOH含有10%NaCl水と接触させ、続いて酸及
び/またはアルカリ金属イオン含有有機溶剤であ
る5%HCl含有80%メタノール水と接触させれば
極めて効果的に色素成分を除去することができる
ことが明らかである。 実施例 3 甘蔗糖液の精製イオン交換樹脂工程に使用して
能力の低下した使用済み粒状強塩基性陰イオン交
換樹脂を気流粉砕法にて粒径50μm以下(平均粒
径18.5μm)に粉砕して粉末状陰イオン交換樹脂
を得た。 得られた粉末状陰イオン交換樹脂1g(乾燥重
量)を精製糖工場における炭酸飽充工程終了後の
精製中間糖液(Bx60、PH8.0、転化糖0.16%、色
価r.b.u.1237)200mlに添加し、70℃、30分間撹拌
しながら色素成分を吸着させた。吸着終了後、
0.8μのメンブレンフイルタを用いて上記粉末状陰
イオン交換樹脂をろ別し、水洗後回収して100ml
のビーカに移した。 この色素成分を吸着した粉末状陰イオン交換樹
脂に20mlのアセトン及び36%濃塩酸2mlを加え、
マグネテイツクスターラ上で15分間撹拌して再生
し、上記粉末状陰イオン交換樹脂をろ紙(No.2)
を用いてろ別した。同様の操作を2回実施し、再
生排液を合わせてNaOH溶液で中和した後、200
mlに希釈して分光光度計により吸光度を測定し、
色素脱着率を求めた。なお、上記色素脱着率は式 色素脱着率=再生排液の色価(r.b.u.)/脱
色により減少した色価(r.b.u.) ×100(%) により求め、また色価(r.b.u.)は420nm及び
720nmの吸光度より算出した。 色価(r.b.u.)=1000×(−logT420on+2logT720on
/b×c (ただし、式中bはセルの長さを表わし、cは試
料の糖濃度を表わす。) 再生操作を終了した粉末状強塩基性陰イオン交
換樹脂を充分に水洗した後、被処理液として前述
の炭酸飽充工程終了後の精製中間糖液を用いて、
脱色精製→粉末状陰イオン交換樹脂回収→再生→
脱色精製…を繰り返した。 10サイクルに及ぶ繰り返し操作を実施したが、
脱色能力の低下は認められなかつた。 各サイクルにおける処理糖液の品質と各再生操
作における色素脱着率を第3表に示す。
[Table] From this Table 2, it can be seen that the desorption effect is excellent in regenerating agents mainly composed of organic solvents, and especially in 1% solutions containing acids and/or alkali metal ions.
It has been found that the pigment component can be removed extremely effectively by contacting with 10% NaCl water containing NaOH, and then with 80% methanol water containing 5% HCl, which is an organic solvent containing acid and/or alkali metal ions. it is obvious. Example 3 Purification of cane sugar liquid Used granular strong basic anion exchange resin whose capacity has been reduced due to use in the ion exchange resin process is pulverized to a particle size of 50 μm or less (average particle size 18.5 μm) using an air flow pulverization method. A powdered anion exchange resin was obtained. 1 g (dry weight) of the obtained powdered anion exchange resin was added to 200 ml of refined intermediate sugar solution (Bx60, PH8.0, invert sugar 0.16%, color value rbu1237) after the carbonation process at a refined sugar factory. The dye component was adsorbed while stirring at 70°C for 30 minutes. After the adsorption is completed,
Filter the powdered anion exchange resin using a 0.8μ membrane filter, wash with water, and collect 100ml.
Transferred to a beaker. Add 20 ml of acetone and 2 ml of 36% concentrated hydrochloric acid to the powdered anion exchange resin that has adsorbed the pigment component.
Stir for 15 minutes on a magnetic stirrer to regenerate, and transfer the powdered anion exchange resin to filter paper (No. 2).
It was filtered using The same operation was carried out twice, the regenerated waste liquid was combined and neutralized with NaOH solution, and then 200
ml and measure the absorbance using a spectrophotometer.
The dye desorption rate was determined. The above dye desorption rate is determined by the formula: Dye desorption rate = Color value of recycled effluent (rbu) / Color value reduced by decolorization (rbu) x 100 (%), and the color value (rbu) is calculated at 420 nm and
Calculated from absorbance at 720 nm. Color value (rbu) = 1000 x (-logT 420on + 2logT 720on )
/b×c (In the formula, b represents the cell length and c represents the sugar concentration of the sample.) After thoroughly washing the powdered strong basic anion exchange resin after the regeneration operation, Using the purified intermediate sugar solution after the carbonation process described above as the treatment liquid,
Decolorization and purification → Powdered anion exchange resin recovery → Regeneration →
Decolorization and purification... were repeated. We performed repeated operations for 10 cycles, but
No decrease in decolorizing ability was observed. Table 3 shows the quality of the treated sugar solution in each cycle and the dye desorption rate in each regeneration operation.

【表】【table】

【表】 実施例 4 脱塩工程で300サイクル使用済みの粒状強塩基
性陰イオン交換樹脂(商品名ダイヤイオン
PA308)気流粉砕法により粉砕し、粉末状陰イオ
ン交換樹脂(平均粒径23μm)を得た。 得られた粉末状陰イオン交換樹脂1g(乾燥重
量)を食品工場の着色排水10に添加し、常温で
20分間撹拌して処理した。上記処理終了後に粉末
状陰イオン交換樹脂を10μのメンブレンフイルタ
でろ別し、200mlのビーカ中へ回収した。 この回収粉末状陰イオン交換樹脂に80%メタノ
ール水100mlと濃硝酸(48%)10mlを添加し、超
音波撹拌を30分間継続した。続いて10μのメンブ
レンフイルタを用いて当該粉末状陰イオン交換樹
脂を回収し、洗浄後、前述の着色排水を用いて同
様の操作を3サイクル繰り返したが脱色能力の低
下はほとんど認められなかつた。結果を第4表に
示す。 なお、第4表中SSはJIS K0102の方法により
測定した。
[Table] Example 4 Granular strong basic anion exchange resin (trade name: Diaion) used for 300 cycles in the desalination process
PA308) was pulverized by an air flow pulverization method to obtain a powdered anion exchange resin (average particle size 23 μm). 1 g (dry weight) of the obtained powdered anion exchange resin was added to 10 g of colored wastewater from a food factory, and the mixture was heated at room temperature.
Stir and process for 20 minutes. After the above treatment was completed, the powdered anion exchange resin was filtered through a 10μ membrane filter and collected into a 200ml beaker. 100 ml of 80% methanol water and 10 ml of concentrated nitric acid (48%) were added to the recovered powdered anion exchange resin, and ultrasonic stirring was continued for 30 minutes. Subsequently, the powdered anion exchange resin was collected using a 10μ membrane filter, and after washing, the same operation was repeated for three cycles using the colored wastewater described above, but almost no decrease in decolorization ability was observed. The results are shown in Table 4. Note that SS in Table 4 was measured by the method of JIS K0102.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した溶液の脱色方法の工
程を示す説明図である。
FIG. 1 is an explanatory diagram showing the steps of a method for decolorizing a solution to which the present invention is applied.

Claims (1)

【特許請求の範囲】 1 溶液を粉末状陰イオン交換樹脂に接触させて
脱色するにあたり、上記粉末状陰イオン交換樹脂
として使用済みの粒状陰イオン交換樹脂を粒径
105μm以下の微粒子に粉砕しさらに酸及び/ま
たはアルカリ金属イオン含有溶液と接触させるこ
とにより回生して得られる粉末状陰イオン交換樹
脂を用いるとともに、上記脱色により被吸着物質
を吸着した粉末状陰イオン交換樹脂を酸含有溶液
と接触させて再生し、繰り返し使用することを特
徴とする溶液の脱色方法。 2 脱色により被吸着物質を吸着した粉末状陰イ
オン交換樹脂を酸及び親水性有機溶剤を含有する
再生剤と接触させて再生することを特徴とする特
許請求の範囲第1項記載の溶液の脱色方法。 3 脱色により被吸着物質を吸着した粉末状陰イ
オン交換樹脂を酸及び/またはアルカリ金属イオ
ン含有水溶液と接触させた後、酸及び親水性有機
溶剤を含有する再生剤と接触させて再生すること
を特徴とする特許請求の範囲第1項記載の溶液の
脱色方法。 4 親水性有機溶剤がアルコールまたはケトンで
あることを特徴とする特許請求の範囲第2項また
は第3項記載の溶液の脱色方法。 5 溶液が糖液であることを特徴とする特許請求
の範囲第1項記載の溶液の脱色方法。 6 使用済みの粒状陰イオン交換樹脂が甘蔗糖液
の精製イオン交換樹脂工程に使用して能力の低下
した粒状陰イオン交換樹脂であることを特徴とす
る特許請求の範囲第5項記載の溶液の脱色方法。
[Scope of Claims] 1. When bringing a solution into contact with a powdered anion exchange resin to decolorize it, the used granular anion exchange resin as the powdered anion exchange resin is
Using a powdered anion exchange resin obtained by regenerating it by grinding it into fine particles of 105 μm or less and contacting it with a solution containing acid and/or alkali metal ions, and also powdered anions that have adsorbed the adsorbed substance by the above-mentioned decolorization. A method for decolorizing a solution, characterized in that an exchange resin is brought into contact with an acid-containing solution to be regenerated and used repeatedly. 2 Decolorization of the solution according to claim 1, characterized in that the powdered anion exchange resin that has adsorbed the adsorbed substance by decolorization is regenerated by contacting it with a regenerant containing an acid and a hydrophilic organic solvent. Method. 3. The powdered anion exchange resin that has adsorbed the adsorbed substance by decolorization is brought into contact with an aqueous solution containing an acid and/or an alkali metal ion, and then regenerated by contacting with a regenerant containing an acid and a hydrophilic organic solvent. A method for decolorizing a solution according to claim 1. 4. The method for decolorizing a solution according to claim 2 or 3, wherein the hydrophilic organic solvent is an alcohol or a ketone. 5. The method for decolorizing a solution according to claim 1, wherein the solution is a sugar solution. 6. The solution according to claim 5, characterized in that the used granular anion exchange resin is a granular anion exchange resin whose capacity has decreased after being used in a cane sugar liquid purification ion exchange resin process. Bleaching method.
JP58213905A 1983-11-16 1983-11-16 Decoloration of solution Granted JPS60106540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58213905A JPS60106540A (en) 1983-11-16 1983-11-16 Decoloration of solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58213905A JPS60106540A (en) 1983-11-16 1983-11-16 Decoloration of solution

Publications (2)

Publication Number Publication Date
JPS60106540A JPS60106540A (en) 1985-06-12
JPH0547269B2 true JPH0547269B2 (en) 1993-07-16

Family

ID=16646961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58213905A Granted JPS60106540A (en) 1983-11-16 1983-11-16 Decoloration of solution

Country Status (1)

Country Link
JP (1) JPS60106540A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608245A (en) * 1985-10-17 1986-08-26 Gaddy James L Method of separation of sugars and concentrated sulfuric acid
FR3058999B1 (en) 2016-11-24 2019-10-25 Novasep Process PURIFICATION PROCESS USING LOW GRANULOMETRY RESIN

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511385A (en) * 1978-07-11 1980-01-26 Nec Corp Light combining system
JPS5542598A (en) * 1978-09-19 1980-03-25 Rohm & Haas Sugar refining method using emulsion anionic exchange resin
JPS5546218A (en) * 1978-09-25 1980-03-31 Sony Corp Manufacturing method of image pick-up device
JPS5547148A (en) * 1978-09-19 1980-04-03 Rohm & Haas Emulsion copolymer cation and anion exchange resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511385A (en) * 1978-07-11 1980-01-26 Nec Corp Light combining system
JPS5542598A (en) * 1978-09-19 1980-03-25 Rohm & Haas Sugar refining method using emulsion anionic exchange resin
JPS5547148A (en) * 1978-09-19 1980-04-03 Rohm & Haas Emulsion copolymer cation and anion exchange resin
JPS5546218A (en) * 1978-09-25 1980-03-31 Sony Corp Manufacturing method of image pick-up device

Also Published As

Publication number Publication date
JPS60106540A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
US4430226A (en) Method and apparatus for producing ultrapure water
DE2029960A1 (en) Process for reactivating activated carbon that has been used
US3770625A (en) Removal of virus from fluids
US3730770A (en) Sugar recovery method
US2226134A (en) Method of purifying water
US4572742A (en) Precoat filter and method for neutralizing sugar syrups
CN108993431A (en) A kind of humic acid Modified clay mineral adsorbent and preparation method thereof
JPH0547269B2 (en)
US3371112A (en) Purification of crude malic acid liquors
US1932832A (en) Decolorizing, purifying, and adsorbing agent, and method of making the same
CA1184853A (en) Agent and method for the treatment of production cycle and effluent water of the papermaking and related industries
JPS60106539A (en) Decoloration of solution
RU2076846C1 (en) Process for purifying water
US2105701A (en) Process for purification of beverages
JPH0796082B2 (en) Fibrous adsorbent, solution processing method and solution processing apparatus using the same
JPH059077B2 (en)
JPH0577400B2 (en)
JP3519850B2 (en) Activated carbon for solvent purification for dry cleaning
WO2000001459A1 (en) Small diameter water stable zeolite composite useful as an ion exchange material
JPS609499A (en) Refining method of sugar liquid
JPS6142336A (en) Regeneration of powdery anion exchange resin
US2471213A (en) Treatment of aqueous liquids
TW202000923A (en) Filter media for the removal of particles, ions, and biological materials, and decolorization in a sugar purification process, and use thereof
Insuwan et al. An investigation of phenol adsorption from aqueous solution using solid adsorbents
JPH0510079B2 (en)